彭思齊 戴瑜興 蔣 近
1.湖南大學,長沙,410082 2.湘潭大學,湘潭,411105
LED多線切割機是LED基材切割的專用裝備,是傳統多線切割機的升級換代。近年來,國內科研機構和企業在多線切割機方面的研究有長足進步,如文獻[1]提出一種無模型自適應控制的方法,該方法通過建立虛擬主軸,對收放線輪進行迭代運算控制,得到較好的控制效果,但國內研究成果多限于傳統多線切割機[2]。LED多線切割機控制系統復雜、制造難度大,國際上只有日本Takatori和瑞士Meyer Burger兩家公司掌握其技術,推出了產品。國外文獻中有將金剛石線用于傳統多線切割機的研究[3],但未見該機型控制方法的公開報道。本文給出了LED多線切割機的模糊迭代同步控制方法,并成功應用于國產LED多線切割機。
傳統多線切割方式如圖1所示。加工羅拉均勻刻有數百道槽,每條槽內嵌入一根金剛石線。兩個加工羅拉旋轉帶動金剛石線高速往返運動,LED基材固定在工作臺上,高速運動的金剛石線將向下運動的LED基材切成薄片[4]。
切片過程中必須做到兩點:①保持收放線輪的線速度和加工羅拉的線速度完全一致。由于金剛石線直徑為0.12~0.8mm,線速度為450~600m/min,故收放線輪的直徑在切片過程中是不斷變化的。如果線速度不一致,金剛石線將會瞬間崩斷,導致昂貴的LED基材報廢。②加工羅拉中嵌入的金剛石線張力均勻。這是保證切片質量的基礎條件,張力過大會引起斷線,張力過小則會使得加工出來的LED基片翹曲度較大、平行度較差、表面粗糙,增加后續工作的難度。系統張力通過伺服電機設定,將伺服電機設為恒轉矩控制模式,設定的轉矩值除以張力擺杠的長度就是對金剛石線施加的張力。張力擺杠偏移平衡位置的角度反映了系統線速度同步誤差;張力擺杠在平衡位置附近抖動劇烈表示張力波動劇烈,反之,則表示張力穩定。因此將對張力恒定的同步控制轉化為對系統線速度的同步控制。
筆者在對大量切片數據做了分析后,發現傳統多線切割方式存在切割效率低、切片質量較差的問題。如圖2所示,F為LED基材與金剛石線間的下壓力,r為LED基材半徑,b為金剛石線與LED基材接觸長度的一半,x為LED基材截面圓心到金剛石線的垂直距離,w1、w2、w3為切割過程中金剛石線的三個位置。張力一定的情況下,金剛石線對LED基材的壓力與金剛石線和LED基材的接觸面積成反比。
當金剛石線位于w1位置時,LED基材與金剛石線接觸面積小,壓力較大,切割速度高。隨著工件臺下降,金剛石線相對LED基材的位置上升,LED基材與金剛石線的接觸面積變大,壓力變小,切割速度變低。當金剛石線位于w3位置時,切割速度最低,之后切割速度逐漸變高。考慮一般情況,LED基材與金剛石線接觸面積為

工作臺的移動距離為

其中,L為LED基材的長度,則工件臺的速度

式中,t為時間。
將式(2)~ 式(4)代入式(1)得

在忽略次要因素的情況下,F=-μd x/dt,μ為壓力比例系數。則壓力

若工作臺勻速下降,則-dx/dt為常數,p在w1位置時較大,w3位置時較小。LED切片表現為w1位置的切口平整度較好,但金剛石線未充分利用,造成浪費;w3位置時較為粗糙,且金剛石線磨損嚴重。若速度設置過大,在切割中段基材時會造成斷線;若速度設置過小,則切割效率低下。
若工作臺變速下降,則式(6)為二階非線性函數,且無法改變接觸面積S小→大→小的變化過程。
系統的兩難處境使得單純依靠改進控制算法不容易保持p恒定,不容易提高切割效率,必須改進機械結構。
機械結構改進方法:用一個可以轉動的圓盤代替傳統多線切割機固定結構,在轉動圓盤上安裝三個結構對稱的加工羅拉,如圖3所示,上面的兩個是主動加工羅拉,下面的一個是從動加工羅拉。兩個主動羅拉通過金剛石線帶動從動羅拉同步高速往復旋轉,與此同時,轉動圓盤做±5°的搖動。
這種設計能夠使金剛石線和LED基材保持弧面接觸,工作臺勻速運動時,接觸面積變化不大,可以充分利用金剛石線,切割效率顯著提高。但這給系統控制提出了新的問題:①轉動圓盤運動時會造成收線側和放線側金剛石線時松時緊,若不加控制,擺杠會劇烈抖動,嚴重時會斷線;②由于機械設計上的原因,加工羅拉和轉動圓盤運動相互干涉,即轉動的圓盤對加工羅拉有一個附加轉速,使得加工羅拉的實際轉速和控制器指令轉速不一致。加之傳統多線切割機本身存在的非線性問題,如收放線半徑的變化、加工羅拉槽位磨損等,這都給系統多電機同步控制帶來了困難,傳統多線切割機的控制算法不能直接使用,必須采用其他先進算法。
模糊控制器能夠把專家知識轉化為控制系統的模糊集,利用一定的模糊推理規則,這些模糊集能夠對系統的輸出進行智能調節。這種控制方法不需要精確的數學模型,具有響應速度高、調整時間短、魯棒性強的特點[5-6]。本系統采用PD型兩輸入、單輸出模糊控制器對主軸電機和收放線輪電機進行控制。模糊控制器結構如圖4所示。模糊控制器輸入為誤差e和誤差變化率ec,與其對應的語言變量為E和EC。
以EC為例,其論域取[-10,10],語言值取7個,即[NB,NM,NS,Z,PS,PM,PB]。其中,NB取Z形隸屬度函數,PB取S形函數,其余取三角形隸屬度函數[7]。輸入e和輸出u與ec相似。以放線輪為例,若E、EC均為NB,則表示放線輪與設定轉速誤差正大,誤差變化趨勢也正大,因此放線輪要以大的加速度加速,模糊規則共49條。LED多線切割機高速運行達到穩定狀態時,張力擺杠在平衡位置附近小幅抖動,往復旋轉的換向期間抖動尤為劇烈。筆者嘗試增加論域上的離散點,即將論域上的離散值增加至9個,為[NB,NM,NS,NW,Z,PW,PS,PM,PB],相應模糊規則增加至81條,但張力擺杠的抖動現象并無明顯好轉。且模糊規則的增加會延長控制器的掃描時間,影響實時控制。實際上,由于

式中,K1、K2分別為誤差和誤差變化率的量程轉換比例因子;INT(*)表示取整運算。
當 | K1e(k)|< 0.5 時,E(k)=0; 當|K2ec(k)|<0.5時,EC(k)=0。當系統進入穩態 后,ec(∞)=0, 但 e(∞)未 必 為 0, 若|K1e(∞)|<0.5,則E(∞)=0,從而控制增量為0,系統保持穩態。由|K1e(∞)|<0.5可以得出e(∞)<1/|2K1|,即當模糊控制器進入穩定狀態后,實際控制誤差在零域(-1/(2K1),1/(2K1))中,由此可見,系統此刻輸出誤差實際上不為零,而PD型模糊控制器對此已經無能為力了。
模糊控制器中增加積分項可以提高穩態控制精度,但積分項的加入也改變了系統的動態性能。加入積分調節會使穩定性下降,動態響應變慢。系統在啟動、結束或大幅度改變設定時,系統輸出產生較大偏差,造成積分積累,引起系統較大的超調,導致斷線,這在LED多線切割機中是不允許的。
迭代學習控制利用上一周期的控制輸出以及誤差信號經過一定的迭代學習方法得到下一個周期的控制信號。經過幾個周期的學習過程,就可以使誤差趨近于零,達到所需的控制精度要求。模糊控制和迭代學習控制相結合可以使系統既有較高的響應速度,又有較高的穩態精度。現僅以放線側同步控制來說明(收線側是其逆過程)。如圖5所示,模糊控制器和迭代學習控制器組成模糊迭代控制器,該控制器輸出為

式中,Umo(T)為模糊控制器輸出;Ui,k(T)為迭代學習控制器輸出,Ui,k(T)=Ui,k-1(T)+G(s)ek-1(t);G(s)為學習函數。
圖5中,干擾1為系統運行時,加工羅拉和轉動圓盤相互干涉對加工羅拉的附加轉速。干擾2為轉動圓盤擺動時,收線側和放線側的金剛石線時松時緊的狀態。期望線速度分別轉化為主軸電機和放線輪電機的期望角速度。
具體的控制步驟如下:
(1)設定機器工作時的參數(期望線速度、搖擺軸的擺動速度和幅度),同時將線速度轉化為各軸角速度;
(2)通過模糊控制,系統迅速達到穩定狀態,當出現干擾或者給定變化以后,模糊控制可以實現快速響應,并具有一定精度;
(3)迭代學習控制通過幾個周期學習以后可以消除穩態誤差,使系統達到較高的精度。
主控制器為日本安川的MP2000系列運動控制器,主電機和放線電機均采用安川公司的ΣⅤ系列伺服電機和伺服驅動器,張力傳感器采用瑞士FMS公司的RMGZ121A,張力擺杠長度為132mm,記錄時間為8.4s,主電機的運行速度為600m/min,金剛石線的直徑為0.5mm。
根據LED多線切割機樣機實際運行狀態,利用運動控制器開發軟件MP720記錄走線速度、切割線上的張力及張力擺杠角位移,并將觀察數據導入至Excel文檔保存,觀測數據用MATLAB分別繪制各參量的波形,模糊控制與模糊迭代控制的實驗結果如圖6、圖7所示。
系統以線速度600m/s做往返運動,其中正轉時間3s,反轉時間2s,過渡時間1s。采用伺服系統S型速度過渡,保證平滑,張力值設定為30N。由圖6可知,切割線張力波動范圍在29~32N之間,張力擺杠角位移波動范圍在±5°之間,穩定精度不太理想。圖7為模糊迭代控制波形圖,系統進入穩定狀態時,切割線張力波動范圍在29.5~31N之間,張力擺杠角位移波動范圍在-0.5°~2°之間,且切割線張力波動集中在過渡時間,高速運動下張力擺杠運動平滑。放線輪和主軸電機的線速度能夠跟隨系統期望線速度。由此可以看出:模糊迭代控制系統的控制精度較高。
(1)通過分析傳統多線切割機切片的受力模型,得到了傳統多線切割機高速切割LED材料時容易斷線和切割質量不穩定的原因——壓力p不恒定。
(2)設計出一種帶擺動裝置的機械結構,該結構能在工作臺勻速運動的條件下,使得金剛石線和LED基材基本保持接觸面積不變。并根據改進后的機械結構,充分利用模糊控制和迭代學習控制的優點,給出了模糊迭代的控制方法。
(3)通過實驗,對比了模糊控制和模糊迭代控制算法的運行結果,證明了本文算法的有效性。
[1]蔣近,戴瑜興,彭思齊.多線切割機控制系統的研制[J].中國機械工程,2010,21(15):1780-1784.
[2]何金保,郭帥,何永義,等.基于遺傳優化的張力模糊控制[J].控制理論與應用,2009,26(3):243-248.
[3]Clark W I,Shih A J,Hardin C W,et al.Fixed Abrasive Diamond Wire Machining-Part I:Process Monitoring and Wire Tension Force[J].International Journal of Machine Tools & Manufacture,2003,43(5):523-532.
[4]Zhang B,Liu W,Hu X,et al.Application and Development of Wire Sawing Technology[J].Superhard Material Engineering,2008,20(1):45-48.
[5]張代林,陳幼平,艾武,等.永磁直線電機保證穩態精度的模糊控制[J].電工技術學報,2007,22(4):65-68.
[6]何仁,劉存香,李楠.轎車電磁制動與摩擦制動集成系統的模糊控制[J].機械工程學報,2010,46(24):83-87.
[7]吳飛青,馬修水,關宏偉,等.基于模糊專家控制的織機經紗恒張力控制研究[J].中國機械工程,2008,19(4):384-387.