本文旨在建立如下姊妹不等式
定理 若a,b,c是正數,且a+b+c=1,則(1)1a+b+1b+c+1c+a≥30;
(2)1a-b+1b-c+1c-a≥26.
證明:先證(1).∵a,b,c是正數,且a+b+c=1,∴1a+1b+1c≥9,0 361abc+abc+(1a+1b+1c)+(a+b+c)≥3627+127+9+1=36100027=633×103=30,∴1a+b+1b+c+1c+a≥30. 再證(2).由a,b,c∈R+且a+b+c=1得0<3abc≤a+b+c3=13,0 ∵1a-b+1b-c+1c-a ≥36(1a-b)(1b-c)(1c-a) =361abc-(1a+1b +1c)+(a+b+c)-abc =36(a+b+c)2abc-(1a+1b+1c)+(a+b+c)-abc =36(abc+bca+cab)+(1a+1b+1c)+(a+b+c)-abc ≥36331abc+9+33abc-abc =363(31abc+3abc)+9-abc≥363(3+13)+9-127=3619-127=3651227=636#8226;2933=26. ∴(2)式成立.故定理成立.