[課例]
一、談話導(dǎo)入
師:最近我們學(xué)習(xí)了哪些有關(guān)圓的知識(shí)?你對(duì)圓有了哪些了解?
(根據(jù)學(xué)生回答,課件出示一個(gè)圓,依次標(biāo)出圓心、半徑、直徑、周長(zhǎng))
師:你們還聽說(shuō)過哪些有關(guān)圓的知識(shí)?了解它們嗎?
(學(xué)生回答:聽說(shuō)過圓的面積,知道有個(gè)公式能計(jì)算圓面積,很想知道公式是怎么產(chǎn)生的。)
點(diǎn)評(píng):課堂教學(xué)應(yīng)以學(xué)生為中心,關(guān)注學(xué)生心中的問題。本節(jié)課導(dǎo)入采用談話交流方式,通過教師的提問,一方面復(fù)習(xí)已學(xué)過的圓的知識(shí),另一方面讓學(xué)生提出問題,激發(fā)求知欲望。導(dǎo)入簡(jiǎn)潔明了,把學(xué)生從認(rèn)知平衡狀態(tài)引入新的不平衡中,通過激活認(rèn)知沖突,讓學(xué)生內(nèi)心產(chǎn)生探求問題解決的沖動(dòng)。
二、合理猜想
師:什么叫圓的面積呢?
(課件演示給大小不同的圓都慢慢涂上顏色,涂色部分就是圓的面積。)
師:和你想得一樣嗎?能說(shuō)說(shuō)什么叫圓的面積嗎?
生:圓所占平面的大小叫做圓的面積。
師:知道什么是圓的面積了,(指著課件出示的圓)看著這些圓猜想一下,圓的面積大小會(huì)和什么有關(guān)?
(學(xué)生在小組內(nèi)猜一猜、說(shuō)一說(shuō))
課件演示:一個(gè)圓在屏幕上慢慢變大,再慢慢變小。圓的半徑、直徑也隨之變長(zhǎng)和縮短。
師:看到圓的變化,你們想到了什么?
生:圓的面積擴(kuò)大、縮小,它的半徑、直徑長(zhǎng)度也隨之?dāng)U大、縮小,和我們猜想的差不多,我認(rèn)為圓的面積大小與它的半徑、直徑的長(zhǎng)短有關(guān)。
師:準(zhǔn)確地說(shuō),一個(gè)圓半徑(或直徑)的擴(kuò)大或縮小,使圓的面積也隨之?dāng)U大或縮小。
師:這里有個(gè)圓和以半徑為邊長(zhǎng)的正方形,能估計(jì)這個(gè)圓的面積嗎?
(學(xué)生憑借圖形進(jìn)行猜測(cè),得到結(jié)論如下)
生甲:圓的面積比四個(gè)正方形的面積小,也就是比4r2小。
生乙:圓的面積比四個(gè)等邊直角形的面積多一些,也就是比2r2大。
生丙:圓的面積在2r2和4r2之間。
師:估計(jì)得都有道理。看來(lái)圓的面積的確與半徑有關(guān)系,至于有怎樣的關(guān)系,可以從下面的探究活動(dòng)中去尋找、驗(yàn)證。
點(diǎn)評(píng):就培養(yǎng)學(xué)生探究問題的能力而言,提出猜想、樹立假說(shuō)比驗(yàn)證更重要。“只要數(shù)學(xué)的學(xué)習(xí)過程稍能反映出數(shù)學(xué)的發(fā)明過程的話,那么就應(yīng)該讓合理的猜想占有適當(dāng)?shù)奈恢谩?波利亞)。學(xué)生親歷“提出問題——建立假說(shuō)”過程,相當(dāng)于再現(xiàn)數(shù)學(xué)家探索圓面積計(jì)算的經(jīng)歷,這樣不僅能讓學(xué)生感受前人的探索,而且也能促進(jìn)學(xué)生逐步形成自主探索意識(shí)和能力。
三、自主探究
師:回憶一下,以前我們常用什么方法來(lái)推導(dǎo)平面圖形的面積計(jì)算公式?
生:通過剪、拼,把新圖形轉(zhuǎn)化成已學(xué)過的圖形。
師:圓的面積計(jì)算公式是不是也能這樣獲得呢?
生:我們可以試一下。
師:好!但要注意從哪兒下手剪、拼最有可能轉(zhuǎn)化成所學(xué)過的平面圖形。
(小組討論后匯報(bào))
生甲:我們想把圓轉(zhuǎn)化成長(zhǎng)方形或平行四邊形,但不知道怎么剪。
生乙:我們想把圓變成正方形,也感到困難。
生丙:既然圓的面積和它的半徑有關(guān),我們想沿著圓的半徑剪開。
師:這個(gè)主意真不錯(cuò)!老師這兒為每個(gè)小組準(zhǔn)備了已經(jīng)16等分的圓片,請(qǐng)同學(xué)們想辦法,通過剪、拼把它轉(zhuǎn)化成已學(xué)過的平面圖形并粘貼在圖板上。
課件出示思考提綱:
1、拼之前先想,圓可以轉(zhuǎn)化成哪些已學(xué)過的平面圖形?
2、拼之后再想,轉(zhuǎn)化后的圖形與圓之間有什么關(guān)系?
(學(xué)生以小組為單位,開展操作、交流,并派代表把小組剪拼后的圖形展示在黑板上)
展示剪拼后的幾種圖形:

(再次利用課件,演示把一個(gè)圓16等分后拼成近似的長(zhǎng)方形。)
師:如果等分的份數(shù)越多,拼成的圖形會(huì)怎樣?
生:邊會(huì)越來(lái)越直,拼出的圖形會(huì)越來(lái)越接近已經(jīng)學(xué)過的平面圖形。
(課件演示把圓32等分,拼成近似的長(zhǎng)方形)
師:仔細(xì)觀察,把圓轉(zhuǎn)化成學(xué)過的平面圖形后,什么變了?什么沒變?
生:形狀變了,面積沒變。
師:小組討論一下,轉(zhuǎn)化后的圖形的面積怎樣算?能利用它來(lái)推導(dǎo)出圓的面積計(jì)算公式嗎?
(分組活動(dòng),嘗試推導(dǎo)圓面積計(jì)算公式,把推導(dǎo)的過程寫在圖板上,完成后以小組為單位介紹推導(dǎo)的方法與過程,并用實(shí)物投影展示)
師:綜上所述,圓面積計(jì)算公式:S=πr2,而且2r2<πr2<4r2。看來(lái)你們的估計(jì)不僅有道理,而且還較為準(zhǔn)確。
點(diǎn)評(píng):新課程標(biāo)準(zhǔn)倡導(dǎo)讓學(xué)生自主學(xué)習(xí)、合作探究、經(jīng)歷過程、體驗(yàn)感悟。教師精心組織、學(xué)生自主經(jīng)歷的探索過程,形成了三個(gè)層次的學(xué)習(xí)活動(dòng):遷移轉(zhuǎn)化——操作試驗(yàn)——推導(dǎo)結(jié)論,將前人探索發(fā)現(xiàn)圓面積計(jì)算公式的過程集中鮮活地在課堂上體現(xiàn)。學(xué)生通過自己實(shí)踐及與人合作,多角度想像、思考,用學(xué)過的平面圖形構(gòu)思、推導(dǎo)出圓面積計(jì)算公式,不但完成了學(xué)習(xí)任務(wù),更重要的是對(duì)圓與其他平面圖形之間的內(nèi)在聯(lián)系有了更深層的理解,為后續(xù)學(xué)習(xí)奠定了基礎(chǔ)。
[反思]
數(shù)學(xué)課怎樣讓學(xué)生在自主探究中感受成功快樂?這節(jié)新授課給了我們一些啟示,這就是:少一點(diǎn)被動(dòng)接受,多一點(diǎn)自主學(xué)習(xí);少一點(diǎn)簡(jiǎn)單自我,多一點(diǎn)合作交流;少一點(diǎn)盲目思考,多一點(diǎn)探索發(fā)現(xiàn)。
1、所謂“少一點(diǎn)被動(dòng)接受”是指通過教師有效地“引”,讓學(xué)生迫切地“想”。
想知道什么是圓的面積,學(xué)生就自主觀察課件演示,自主聯(lián)系以前學(xué)過的平面圖形面積,自主理解圓面積的意義。想估計(jì)圓的面積,就自主發(fā)現(xiàn)圓面積與同圓半徑之間有聯(lián)系,自主發(fā)現(xiàn)圓面積與以半徑為邊長(zhǎng)的正方形面積之間的大小關(guān)系。想探索圓的面積計(jì)算公式的由來(lái),就自主地將圓轉(zhuǎn)化成其他平面圖形,自主地發(fā)現(xiàn)將圓等分的份數(shù)越多,拼成的其他平面圖形越趨于標(biāo)準(zhǔn),自主地歸納圓面積的計(jì)算方法。
2、所謂“少一點(diǎn)簡(jiǎn)單自我”是指通過教師適時(shí)地“點(diǎn)”,讓學(xué)生深刻地“悟”。
在自我想像與課件演示中感悟圓面積與圓周長(zhǎng)的區(qū)別,避免混淆這兩個(gè)不同概念。在自我認(rèn)識(shí)與信息交流中感悟圓面積與所在圓半徑之間的關(guān)系,體會(huì)半徑擴(kuò)大與縮小對(duì)圓面積產(chǎn)生的影響。在合作實(shí)驗(yàn)與多重理解中感悟圓的面積與其他平面圖形的內(nèi)在聯(lián)系,溝通數(shù)與形之間、形與形之間變與不變的規(guī)律。
3、所謂“少一點(diǎn)盲目思考”是指通過師生有序地“歸”,讓學(xué)生清晰地“知”。
通過歸納課件上觀察到的、自己猜測(cè)的、同學(xué)交流的信息,先發(fā)現(xiàn)圓面積與半徑(直徑)有密切聯(lián)系。通過歸納大家憑借圖形進(jìn)行猜測(cè),發(fā)現(xiàn)每個(gè)圓面積的大小都有確定的范圍“2r2<圓面積<4r2”。通過歸納各小組推導(dǎo)的圓面積計(jì)算方法,最后發(fā)現(xiàn)圓的面積總是所在圓半徑平方的π倍。