摘要:提出了一種優(yōu)化設(shè)計(jì)方案。該方案的各項(xiàng)評價(jià)指標(biāo)均優(yōu)于根據(jù)以往文獻(xiàn)提供的方法所能得到的最好結(jié)果。尤其是所提出的海明距離測度方法,進(jìn)一步保證了特異性雜交產(chǎn)生的自由能遠(yuǎn)大于非特異性雜交所產(chǎn)生的自由能,便于進(jìn)行DNA編碼序列的設(shè)計(jì)與選擇,為可控的DNA計(jì)算提供可靠有效的編碼序列。
關(guān)鍵詞:DNA計(jì)算;編碼序列;熱力學(xué)參數(shù);物理特性
中圖分類號:TP301.5文獻(xiàn)標(biāo)志碼:A
文章編號:1001-3695(2007)07-0195-04
DNA(Deoxyribo Nucleic Acid)計(jì)算中的序列編碼問題可簡單地定義為:系統(tǒng)地將一個(gè)算法問題的實(shí)例映射為特殊的DNA分子序列。這樣的DNA分子序列應(yīng)能夠確保隨后進(jìn)行的生化反應(yīng)不出現(xiàn)任何錯(cuò)誤,而且反應(yīng)產(chǎn)物中需包含有足夠多的、穩(wěn)定可靠的、能被成功提取的原始算例的解[1]。只有滿足上述兩個(gè)條件的DNA序列才能稱為好的DNA編碼序列。由此可見,編碼問題幾乎涵蓋了DNA計(jì)算研究領(lǐng)域內(nèi)所有的重點(diǎn)和難點(diǎn)。事實(shí)上,為了實(shí)現(xiàn)理想的生化反應(yīng)以及解的檢測,DNA計(jì)算的每一成功算例均離不開設(shè)計(jì)或選擇合適的DNA序列。所以,自DNA計(jì)算誕生以來編碼問題就一直是該研究領(lǐng)域的核心問題之一。隨著研究的進(jìn)一步深入,其重要性愈加突顯,因?yàn)樗谝欢ǔ潭壬蠜Q定著DNA計(jì)算模式的未來。
4結(jié)束語
在DNA計(jì)算中,根據(jù)相關(guān)約束條件建立一套通用的DNA編碼序列設(shè)計(jì)方案是一件非常困難的事情。一些約束條件之間存在著相互制約,并且不同的約束條件所要求的生物實(shí)驗(yàn)條件和方法不同。由于生化反應(yīng)受多種條件的影響,在分子生物學(xué)中,微小的條件變化可能不會影響整體實(shí)驗(yàn)效果及定性分析,但對于DNA計(jì)算來說,這種變化卻可能是致命的。選擇標(biāo)準(zhǔn)時(shí)應(yīng)特別小心。可能的解決方案之一是建立一套多目標(biāo)評價(jià)體系,根據(jù)所要解決實(shí)際問題的需求,通過賦予不同目標(biāo)函數(shù)不同的權(quán)值來實(shí)現(xiàn)針對具體問題的DNA計(jì)算的編碼序列的優(yōu)化設(shè)計(jì)與選擇。另外,從本質(zhì)上來講,DNA計(jì)算是以犧牲空間來換取時(shí)間的一種計(jì)算模式。當(dāng)計(jì)算規(guī)模比較大時(shí),所需DNA編碼序列的長度和數(shù)目隨之增長。在進(jìn)行編碼序列設(shè)計(jì)與選擇時(shí),計(jì)算規(guī)模就會隨之增長,為節(jié)省計(jì)算機(jī)處理時(shí)間,還需針對具體約束條件(如ΔG)進(jìn)行算法優(yōu)化。
參考文獻(xiàn):
[1]GARZON M, DEATON R,NEATHERY P,et al.On the encoding problem for DNA computing:proc. of the 3rd DIMACS Workshop on DNA-based Computer[C].[S.l.]:[s.n.],1997:230-237.
[2]TANAKA F, NAKATSUGAWA M,et al.Developing support system for sequence design in DNA computing:proc. of the 7th Int. Workshop DNA-based Computer[C].[S.l.]:[s.n.],2001:340-349.
[3]FRUTOS A G, LIU Q,et al.Demonstration of a word design strategy for DNA computing on surfaces[J].Nucleic Acids Research,1997,25(23): 4748-4757.
[4]FAULHAMMER D, CUKRAS A R,et al.Molecular computation: RNA solutions to chess problems:proc. of the National Academy of Sciences[C].[S.l.]:[s.n.],2000:1385-1389.
[5]ARITA M, KOBAYASHI S. DNA sequence design using templates[J].New Generation Computer,2002,20:263-277.
[6]ARITA M, NISHIKAWA A,et al.I(xiàn)mproving sequence design for DNA computing:proc. of Genetic Evol. Comput. Conf. (GECCO)[C].[S.l.]:[s.n.],2000:875-882.
[7]TUPLAN D C, HOOSE H,et al.Stochastic local search algorithms for DNA word design:proc.of the 8th Int. Workshop DNA Based Computer[C].London:Springer-Verlag,2002:229-241.
[8]ANDRONESCU M, DEES D L,et al.Algorithms for testing that DNA word designs avoid unwanted secondary structure:proc. of the 8th Int. Workshop DNA-based Computer[C].[S.l.]:[s.n.],2002:182-195.
[9]ZHANG B T, SHIN S Y. Molecular algorithms for efficient and reliable DNA computing:proc. of Genetic Program[C].[S.l.]:[s.n.],1998:735-742.
[10]FELDKAMP U, SAGHAFI S,et al.DNA sequence generator:a program for the construction of DNA sequences:proc. of the 7th Int. Workshop DNA-based Computer[C].[S.l.]:[s.n.],2001:179-188.
[11]HARTEMINK A J, GIFFORD D K,et al.Automated constraint based nucleotide sequence selection for DNA computation:proc. of the 4th DIMACS Workshop DNA-based Computer[C].[S.l.]:[s.n.],1998:227-235.
[12]DEATON R, CHEN J,et al.A software tool for generating noncrosshybridization libraries of DNA oligonucleotides:proc. of the 8th Int. Workshop DNA-based Computer[C].[S.l.]:[s.n.],2002:252-261.
[13]DEATON R, CHEN J,et al.A PCR-based protocol for in vitro selection of noncrosshybridizing olgionucleotides:proc. of the 8th Int. Workshop DNA-based Computer[C].[S.l.]:[s.n.],2002:196-204.
[14]BORER P N, DENGLER B,et al.Stability of ribonucleic acid double-stranded helices[J].Journal of Molecular Biology,1974,86(4):843-853.
[15]SANTALUCIA J Jr. An unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics [J].Proc.of the National Academy Sciences,1998,95(4):1460-1465.
[16]NUSSINOV R, JACOBSON A B. Fast algorithm for predicting the secondary structure of single strand RNA[J].Proc.ofthe National Academy Sciences, 1980,77(11):6309-6313.
[17]BENEDETTI G.SANTIS P D,et al.A new method to find a set of energetically optimal RNA secondary structures[J].Nucleic Acids Research,1989,17(13): 5149-5161.
[18]WATERMAN M S. Introduction to computational biology[M]. London: Chapman Hall, 1995:334-337.
[19]SANKOFF D.Simultaneous solution of the RNA folding. alignment and protosequence problems[J].SIAM Journal onAppled Mathematics,1985,45(5): 810-825.
[20]TANAKA F, KAMEDA A,et al.Thermodynamic parameters based on a nearest-neighbor model for DNA sequences with a single-bulge loop[J].Biochemistry,2004,43:7143-7150.
[21]BOMMARITO S, PEYRET N,et al.Thermodynamic parameters for DNA sequences with dangling ends[J].Nucleic Acids Research,2000,28:1929-1934.
[22]ZUKER M. Mfold Web server for nucleic acid folding and hybridization prediction[J].Nucleic Acids Research,2003,31(13):3406-3415.
[23]PERITZ A E, KIERZEK R,et al.Thermodynamic study of internal loops in oligoribonucleotides: symmetric loops are more stable than asymmetric loops[J].Biochemistry,1991,30(26):6328-6436.
[24]TANAKA F, KAMEDA A,et al.Design of nucleic acid sequences for DNA computing based on a thermodynamic approach[J].Nucleic Acids Resarch,2005,28(3): 903-911.
[25]TANAKA F, NAKATSUGAWA M,et al.Toward a general-purpose sequence design system in DNA computing:proc. of Congr. Evol. Comput. (CEC)[C].USA:[s.n.],2002:73-78.
[26]SHIN S Y, KIM D M,et al.Evolutionary sequence generation for reliable DNA computing:proc.of Congr. Evol. Comput. (CEC)[C].USA:[s.n.],2002:79-84.
[27]SHIN S Y, LEE I H,et al. Multi-objective evolutionary optimization of DNA sequences for reliable DNA computing[J].IEEE Transactions on Evolutionary Computation,2005,9(2):143-158.
注:“本文中所涉及到的圖表、注解、公式等內(nèi)容請以PDF格式閱讀原文”