999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Oscillation for the Solutions of Hyperbolic Partial Differential Equation with Damped Terms and High order Laplace Operator

2012-01-19 03:02:06GAOZhenghuiLUOLipingYANGLiu
衡陽師范學院學報 2012年6期

GAO Zheng-hui ,LUO Li-ping,YANG Liu

(Department of Mathematics and Computational Science,Hengyang Normal University,Hengyang Hunan 421002,China)

0 Introduction

The theory of the nonlinear differential equations with delay can be applied to many fields,such as biological medicine,engineering technology,physics and so on.Oscillation theory for the solution of the functional differential equation with delay is an important part to study functional differential equations.Oscillations of the solution for the delay hyperbolic partial differential equation has been studied by a number of authors,plenty of research achievements have been published,see[1-5].However,a few of papers have been published on oscillation of the solution for the delay hyperbolic partial differential equation containing damped terms,see[6-7].the relative research results of the oscillation of the solution for the continuous delay argument partial functional differential equation with damped terms are few,see[8].In this paper,we studied the oscillatory behaviors of the continuous delay argument hyperbolic partial differential equation with damped terms and high order Laplace operator

with following boundary value conditions

where(x,t)∈Ω×R+≡G,R+=[0,∞],Ω?Rnis bounded,?Ωis piecewise smooth,l≥1is integral,△is Laplace operator,and△nu=△(△n-1u),n≥1and nare integers,when n=0,△nu=u.

For the equation(1),suppose that the following conditions hold:

(C2)Bi(x,t,τ)∈C(×[a,b];R+),Bi(t,τ)=min{Bi(x,t,τ),x∈}.

(C3)αi(t,τ),βj(t,τ)∈C(R+×[a,b];R+),αi(t,τ)≤t,βj(t,τ)≤t,αi(t,τ),βj(t,τ)t,τare nondecreasing functions,α(t,τ)=,and+∞.(C4)m(τ)is nondecreasing real function onτin[a,b],the integration in(1)is Stieltjes integration.(C5)fi(u)∈C(R;R),and,if u≠0,it exists constants Mi>0,such that(C6)p(t)∈C(R+;R+),C(t)∈C(R+;R+),Dj(t,τ)∈C(R+×[a,b];R+).

Definition 1A function u(x,t)∈C2(G)∩C1(G-)is called a solution of the problem(1),(2),if it satisfies(1)in the domain G along with the boundary value condition.

Definition 2A solution u(x,t)of equation(1)is called oscillatory in the domain G,if for each positive

numberμhere exists a point(x0,t0)∈Ω×[μ,+∞],such that the condition u(x0,t0)=0holds,Otherwise,u(x,t)is called nonoscillatory.

The purpose of this paper are obtained some new sufficient conditions for the oscillation of each solution of the equation by using integral averaging technique and Riccati transformation.1 The main results

Lemma 1[9]The problem of eigenvalue(λis a constant)

The minimal eigenvalueλ0>0,and its corresponding eigenfunctionφ0(x)>0,x∈Ω.

Theorem 1For the equation(1),(2),if condition(C1)—(C6)holds,there exists functionφ(t)∈(t)∈C1(R+,R+)satisfy

then every solution of the equation(1),(2)is oscillated in G.

proof:Suppose u(x,t)are the nonoscillatory solutions of the equation(1)(2),that there existsμ>0,when t>μ,without loss of generality,we may assume that u(x,t)>0,(x,t)∈Ω×[μ,+∞].

For the equation(1),both sides multiplied byφ0(x)>0,and integrating with respect to xoverΩ,we can get

By Green's formula and boundary value condition(2),we have

From conditions(C1)—(C6):

then

multiplied both sides of(10)by

so w′(t)≤0,and w(t)≤w(t1).

To prove when t≥t1>0,w(t)≥0.or,if w(t)<0,w(t)≤w(t1)=α<0.

then

Take limit and from condition(C7),then

It contradictes v(t)≥0,so w(t)≥0.that is w(t)=v′(t),so v′(t)≥0and v″(t)≤0.

Let

then

Let t→+∞,and we combine with condition(C8),we have

It contradicts R(t)≥0.Theorem 1is proved.

Corollary 1For the equation(1),(2),the conditions(C1)—(C7)of theorem 1hold,satisfy(C′

then every solution of the equation(1),(2)is oscillatory in G.

According to the proof(8)of Theorem 1,we have

Similar to the proof of Theorem 1,we can get.

Theorem 2For the equation(1)(2),the conditions(C1)—(C7)of the Theorem 1hold,if there existed a functionφ(t)∈C1(R+,R+),satisfy

then every solution of the equation(1),(2)is oscillatory on G.

Corollary 2for the equation(1),(2),the conditions(C1)—(C7)of the Theorem 1hold,satisfy

then every solution of the equation(1),(2)is oscillatory in G.

according to the proof(8)of Theorem 1,we can get

Theorem 3For the equation(1),(2)the conditions(C1)—(C7)of the Theorem 1hold,if there existed functionφ(t)∈C1(R+,R+),satisfy

then every solution of the equation(1),(2)is oscillatory in G.

Corollary 3For the equation(1),(2)the conditions(C1)—(C7)of the Theorem 1hold,satisfy

then every solution of the equation(1),(2)is oscillatory in G.

2 Conclusion

In this paper,we studied the oscillatory behaviors of the continuous delay argument hyperbolic partial differential equation with damped terms and high order Laplace operator.By using integral averaging technique and Riccati transformation,some new sufficient conditions for the oscillation of each solution of the equation are obtained in the given boundary value conditions.

[1]D P Mishev,D D Bainov.Oscillation properties of the solutions of a class of hyperbolic equations of neutral type[J].Funkew.Ekvac,1986,29(2):213-218.

[2]Yu Yuanhong,Cui Baotong.On the forced oscillations of solutions of hyperbolic equations with deviating arguments.Acta Mathematicae Applicatae Sinica,1994,17(3):448-457.

[3]Cui Baotong.Oscillation properties of the solutions of hyperbolic differential equations with deviating arguments.Demonstration Math,1996,29(1):61-68.

[4]B S Lalli,Yu Y H,Cui B T.Oscillations of hyperbolic equations with functional arguments[J].Appl Math Comput,1993,53:97-110.

[5]Cui Baotong,Yu Yuanhong.Oscillation of certain hyperbolic delay differential equations[J].Acta Mathematical Applicate Sinica,1996,19(3):80-88.

[6]Yu Yuanhong,Hu Qingxi.Oscillation of solutions of partial functional differential equations with damped terms[J].Mathematics in Practice and Theory,2000,30(3):331-338.(in Chinese)

[7]Liu Anping.Oscillations of certain hyperbolic delay differential equations with damping terms[J].Math Applicate,1996,9(3):321-324.

[8]Gao Zhenghui,Luo Liping.Oscillation of the solutions of nonlinear neutral hyperbolic partial differential equation with continuous deviating arguments and damped terms.Mathematical Applicator,2008,21(2):339-403.(in Chinese)

[9]Ye Qixiao,Li Zhengyuan.Introduction to reaction-diffusion equations[M].Beijing:Science Press,1990.(in Chinese)

主站蜘蛛池模板: 国产视频大全| 专干老肥熟女视频网站| 欧美一级视频免费| 精品色综合| 欧美午夜在线视频| 日韩123欧美字幕| 9966国产精品视频| 亚洲男人天堂网址| 国产办公室秘书无码精品| 激情综合网址| 新SSS无码手机在线观看| 人妻91无码色偷偷色噜噜噜| 91视频精品| 日本成人不卡视频| 日韩精品亚洲一区中文字幕| 狂欢视频在线观看不卡| 沈阳少妇高潮在线| 亚洲天堂久久新| 在线毛片网站| 五月婷婷中文字幕| 亚洲成a人片在线观看88| 午夜不卡视频| 黄色网在线| 在线播放国产99re| 国产欧美日韩va| 人人91人人澡人人妻人人爽 | 婷婷午夜天| 国产精品视频第一专区| 国产精品香蕉在线| 国产成人精品亚洲日本对白优播| 一级毛片基地| 亚洲国产精品久久久久秋霞影院| 99激情网| 欧美日本在线一区二区三区| 久久久久无码精品国产免费| 强乱中文字幕在线播放不卡| 免费精品一区二区h| 久久综合九九亚洲一区| 四虎影视无码永久免费观看| 精品一区二区无码av| 亚洲国产91人成在线| 蜜桃视频一区| 免费国产一级 片内射老| 国产一级做美女做受视频| 成人欧美日韩| 免费av一区二区三区在线| 亚洲天堂视频网站| 成人一级黄色毛片| 中文字幕久久精品波多野结| 免费人成黄页在线观看国产| 欧美综合区自拍亚洲综合绿色 | 久草网视频在线| 爽爽影院十八禁在线观看| 久久国产高潮流白浆免费观看| 亚洲IV视频免费在线光看| 亚洲日本一本dvd高清| 99er精品视频| 视频在线观看一区二区| 亚洲动漫h| 久久性妇女精品免费| 国产美女自慰在线观看| 午夜福利在线观看成人| 亚洲综合一区国产精品| 日韩国产 在线| 亚洲天堂在线免费| 欧美伦理一区| 人妻免费无码不卡视频| 亚洲AV成人一区国产精品| 国产女人在线| 欧美日本中文| 国产农村1级毛片| 制服丝袜国产精品| 中国一级特黄大片在线观看| 亚洲中文字幕无码爆乳| a亚洲天堂| 中文成人在线视频| 国产视频你懂得| 中文成人无码国产亚洲| 香蕉久久永久视频| 国产福利一区在线| 波多野结衣无码视频在线观看| 成年女人18毛片毛片免费|