李海銀
(河南財(cái)經(jīng)政法大學(xué) 數(shù)學(xué)與信息科學(xué)系 河南 鄭州 450002)
B-D功能反應(yīng)密度制約的離散非自治捕食者—食餌系統(tǒng)的周期解
李海銀
(河南財(cái)經(jīng)政法大學(xué) 數(shù)學(xué)與信息科學(xué)系 河南 鄭州 450002)
利用Gains和Mawhin重合度理論中的延拓定理,得到了一類具有Beddington-DeAngelis功能反應(yīng)密度制約的離散非自治捕食者—食餌系統(tǒng)周期解存在性的充分條件,推廣了某些已知的相關(guān)結(jié)果.這個(gè)結(jié)論不僅適用于離散時(shí)滯,同樣也適用于分布時(shí)滯和偏差變?cè)?
捕食者密度制約; B-D功能反應(yīng)函數(shù); 周期解; 重合度理論; 延拓定理
Beddington[1]和DeAngelis[2]分別提出了下面捕食者—食餌模型

(1)
近年來很多專家研究發(fā)現(xiàn),具有B-D功能反應(yīng)的捕食者—食餌系統(tǒng)[3-7]的出生率、死亡率和其他重要的種群變化率都發(fā)生著很大的變化,因此,參數(shù)有周期性的假設(shè)和周期性的環(huán)境(比如天氣的季節(jié)性影響,食物供應(yīng),交配習(xí)性等)是非常符合的.當(dāng)把參數(shù)的周期性考慮進(jìn)去時(shí),模型(1)一定是非自治的. 文獻(xiàn)[4]研究了非自治捕食—食餌動(dòng)力系統(tǒng)


(2)
然而,許多學(xué)者[8-9]認(rèn)為當(dāng)種群不是世代重疊時(shí),離散時(shí)滯的差分方程模型較連續(xù)的更適合,且一定的環(huán)境限定了捕食者應(yīng)該是密度制約的[10-11],下面討論離散非自治模型的周期解


(3)
其中e(t)為捕食者的密度制約率.采用[12]中的方法,可推導(dǎo)出(3)的離散模型


(4)
(4)的指數(shù)形式比(3)用差分形式代替微分在生物學(xué)上更合理,且連續(xù)時(shí)滯系統(tǒng)比離散時(shí)滯系統(tǒng)研究起來更難.下面將討論系統(tǒng)(4)的正周期解的存在性以及存在的充分條件.


(i)對(duì)任意的λ∈(0,1),方程Lx=λNx的解滿足x??Ω;

引理2已經(jīng)在文獻(xiàn)[13]中得以證明,這個(gè)引理將在先驗(yàn)估計(jì)和獲得正周期解的一致有界方面起非常重要的作用.
引理2令f:Z→R是ω周期函數(shù),則對(duì)固定的k1,k2∈Iω和k∈Z,有



證明作變換x(t)=eu(t),y(t)=ev(t)和U=(u(t),v(t))T,則系統(tǒng)(4)等價(jià)于


(5)
我們定義X=U=lω,(lf)(k)=f(k+1)-f(k),則
對(duì)任意的f∈X和k∈Z,我們很容易得到L是一個(gè)有界的線性算子,且KerL=lcω,ImL=l0ω,dim KerL=2=codim ImL,則L是一個(gè)零指標(biāo)的Fredholm映射.令

很明顯,P和Q是連續(xù)映射,使得ImP=KerL,ImL=KerQ=Im(I-Q)且存在
KP∶ImL→KerP∩DomL,



(6)
如果U是系統(tǒng)(6)的任意解,我們有


這意味著
(7)

(8)
結(jié)合(6)~(8), 我們有




(9)
由于U=U(k)∈X,一定存在ξi,ηi∈Iω,i=1,2使得

(10)

(11)

(12)
結(jié)合(11),則
|u(k)|≤max{|A1|,|A2|}∶=C1.
(13)
由(7)、(10)和(11),得

從上面可以得出,

(14)
由引理2及等式(9)和(14),得

由(7)和(12),容易得到





(15)
且|(ln{s1*},ln{s2*}| k∈Z.令Ω∶={U={U(k)}∈X:‖U‖ 因代數(shù)方程組(15)存在惟一解,由已知條件直接計(jì)算知deg(JQN,Ω∩KerL,0)≠0,這里同構(gòu)J可取為恒同映射,因?yàn)镮mQ=KerL.至此,我們已經(jīng)證明Ω滿足引理1的全部條件.由引理1,方程(5)在DomL∩Ω中至少存在一個(gè)ω周期解U*={U*(k)}={(u*(k),v*(k))T},令x*(k)=eu*(k),y*(k)=ev*(k),則X*={X*(k)}={(x*(k),y*(k))T}是系統(tǒng)(4)的ω周期正解,存在正常數(shù)αi,βi滿足上面的討論.證畢. 例1令 e(t)是任意的連續(xù)正ω周期函數(shù),且令ω=4,通過簡(jiǎn)單的數(shù)值計(jì)算,可得 因此,系數(shù)函數(shù)滿足條件H0,系統(tǒng)至少有一個(gè) 正周期解. 注1從定理1 可以看出,只要滿足條件H0,條件H0和正的連續(xù)ω周期函數(shù)e(t)的取值無關(guān),系統(tǒng)(4)至少有一個(gè)ω正周期解.也就是說,捕食者的密度制約比率e(t)對(duì)周期解的存在性不存在任何負(fù)作用. 注2當(dāng)系統(tǒng)(4)的部分或全部項(xiàng)換為離散時(shí)滯、分布時(shí)滯或偏差變?cè)獣r(shí),定理1仍然是成立的. [1] Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency[J].J Animal Ecol,1975,44(1):331-340. [2] DeAngelis D L, Goldstein R A, O′Neil R V.A model for trophic interaction[J].Ecology,1975,56(4):881-892. [3] Cui Jing’an, Takeuchi Y. Permanence, extinction and periodic solution of predator-prey system with Beddington-DeAngelis functional response[J]. J Math Anal Appl,2006,317(2):464-474. [4] Fan Meng,Kuang Y. Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response[J].J Math Anal Appl,2004,295(1):15-39. [5] Liu Shengqiang, Beretta E. A stage-structured predator-prey model of Beddington-DeAngelis type[J]. SIAM J Appl Math, 2006,66(4):1101-1129. [6] Hwang T W. Global analysis of the predator-prey system with Beddington-DeAngelis functional response[J]. J Math Anal Appl, 2003,281(1):395-401. [7] Cantrell R S, Cosner C. On the dynamics of predator-prey models with the Beddington-DeAngelis functional response[J]. J Math Anal Appl, 2001,257(1):206-222. [8] May R M. Stability and Complexity in Model Ecosystems[M].Princeton:Princeton Univ Press,1974. [9] Freedman H I. Deterministic mathematical models in population ecology[M].New York:Marcel Dekker,1980. [10] Li Haiyin, Takeuchi Y. Dynamics of the density dependent predator-prey system with Beddington-DeAngelis functional response[J]. J Math Anal Appl, 2011,374(2):644-654. [11] Li Haiyin, Takeuchi Y.Stability of ratio-dependent predator-prey system with density dependence [C]// Proceedings of the 7th conference of Biological Dynamic System and Stability of Differential Equation.New York:World Academic Press,2010:144-147. [13] Gaines R E, Mawhin R M. Coincidence Degree and Nonlinear Differential Equations[M].Berlin:Springer-Verlag,1977. [12] Fan Meng,Wang Ke. Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system[J]. Mathematical and Computer Modelling,2002,35(9/10):951-961. PeriodicSolutionofDiscreteTimeNonautonomousDensityDependentPredator-PreySystemwithB-DFunctionalResponse LI Hai-yin (DepartmentofMathematicsandInformation,HenanUniversityofEconomicsandLaw,Zhengzhou450002,China) By using the continution theorem based on Gaines and Mawhin’s coincidence degree, sufficient and realistic conditions were obtained for the existence of positive periodic solutions for a discrete time nonautonomous density dependence predator-prey system with Beddington-DeAngelis functional response, and the results were improved.The results were applicable to distribute delays and deviating arguments. density dependent predator; Beddington-DeAngelis functional response; periodic solution; coincidence degree; continution theorem O 29 A 1671-6841(2011)03-0038-05 2010-09-09 國(guó)家自然科學(xué)基金資助項(xiàng)目,編號(hào)60774041. 李海銀(1977-),女,講師,碩士,主要從事微分方程穩(wěn)定性研究.E-mail:haiyinli2002@yahoo.com.cn

