胡宏偉
題目 有三個不透明的布袋,每個袋子里都有兩個大小一樣的玻璃球。它們分別是兩個紅球、兩個黃球和一紅一黃兩個球。三個袋子外面分別貼有“兩紅”“兩黃”和“紅黃”的標簽,可是標簽都貼錯了。如果只準從其中一個袋子里摸出一個球來看,你能判斷出三個袋子里各裝什么顏色的玻璃球嗎?
分析與解 解決這個問題要運用假設法與排除法進行推理與判斷。
第一步,找準突破口,確定摸球的袋子。假設先從貼“兩紅”標簽的袋子摸球,摸出的是紅球還好往下推理,如果摸出的是黃球就無法確定這個袋子里是什么顏色的球了,可能是兩黃,也可能是一紅一黃,所以不合適。同樣的道理,先從貼“兩黃”標簽的袋子摸球,也無法確定這個袋子里球的顏色,也不合適。只有從貼有“紅黃”標簽的袋子里摸出一個球,才能確定這個袋子里球的顏色。假設從貼“紅黃”標簽的袋子摸出的是黃球,就可以判定貼“紅黃”標簽的袋子里裝的是兩個黃球。因為題目告訴我們“標簽都貼錯了”,貼“紅黃”標簽的袋子就不可能裝有一紅一黃兩個球;既然摸出的一個是黃球,那么袋里剩下的一個就不可能是紅球,一定是黃球。
第二步,準確選擇,確定推理的袋子。第一步推出的是裝兩個黃球的袋子,接下來,就不能找貼“兩黃”標簽的袋子去推理。因為貼“兩黃”標簽的袋子可能是兩個紅球,也可能是一紅一黃兩個球,只有去推導貼“兩紅”標簽的袋子裝什么球了。因為“兩紅”標簽證明袋里不是兩個紅球,兩個黃球的袋子又已經確定了,所以貼“兩紅”標簽的袋子里一定是一紅一黃兩個球。
第三步,水到渠成,確定最后的袋子。排除兩個黃球與一紅一黃兩個球這兩種情況,可以推出最后那個貼“兩黃”標簽的袋子裝的就是兩個紅球。
第二種情況是,假設從貼“紅黃”標簽的袋子里摸出的是紅球,那么像上面一樣運用排除法,就可以判斷貼“紅黃”標簽的袋子裝的是兩個紅球,貼“兩黃”標簽的袋子裝的是一紅一黃兩個球,貼“兩紅”標簽的袋子裝的是兩個黃球。