999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

兩個基于間苯二甲酸和咪唑衍生物Zn(Ⅱ)配位聚合物的合成、晶體結構和電化學性能

2010-09-15 11:43:44李榮勛鄧月義劉保成劉法謙吳其曄
無機化學學報 2010年4期

李榮勛鄧月義劉保成劉法謙吳其曄

(1北京科技大學材料科學與工程學院,北京 100083)

(2青島科技大學新材料研究重點實驗室,青島 266042)

兩個基于間苯二甲酸和咪唑衍生物Zn(Ⅱ)配位聚合物的合成、晶體結構和電化學性能

李榮勛*,1鄧月義2劉保成2劉法謙2吳其曄2

(1北京科技大學材料科學與工程學院,北京 100083)

(2青島科技大學新材料研究重點實驗室,青島 266042)

合成了2個配位聚合物{[Zn(ip)(Eim)2]·H2O}(1)和Zn(ip)(Mim)2(2)(ip為間苯苯二甲酸陰離子,Eim為1-乙基咪唑,Mim為1-甲基咪唑),并用X射線單晶衍射儀測定了其晶體結構。2個配合物的結構中都含有沿晶體a軸方向的zigzag聚合鏈,每個Zn原子分別與2個來自不同間苯二甲酸離子氧原子和2個來自乙基咪唑或甲基咪唑的N原子配位,形成了配位四面體。在配合聚合物2中各鏈間只存在范德法力相互作用,而在配合物1中一維鏈通過O-H…O氫鍵相互作用進一步連接形成了三維網絡結構。電化學研究表明在配合物1和2中Zn2+/Zn+對的氧化還原是一個準可逆的過程。

間苯二甲酸配合物;羧酸鋅(Ⅱ)鹽;晶體結構;循環伏安法

The crystal engineering approach is extensively used to control material structure and dimensionality[1-3].The crystal engineering of coordination polymers has held great potential for applications in many areas,such as molecularmagnetism,heterogeneous catalysis,molecular sieving,storage,and non-linear optics[4-9].Bridging metals with organic ligands is used to construct lower dimensional coordination polymers,which can be further assembled by hydrogen-bonding,π-π interaction or other intermolecular contacts to formextended networks with higher dimensionality[10-12].On the other hand,more subtle conditions can also be used to modify structures,such as choice of solvents or counter ions.By judicious choice of bridging ligands and metal coordination geometries,control over the topology and geometry of the infinite networks can be gained.

Lots of Zn(Ⅱ)coordination polymers based on isophthalate as bridging ligands and N-donors as auxiliary ligands have been reported[13-20],but ones containing N-donors of imidazole derivatives are rare[21-23].Imidazole derivatives can not only coordinate with metal ion,but also donate hydrogen bonds,which may result in the formation of higher dimensional structures.

Here we report on crystal structures and characterization of two coordination polymers,{[Zn(ip)(Eim)2]·H2O}(1)and Zn(ip)(Mim)2(2).The 1D Zigzag chains in 1 and 2 are assembled to form 3D networks by hydrogen bonds and van der Waals interactions,respectively.

1 Experimental

1.1 Materials and instruments

All the chemical reagents for synthesizing the title compounds were purchased commercially and used without further purification.Elemental analyses(C,H and N)were carried out on a Perkin-Elmer 1400C analyzer.Voltammetry was performed by using a CHI 832B electrochemical analysis system (China)with a three-electrode system consisting of a glass carbon(GC)electrode(U=3 mm)as the working electrode,a saturated calomel electrode(SCE)as the reference electrode,and a platinum wire as the auxiliary electrode.All the electrochemical measurements were carried out in a 10 mL electrolyte cell with 0.01 mol·L-1pH 6.86 KH2PO4-Na2HPO4buffer solution as electrolyte.TG curve was recorded on a NETZSCH-TG209 GmbH thermoanalyser in flow of N2,in the temperature range from 20~700 ℃,with a heating rate of 10 ℃·min-1.

1.2 Preparation

Complex 1 was prepared as follows.ZnSO4·7H2O(1.15 g,4 mmol)was added to a solution of Eim(0.75 g,8 mmol)in 10 mL of distilled water and 40 mL of ethanol.The resulting solution was added to a solution of disodium isophthalate(0.84 g,4 mmol)in 10 mL of distilled water and 40 mL of ethanol(under continuous stirring at room temperature),and the mixture was refluxed for 7 h.The powder precipitate formed was filtered off,and the colorless filtrate was allowed to stay at ambient temperature for a period of about 3 weeks,gave 0.53 g (24%yields)of colorless block crystals suitable for structural determinations.Anal.Calcd.for C18H17ZnN4O5:C 49.27,H 4.82,N 12.77;found:C 50.01,H 4.99,N 12.82.

The colorless crystal of complex 2 was obtained by a similar procedure as for 1 except for using Mim(0.66 g,8 mmol)instead of Eim,yield:0.45g,49% .Anal.Calcd.for C16H16ZnN4O4:C 48.81,H 4.10,N 14.23;found:C 48.72,H 4.02,N 14.49.

1.3 Crystal structure determination

Single crystals of 1 and 2 were mounted on a Bruker SMART 1000 CCD area detector X-ray single crystaldiffractometerwith graphite-monochromated Mo Kα radiation(λ=0.071073 nm)and a φ/ω scanning mode at 293(2)K.Intensities were corrected for Lorentz and polarization effects and empirical absorption.

The structure was solved by direct methods via SHELXS 97 program[24]and refined by full-matrix least squares on F2via SHELXL 97 program[25].All the nonhydrogen atoms were located from the difference Fourier map and refined anisotropically.H atoms were positioned geometrically (C-H=0.093 nm,0.096 nm)and allowed to ride on their parent atoms with Uiso(H)=1.2 times Ueq(C).Crystallographic data for 1 and 2 are listed in Table 1.

CCDC:762257,1;762258,2.

Table 1 Crystallographic data for the complexes 1 and 2

Continued Table 1

2 Result and discussion

2.1 Crystal structures

The X-ray diffraction analysis indicates that each Zn atom adopts a distorted tetrahedral geometry formed by two N atoms from Eim or Mim molecules and two O atoms of different ip ligands(Fig.1).The complexes 1 and 2 contain infinite 1D polymeric zigzag chains consisting of[Zn(L)2](L=Eim for 1;Mim for 2)building units connected by bridging isophthalate ligands in the μ2-1,3 coordination mode.Fig.2a and Fig.2b show a fragment of the chains in the complexes 1 and 2 respectively.The Zn-O and Zn-N bond lengths are comparable to those of the structurally analogous complex[Zn(ip)(im)2]n·3nH2O(Zn-O=0.198 0(2)and 0.193 3(3)nm,Zn-N=0.200 0(3)and 0.201 1(3)nm)[21].The bond angles for Zn atoms in the complexes 1 and 2 lie in the range of 95.5(3)°~114.9(3)°and 96.6(18)°~117.2(19)°,respectively.(Table 2)In the bridging isophthalate anions with amphimonodentate coordination mode,the average C-O distance for the coordinated oxygen atom(0.128 5(10)nm in 1 and 0.128 7(6)nm in 2)is slightly longer than for uncoordinated ones(0.1221(10)nm in 1 and 0.1208(6)nm in 2).The carboxylate groups and benzene rings in 1 are almost coplanar,but the dihedral angle between two carboxylates in 2 is 35.33(3)°.

In the complexes 1 and 2,the polymer backbone propagates along the crystallographic a-axis.The metalmetal distances across each polymer backbone are 0.959 4(21)nm in 1 and 0.968 2(21)nm in 2,which are shorter than those found in[Zn(ip)(im)2]n·3nH2O(1.039 1(14)nm)[21].The closest metal-metal distances between neighboring strands for 1 are 0.905 5(21)nm,which are longer than those of 0.6734(17)nm and 0.743 8(14)nm in 2 and[Zn(ip)(im)2]n·3nH2O[21],respectively.

Table 2 Selected bond lengths(nm)and bond angles(°)for the complexes

In the complex 1,the adjacent metal-organic chains are connected into a 3D network via hydrogen bondsbetween solventwatermoleculesand the uncoordinated oxygen atoms of the carboxylate groups(Ow-HWA…O(4)=0.291 0(14)nm),which control thepacking of the adjacent chains(Fig.3a and Table 3).In complex 2 there are only van der Waals interactions between the adjacent chains in contrast to 1(Fig.3b).Some potentially weak(C-H…O)intramolecular interactions exist in the complexes 1 and 2(Table 3),which further stabilize the structures of zigzag chains.

Table 3 Hydrogen bonds of the complexes 1 and 2(nm and°)

2.2 Thermal properties

Thermal analyses of the complex 1 reveal that the first weight loss of about 4.95% occurs in the temperature range of 82~250℃,which corresponds to the loss of water molecules (calculated 4.14%).On further heating polymeric chains decompose via two unidentified steps in the temperature range of 250~580℃ and the weight loss of 79.04%was ascribed to the release of Eim and ip ligands.(calculated 78.21%).The final product was ZnO with the remaining percentage of16.68%(calculated 17.65%).For the complex 2 the first weight loss of 40.38%around 220~390 ℃ corresponds to the loss of two Mim molecules(calculated 41.71%).In the temperature range of 390~520 ℃ weight loss of 38.17% was ascribed to the release of ip ligand(calculated 37.59%),to give the expected oxides(observed 18.95%,calculated 20.61%).

2.3 Electrochemistry

Typical cyclic voltammetry curves for the complexes 1 and 2 in 0.01 mol·L-1pH 6.86 KH2PO4-Na2HPO4buffer solutions are shown in Fig.4.

Fig.4 Cyclic voltammetry of 3.00×10-4mol·L-1complexes 1 and 2 in 0.01 mol·L-1pH 6.86 KH2PO4-Na2HPO4buffer solution,at a scan rate:0.03 V·s-1

The complexes 1 and 2 at 0.03 V·s-1have anodic peaks at-1.161 V and-1.141 V,and cathodic peaks at-1.345 V and-1.282 V,respectively,corresponding to the electrochemical process of Zn2+/Zn+[26].The separations of the cathodic and anodic peaks potential,ΔE=0.184 V for 1 and 0.141 V for 2,indicate that the electrochemical behaviors of both complexes 1 and 2 on the glass carbon electrode are quasi-reversible processes.

[1]Subramanian S,Zaworotko M J.Angew.Chem.,Int.Ed.Engl.,1995,34:2127-2131

[2]Moulton B,Zaworotko M J.Chem.Rev.,2001,101:1629-1653

[3]Zaworotko M J.Cryst.Growth Des.,2007,7:4-11

[4]Batten S R.Curr.Opin.Solid State Mater.Sci.,2001,5:107-114

[5]Huang X C,Lin Y Y,Zhang J P,et al.Angew.Chem.Int.Ed.,2006,45:1557-1560

[6]Janiak C.J.Chem.Soc.,Dalton Trans.,2003:2781-2787

[7]Rowsell J L C,Yaghi O M.Microporous Mesoporous Mater.,2004,73:3-12

[8]Kitagawa S,Kitaura R,Noro S I.Angew.Chem.,Int.Ed.,2004,43:2334-2339

[9]Yamaguchi T,Tashiro S,Tominaga M,et al.Adv.Inorg.Biochem.,2007,15(2):468-472

[10]Lewinski J,Zachara J,Justyniak I,et al.Coord.Chem.Rev.,2005,249:1185-1205

[11]Chen H J,Zhang J,Feng W L,et al.Inorg.Chem.Commun.,2006,9:300-302

[12]Song J F,Chen Y,Li Z G,et al.J.Mol.Struct.,2005,743:243-248

[13]LI Bin(李 彬),SUN Yue-Fei(孫躍飛),GOU Shao-Hua(茍少華),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2001,17(6):917-920

[14]Zhou Y F,Zhao Y J,Sun D F,et al.Polyhedron.,2003,22:1231-1235

[15]Wang S P,Gao D Z,Liao D Z,et al.Transition Met.Chem.,2006,31:214-228

[16]Hao Z M,Zhang X M.Inorg.Chem.Commun.,2006,9:57-62

[17]Che G B,Liu C B,Liu B,et al.CrystEngComm.,2008,10:184-190

[18]Qin Y Y,Zhang J,Li Z J,et al.Chem.Commun.,2008:2532-2534

[19]Wang X L,Xu Y H,Li L C,et al.Chin.J.Struct.Chem.,2008,27(7):797-801

[20]Hu T L,Zou R Q,Li J R,et al.Discussion of Faraday Soc.,2008:1302-1307

[21]Li X M,Cui Y C,Wang Q W,et al.Chin.J.Struct.Chem.,2006,25(4):481-485

[22]Li W H,Zhao G F,Huang Z G,et al.Chin.J.Chem.,2008,26(9):1607-1610

[23]Li S X,Zhao G F,Liu F Q,et al.Chin.J.Chem.,2008,26(9):1732-1736

[24]Sheldrick G M.Acta Crystallogr.,Sect.A,1990,46:467-471

[25]Sheldrick G M.SHELXL-97,Program for X-ray Crystal Structure Refinement,University of Gttingen,Germany,1997.

[26]Xi P X,Xu Z H,Chen F J,et al.J.Inorg.Biochem.,2009,103:210-217

Two Zn(Ⅱ)Coordination Polymers Based on Isophthalate and Imidazole Derivatives:Synthesis,Crystal Structures,and Electrochemical Properties

LI Rong-Xun1DENG Yue-Yi2LIU Bao-Cheng2LIU Fa-Qian*,2WU Qi-Ye2
(1School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083)
(2Key Laboratory of Advanced Materials,Qingdao University of Science and Technology,Qingdao,Shandong 266042)

Two Zn(Ⅱ) coordination polymers{[Zn(ip)(Eim)2]·H2O}(1)and Zn(ip)(Mim)2(2)(where ip2-=isophthalate dianion;Eim=1-ethyl-1H-imidazole;Mim=1-methyl-1H-imidazole),have been synthesized and characterized by X-ray single crystal diffractometry.Complexes 1 and 2 contain polymeric zigzag chains extended along a axis,and each Zn(Ⅱ)atom is tetrahedrally coordinated to two O atoms from different isophthalate ions and two N atoms from Eim or Mim.There are only van der Waals interactions between the chains in 2,while 1D Zigzag chains in 1 are connected to form a 3D network by O-H…O contacts.The electrochemical studies reveal that redoxes of Zn2+/Zn+in the complexes 1 and 2 are quasi-reversible processes.CCDC:762257,1;762258,2.

isophthalate compound;Zn(Ⅱ)carboxylate;crystal structure;cyclic voltammetry

O614.24+1

A

1001-4861(2010)04-0609-06

2009-11-25。收修改稿日期:2009-12-25。

國家自然科學基金(No.20601015,20871072)、山東省博士基金(No.2007BS04023)和山東省自然科學基金(No.2009ZRA02071)資助項目。

*通訊聯系人。E-mail:qdplastics@163.com

李榮勛,男,38歲,副教授;研究方向:材料學。

主站蜘蛛池模板: 欧美啪啪一区| 国产一在线观看| 伊人久久大线影院首页| 一本大道在线一本久道| 久久精品视频一| 喷潮白浆直流在线播放| 日韩福利在线观看| 亚洲午夜国产片在线观看| 精品久久777| 欧美在线伊人| 中文字幕人妻无码系列第三区| 超碰91免费人妻| 又粗又硬又大又爽免费视频播放| 91福利一区二区三区| 久久久成年黄色视频| 亚洲成人网在线播放| 亚洲人成色在线观看| 91亚洲精选| 国产精品va免费视频| 老司机久久精品视频| 熟妇人妻无乱码中文字幕真矢织江 | 国产青青操| 国产精品尤物在线| 黄色在线不卡| 精品少妇人妻无码久久| 欧美激情成人网| 国产在线观看高清不卡| 亚洲男人天堂网址| 在线观看国产黄色| 国产精品微拍| 久草视频福利在线观看 | 亚洲天堂成人在线观看| 最新日韩AV网址在线观看| 国产精品不卡片视频免费观看| 久久精品亚洲专区| 亚洲国产中文精品va在线播放| 国产激情无码一区二区APP| 午夜国产大片免费观看| 老司机午夜精品视频你懂的| 国产精品偷伦在线观看| 91年精品国产福利线观看久久| 国产精品视频999| 国产在线八区| 亚洲国产精品VA在线看黑人| 国产一区免费在线观看| 中文字幕1区2区| 韩国福利一区| 国产福利微拍精品一区二区| 久久中文电影| 在线欧美a| 欧美日一级片| 欧美在线黄| 中文字幕在线观看日本| 五月婷婷伊人网| 欧美日韩第二页| 国产无遮挡猛进猛出免费软件| 有专无码视频| 国模私拍一区二区三区| 久久综合色88| 欧洲av毛片| 日韩高清欧美| 在线欧美一区| 亚洲天堂2014| 亚洲综合第一页| 日本精品视频一区二区 | 亚洲第一视频网| 亚洲一级毛片免费观看| 亚洲第一视频网| 欧美亚洲日韩不卡在线在线观看| 激情五月婷婷综合网| 欧洲亚洲一区| 97se亚洲综合在线韩国专区福利| 无码av免费不卡在线观看| 国产在线视频二区| 国产成人a在线观看视频| 欧美激情成人网| 野花国产精品入口| 欧美一区二区福利视频| 日日拍夜夜操| 91小视频版在线观看www| 国产成人做受免费视频| 欧美色伊人|