堵秀鳳,李曉紅,邵為爽
(齊齊哈爾大學 理學院,黑龍江 齊齊哈爾 161006)
研究報告
一類色散耗散波動方程的整體強解
堵秀鳳,李曉紅,邵為爽
(齊齊哈爾大學 理學院,黑龍江 齊齊哈爾 161006)
對一類四階非線性色散、耗散波動方程的初邊值問題進行研究.在非線性項和初值滿足一定條件的前提下,利用位勢井方法得到其整體強解的存在性,并給出了問題解的某些集合在流之下的不變性.
非線性波動方程;位勢井;整體強解;存在性
MSC 2010:35L35;35L82
在研究非線性彈性中縱向桿形傳播[1-4]及弱線性作用下空間變換離子聲波傳播[5]問題時,分別得到主部含有utt-uxx-uxxtt但非線性項各不相同的一些非線性發展方程.在文獻[1-5]中分別討論了這些方程的孤立波解及某些數值結果.關于這些方程的初邊值問題及初值問題局部解整體解的存在唯一性也有一些研究[6-9].考慮到實際物理背景中粘性耗散不可避免[10-11],則可得到一些主部為utt-uxx-uxxt-uxxtt的非線性色散波動方程[11],2000年尚亞東在文獻[12]中用Galerkin方法與能量估計研究了如下方程的初邊值問題

即源項為負,外力方向與位移方向相反,故可用Galerkin方法與能量估計得到式(1)~(3)的整體強解.
1968年,Sattinger[14]提出了位勢井方法,用以證明不具有正定能量的雙曲方程的整體解的存在性.此后,有很多作者[13-18]用位勢井方法研究了不同的非線性發展方程解的整體存在性與不存在性.本文研究問題(1)~(3)非線性項滿足f(u)u≥0的情形,其中Ω∈Rn為有界域,n≥1.它的基本模型方程是utt-Δu-Δut-Δutt=|u|p-1u,即源項為正,外力方向與位移方向相同,故不能用文獻[12]中方法.另外,為了得到同樣的整體解的存在性,對f(u)u≥0的情形要比f(u)u≤0的情形加上更強的增長條件.而本文當n≥3時,對f(u)加的增長階是文獻[12]中方法.另外,為了得到同樣的整體解的存在性,對f(u)u≥0的情形要比f(u)u≤0的情形加上更強的增長條件.而本文當n≥3時,對f(u)加的增長階是文獻[12]中的2倍.故本文研究的問題不但與文獻[12]有本質區別,而且結果也有實質性的推廣和改進.關于這類方程,在文獻[12]中只研究了其解的整體不存在性與blow-up,而沒有考慮其整體解的存在性問題,在其它文獻中也未見到有關結果.只是最近在文獻[21]中,劉亞成和徐潤章考慮了問題(1)~(3)弱解的存在性.而對于該問題強解的存在性問題依然沒有給出明確的回答和適當解決.故本文的目的就是來證明問題強解的存在性,同時給出問題在流之下的不變集合.






[1] BOGOLUBSKY I L.Some examples of inelastic soliton interaction[J].Computer Physics Communications,1977,13:149-155.
[2] CLARKSON P A,LEVEQUE R J,SAXTON R A.Solitary-wave interaction in elastic rods[J].Studies in Applied Mathematics,1986,75:95-122.
[3] ZHUANG Wei,YANG Guitong.Propagation of solitary waves in the nonlinear elastic rods[J].Appl Math Mech,1968,7(7):571-582.
[4] ZHANG Shanyuan,ZHUANG Wei.Strain solitary waves in the nonlinear elastic rods[J].Acta Mech Sinica,1988,20(1):58-66.
[5] SEYLER C E,FANSTERMACHER D L.A Symmetric regularized long wave equation[J].Phys Fluids,1984,27(1):4-7.
[6] CHEN Guowang,YANG Zhijian,ZHAO Zhancai.Initiaol value problem and first boundary problem for a class of quasilinear wave equations[J].Acta Math Appl Sinica,1993,9(4):286-301.
[7] YANG Zhijian.Existence and non-existence of global solutions to a generalized modification of the improved boussinesq equation[J].Math Meth Appl Sci,1998,21:1468-1477.
[8] GUO Boling.The spectral method for symmetric regularized wave equations[J].J Comp Math,1987,5(4):297-306.
[9] 楊志堅,宋長明.關于一類非線性發展方程整體解的存在性問題[J].應用數學學報,1997,20(3):321-331.
YANG Zhijian,SONG Changming.On the problem of the existence of global solutions for a class of nonlinear evolution equations[J].Acta Mathematicae Applicatae Sinica,1997,20(3):321-331.
[10] 郭柏靈.粘性消去法和差分格式的粘性[M].北京:科學出版社,1993.
GUO Bailing.Viscosity vanishing method and the viscosity of difference scheme[M].Beijing:Science Press,1993.
[11] ZHU Weiqiu.Nonlinear waves in elastic rods[J].Acta Solid Mechanica Sinica,1980,1(2):247-253.
[12] 尚亞東.方程utt-Δu-Δut-Δutt=f(u)的初邊值問題[J].應用數學學報,2000,23(3):385-393.
SHANG Yadong.Initial boundarv value problem of equationutt-Δu-Δut-Δutt=f(u)[J].Acta Mathematicae Applicaae Sinica,2000,23(3):385-393.
[13] 劉亞成,李曉媛.關于方程utt-Δu-Δut-Δutt=f(u)的某些注記[J].黑龍江大學學報:自然科學學報,2004,21(3):1-2,6.
LIU Yacheng,LI Xiaoyuan.Some remarks on the equationutt-Δu-Δut-Δutt=f(u)[J].Journal of Natural Science of Heilongjiang University,2004,21(3):1-2,6.
[14] SATTINGER D H.On global solution of nonlinear hyperbolic equations[J].Arch Rat Mech Anal,1968,30:148-172.
[15] TSUTSUMI M.On solutions of semilinear differential equations in a Hilbert space[J].Math Japan,1972,17:173-193.
[16] PAYNE L E,SATTINGER D H.Saddle points and instability of nonlinear hyperbolic equations[J].Israel J Math,1975,22,273-303.
[17] LIONS J L.Quelques methods de resolution des problemes aux limites non lineaires[M].Paris:Dunod Gauthier-Villars,1969.
[18] TSUTSUMI M.Existence and nonexistence of global soulutions of nonlinear parabolic equations[J].Publ RTMS,1972/73,8,211-229.
[19] IKEHATA R.Some remarks on the wave equations with nonlinear damping and source terms[J].Nonlinear Analysis,1996,27,1165-1175.
[20] 劉亞成,劉萍.關于位勢井及其對強阻尼非線性波動方程的應用[J].應用數學學報,2004,27(4):523-536.
LIU Yacheng,LIU Ping.On Potential well and application to strongly damped nonliear wave equations[J].Acta Mathematicae Applicatae Sinica,2004,27(4):523-536.
[21] 劉亞成,徐潤章.一類非線性色散耗波動方程整體解的存在性[J].黑龍江工程大學學報,2007,28(5):586-589.
LIU Yacheng,XU Runzhang.Existence of global solutions for a class of nonlinear wave equations with dispersive-dissipative terms[J].Journal of Harbin Engineering University,2007,28(5):586-589.
(責任編輯:王蘭英)
Strong solutions to a class of wave equations with dispersive-dissipative terms
DU Xiu-feng,LI Xiao-hong,SHAO Wei-shuang
(College of Science,University of Qiqihar,Qiqihar 161006,China)
The initial-boundary value problem for a class of nonlinear dispersive-dissipative wave equations of fourth order were studied.Under some conditions on the nonlinear term and the initial data,by the potential well argument we discuss the existence of global strong solutions and give the invariance of some sets of the solutions to the problem under the flow.
nonlinear wave equations;potential well;global solution;existence
O175.26
A
1000-1565(2012)04-0337-05
2011-12-07
黑龍江省自然科學基金資助項目(A201014);黑龍江省教育廳科學技術研究項目(12511610)
堵秀鳳(1956-),女,浙江紹興人,齊齊哈爾大學教授,主要從事微分方程方向研究.E-mail:lxydxf807@126.com