劉 菊,廖靜娟,沈國狀
(1.中國科學院對地觀測與數字地球科學中心,北京 100094;2.中國科學院研究生院,北京 100049)
基于全極化SAR數據反演鄱陽湖濕地植被生物量
劉 菊1,2,廖靜娟1,沈國狀1
(1.中國科學院對地觀測與數字地球科學中心,北京 100094;2.中國科學院研究生院,北京 100049)
鄱陽湖是中國最大的淡水湖,也是國際重要濕地,對其生物量進行長期、定量研究有助于加深對區域乃至全球碳平衡的認識和理解。探討了利用全極化Radarsat-2 C波段數據反演鄱陽湖濕地生物量的方法,改進了基于輻射傳輸理論的植被冠層散射模型,模擬了C波段濕地植被的后向散射特性;應用極化分解技術,增加了神經網絡訓練數據,并用后向反饋神經網絡(BP)算法,反演了鄱陽湖濕地植被生物量。與野外實測生物量比較的結果表明:將改進的植被冠層散射模型和全極化分解得到的后向散射系數引入BP神經網絡算法,能夠有效降低生物量反演誤差;全極化SAR數據在生物量反演中具有廣闊的應用前景。
生物量;植被冠層散射模型;全極化分解;BP神經網絡;Radarsat-2
濕地植被作為陸地生態系統中的重要組成部分,在全球變化進程中起著舉足輕重的作用。濕地植被生物量是指某一時刻、單位面積的濕地范圍內實存植物的總重量,通常用鮮重或干重表示。濕地植被生物量是衡量濕地固碳能力的重要指標,因此濕地植被生物量的反演具有重要意義。
利用遙感技術進行生物量反演,數據源的選擇很重要。應用光學遙感數據可以提取植被指數等與生物量有較大相關性的信息,通過建立這些信息與生物量的相關關系模型或回歸模型來反演生物量[1-3]。但一些研究發現,植被茂盛區域的圖像存在光譜飽和現象,影響了生物量反演的精度[4-5]。與光學遙感相比,雷達遙感具有波長更長、穿透性更強的優勢,再加上全天時、全天候獲取數據的特點,為植被實時監測提供了有力保障[6]。研究發現,雷達后向散射系數與各植被參數之間存在一定的相關性[7-9],其中與生物量之間常表現為復雜的非線性關系[10-12]。也有學者嘗試將光學和微波遙感數據相結合來反演植被參數,探討提高反演精度的途徑[13-15]。然而,當自變量間存在多重共線性或相關關系時,基于統計分析的經驗和半經驗模型方法都存在一定的局限性。楊沈斌在進行統計回歸分析之前,對影響后向散射的各植被參數進行了主成分分析,發現雷達后向散射對水稻生物量和葉面積指數敏感[16];張遠等通過建立水稻冠層散射模型模擬植被后向散射特性,利用遺傳算法反演了水稻生物量[17]。隨著雷達遙感向全極化發展,極化特征參數也逐漸被用于反演地表環境生物物理參數。Sauer等人通過對POLSAR數據進行Freeman-Durden分解,利用二次散射和體散射分量進行生物量反演[18];張遠通過改進微波冠層散射模型,模擬了L波段水稻后向散射特性,并通過植被生物物理參數間接反演得到生物量[19]。
本文改進了水稻冠層散射模型,根據野外實測數據,將植被結構分層,對地表環境進行了重新構建,并將后向散射模擬值和Freeman-Durden極化分解得到的散射分量引入BP算法,反演得到了鄱陽湖濕地植被生物量。
鄱陽湖位于江西省北部,是中國最大的淡水湖,也是國際重要濕地之一,面積約3000 km2,其主導植被類型為灰化苔草[20]。受典型亞熱帶季風氣候的影響,鄱陽湖是一個季節性湖泊,水位的交替變化影響了濕地植被的生長條件,進而影響植被生物量的變化。研究區位置如圖1所示。

圖1 研究區位置示意圖(Google Earth)Fig.1 Sketch map of study area location on Google Earth
遙感數據為1景C波段精細全極化Radarsat-2圖像,入射角 31.3°~33.0°。在對該圖像進行Freeman-Durden極化分解之前,首先對其進行輻射定標和3像元×3像元的Enhanced Lee濾波;然后對得到的體散射、二次散射及面散射分量圖像進行幾何糾正(本文采用二次多項式變換模型,用最鄰近像元法進行像元重采樣);最后,利用手持GPS中存儲的野外采樣點地理坐標,提取出圖像中對應點的后向散射值。

圖2 濕地植被生物量反演方法流程Fig.2 Flow chart of wetland vegetation biomass retrieval
野外數據采集于2011年4月7—10日,獲取時間基本與SAR數據同步。此時的濕地植被正處于生長頂峰時期,生物量達到最大值。采樣點分布在鄱陽湖湖區中部的偏西部位(圖1),采樣點間距為3 m,樣點大小為0.5 m×0.5 m的地塊;共收集54組采樣點數據,每組取3個隨機采樣點的均值。采集的草樣在烤箱中持續12 h進行恒溫(100℃)烘干,最終獲取其干重,之后將收集的各個參數進行單位換算,統一為單位面積(即1 m2范圍內)。
首先,通過改進基于輻射傳輸的植被冠層模型[19,21-22],分析濕地植被的后向散射特性,通過比較采樣點的模型模擬值和圖像提取值,來驗證模型的可行性;然后,基于BP神經網絡算法構建了散射分量(體散射、二次散射、面散射)及后向散射系數(HH,VV,HV)與植被生物量的映射關系,最終實現了鄱陽湖濕地植被生物量反演與制圖,具體流程如圖2所示。
由于研究區內植被密度較大(圖3左),下墊面接受和反射C波段電磁波分量很少[23-24]。為了便于構建植被冠層后向散射模型,需要對地表條件進行簡化和假設[25-27]。在改進植被冠層后向散射模型過程中,本研究假設研究區內植被種類單一,均為灰化苔草。苔草分為葉子層和莖稈層(圖3右①—④為電磁波與植被的作用方式)。

圖3 濕地苔草(左)及其散射模型簡化示意圖(右)Fig.3 Cares cinerascens in Poyang Lake wetland(left)and schematic diagram of the model(right)
本研究將電磁波與植被的相互作用分為4種方式(圖3):①苔草直接后向散射;②入射波經苔草層衰減到達下層水面,再由水面反射到苔草層后射出;③入射波經苔草層散射到達水面后,經水面反射和草層衰減而射出;④雷達波束經苔草層衰減到達水面,再由水面反射到苔草層,經苔草層的后向散射作用返回水面,再次經水面反射和苔草層的衰減而射出。基于電磁波和植被的相互作用機制,在輻射傳輸方程的一階解中,將總的后向散射量表達為

式中:σleaf和σstem分別為葉子和莖稈的體散射分量;σleaf-ground和 σstem-grond分別為葉子、莖稈與地表的二次散射分量;σground是地表直接后向散射分量。
在以往的植被冠層散射模型中,將植被冠層視為球形分布,但研究區苔草葉子呈豎立生長,不同高度上莖葉夾角不同,不同方位上回波強度不同。因此,本文利用概率分布函數(probability of distribution function,PDF)擬合葉子的幾何分布。由于苔草葉片被視為長窄橢圓形,葉片與莖稈夾角α的余角定義為葉傾角β(β=90°-α)。PDF函數如圖4所示。

圖4 苔草葉傾角概率密度分布函數Fig.4 PDF of the taicao leaf orientations
擬合計算公式為

從改進模型的后向散射模擬值和圖像提取值對比結果(圖5)可以看出:二者之間具有良好的一致性,誤差在1 dB以內,大部分誤差在 0.2~0.5 dB之間,表明改進的模型能夠較真實地反映濕地苔草植被后向散射特性;圖像提取和模型模擬的3種極化方式(HH,VV,HV)后向散射值跨度均為6 dB左右,表明不同采樣點的地表特性差異明顯。

圖5 后向散射系數σ°的模擬值和圖像值對比Fig.5 Comparison between backscattering coefficients simulated by model and extracted from image
研究區內湖泊和河叉分布密集,下墊面含水量很高,在水分充足的情況下,同種植被在同一時間內含水量變動較小。但受下墊面成分、結構和營養條件等影響,植被高度、密度等卻存在較大差異,后向散射系數與植被各結構參數間的敏感性分析結果如圖6所示。

圖6 后向散射系數與植被結構參數間的敏感性分析Fig.6 Sensitivity analysis of vegetation structure parameters and backscattering coefficients
從圖6可以看出:后向散射系數隨著植被高度、葉片長度、莖稈半徑的增加而上升,但密度對其影響較小,后向散射系數保持相對穩定。這是由于植被密度較大,生長茂盛期不見裸露地表或者水面,后向散射系數對密度值存在飽和現象所致。
根據Freeman-Durden極化分解模型,將植被和地表相互作用的散射機制分解為面(或單次)散射、二次散射和體散射[28,30]3部分。對3個散射分量進行彩色合成(圖7),可以發現,研究區以體散射為主,建筑物和淺灘多見二次散射,水體主要是單次散射(面散射)。

圖7 Freeman-Durden分解合成圖像(R:二次散射量;G:體散射量;B:面散射量)Fig.7 Composite image of Freeman - Durden polarimetric decomposition
濕地植被生物物理參數(高度、密度、生物量等)與雷達后向散射系數之間呈非常復雜的非線性關系,而多元回歸分析要求各變量之間無相關性,遙感數據的各波段間的相關性無法滿足這一要求。神經網絡既可以實現多元回歸函數擬合,又不要求變量具有獨立性,因此可以利用神經網絡來反演生物量[31]。
本文BP神經網絡隱含層采用logsig函數為傳遞函數,輸出層采用purelin函數為傳遞函數。隱層神經元個數根據

計算[32]。式中:k為訓練樣本數;i,j分別為輸入和輸出層神經元個數。以此計算得到隱層神經元個數為30。網絡訓練采用梯度下降法,用traingd函數訓練。網絡輸出層設計為1個神經元,輸出目標為生物量。
用5組數據對生物量進行反演,各組數據的具體組合如表1所示。

表1 不同輸入數據組合及其生物量反演誤差Tab.1 Combination of input data for BP artificial neural network and biomass retrieval error
圖8(a)—(e)分別為5組輸入數據的模擬值與實測值的對比結果。其中,圖 8(a)—(c)和(d)—(e)分別代表神經網絡輸入3個和6個變量時生物量的反演結果。

圖8 生物量反演值和實測值對比Fig.8 Comparison of biomass retrieval and measured values
可以看出,隨著輸入變量個數的增加,神經網絡反演誤差有所降低。與應用表1a—c組數據反演結果相比,應用d,e兩組數據的反演結果誤差均有明顯降低,其中e組數據在5組數據中橫截距和均方根誤差均為最小,說明反演精度最高。因此,本文選用e組數據訓練神經網絡,最終反演得到研究區濕地植被生物量(圖9)。

圖9 研究區生物量反演圖Fig.9 Biomass retrieval map of study area
本文基于Radarsat-2 C波段全極化數據,利用改進的植被散射模型模擬了濕地植被HH,HV,VV極化方式下的后向散射特性,并通過BP神經網絡算法反演得到研究區生物量。結論如下:
1)輻射傳輸方程一階解的植被散射模型為反演生物量提供了理論和技術支撐。模型輸出有利于分析植被各生物物理結構參數的后向散射特性,為反演植被參數提供了新的方法和思路。
2)Freeman-Durden極化分解技術建立在3分量散射模型基礎上,分解結果較直觀地顯示了不同地物后向散射特征,同時也為生物量反演算法增加了約束變量。
3)植被散射模型簡化了地表環境,直接建立了植被與雷達波束相互作用散射機制,因此,后向散射系數模型模擬值與全極化分解分量組合的反演結果精度高于HH,HV,VV極化圖像后向散射系數與全極化分解分量組合的反演結果。
研究過程中,仍存在問題需要進一步改善:植被散射模型對植被種類多樣區域不適用,同時神經網絡是一個黑箱模型,無法顯示輸入輸出變量之間的關系,植被各結構組分對生物量的影響有待進一步研究。
[1]Zhang X.On the Estimation of Biomass of Submerged Vegetation Using Landsat Thematic Mapper(TM)Imagery:A Case Study of the Honghu Lake,P R China[J].International Journal of Remote Sensing,1998,19(1):11 -20.
[2]Thenkabail P S,Smith R B,Pauw D E.Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics[J].Remote Sens Environ,2000,71(2):158 -182.
[3]Lu D S.The Potential and Challenge of Remote Sensing - based Biomass Estimation[J].International Journal of Remote Sensing,2006,27(7):1297 -1328.
[4]Steininger M K.Satellite Estimation of Tropical Secondary Forest Above Ground Biomass Data from Brazil and Bolivia[J].International Journal of Remote Sensing,2000,21(6/7):1139 -1157.
[5]Lu D S,Batistella M.Exploring TM Image Texture and Its Relationships with Biomass Estimation in Rond?nia,Brazilian Amazon[J].Acta Amazonica,2005,35(2):249 -257.
[6]Shao Y,Liao J J,Wang C Z.Analysis of Temporal Radar Backscatter of Rice:A Comparison of SAR Observations with Modeling Results[J].Can J Remote Sens,2002,28(2):128 -138.
[7]Le T,Ribbes F,Wang L F,et al.Rice Crop Mapping and Monitoring Using ERS-1 Data Based on Experiment and Modeling Results[J].IEEE Trans Geosci Remote Sens,1997,35(1):41 -56.
[8]Shao Y,Fan X T,Liu H,et al.Rice Monitoring and Production Estimation Using Multitemporal Radarsat[J].Remote Sens Environ,2001,76(3):310 -325.
[9]Inoue Y,Kurosu T,Maeno H,et al.Season - long Daily Measurements of Multifrequency(Ka,Ku,X,C,and L)and Full- polarization Backscatter Signatures over Paddy Rice Field and Their Relationship with Biological Variables[J].Remote Sens Environ,2002,81(3):194 -204.
[10]Shen S H,Yang S B,Li B B,et al.A Scheme for Regional Rice Yield Estimation Using Envisat ASAR Data[J].Sci China Ser D:Earth Sci,2009,52(8):1183 - 1194.
[11]ULander L M,Sandberg G,Soj M.Biomass Retrieval Algorithm Based on P - band Biosar Experiments of Boreal Forest[C]//IEEE International Geoscience and Remote Sensing Symposium(IGARSS),2011:4245 -4248.
[12]Fan W,Chao W,Hong Z,et al.Rice Crop Monitoring in South China with Radarsat-2 Quad - polarization SAR Data[J].IEEE Geoscience and Remote Sensing Letters,2011,8(2):196 -200.
[13]黎 夏,劉 凱,王樹功.珠江口紅樹林濕地演變的遙感分析[J].地理學報,2006,61(1):26 -34.Li X,Liu K,Wang S G.Mangrove Wetland Changes in the Pearl River Estuary Using Remote Sensing[J].Acta Geographica Sinica,2006,61(1):26 -34(in Chinese with English Abstract).
[14]黎 夏,葉嘉安,王樹功,等.紅樹林濕地植被生物量的雷達遙感估算[J].遙感學報,2006,10(3):387 -396.Li X,Ye J A,Wang S G,et al.Estimating Mangrove Wetland Biomass Using Radar Remote Sensing[J].Journal of Remote Sensing,2006,10(3):387 -396(in Chinese with English Abstract).
[15]Benson M,Pierce L,Bergen K,et al.Forest Structure Estimation Using SAR,LiDAR,and Optical Data in the Canadian Boreal Forest[C]//IEEE International Geoscience and Remote Sensing Symposium(IGARSS),2011:2609 -2612.
[16]Yang S B,Zhao X Y,Li B,et al.Interpreting Radarsat-2 Quad -polarization SAR Signatures from Rice Paddy Based on Experiments[J].IEEE Geoscience and Remote Sensing Letters,2011,9(1):60-69.
[17]Zhang Y,Wang C Z,Wn J P,et al.Mapping Paddy Rice with Multitemporal ALOS/PALSAR Imagery in Southeast China[J].Int J Remote Sens,2009,30(23):6301 -6315.
[18]Stauer S,Kugler F,Lee S K,et al.Polarimetric Decomposition for Forest Biomass Retrieval[C]//IEEE International Geoscience and Remote Sensing Symposium(IGARSS),2010,4780 -4783.
[19]McDonald K C,Dobson M C,Ulaby F T.Using MIMICS to Model L-band Multiangle and Multitemporal Backscatter from a Walnut Orchard[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(4):477 -491.
[20]Ulaby F T,Sarabandi K,McDonald K,et al.Michigan Microwave Canopy Scattering Model[J].Int J Remote Sense,1990,11(7):1223-1253.
[21]Attema E P W,Ulaby F T.Vegetation Modeled as a Water Cloud[J].Radio Science,1978,13(2):357 -364.
[22]De Roo R D,Du Y,Ulaby F T,et al.A Semi- empirical Backscattering Model at L-band and C-band for a Soybean Canopy with Soil Moisture Inversion[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(4):864 -872.
[23]Le T T,Laur H,Mougin E,et al.Multitemporal and Dual- polarization Observations of Agricultural Vegetation Covers by X-band SAR Images[J].IEEE Transactions on Geoscience and Remote Sensing,1989,27(6):709 -718.
[24]張 遠.微波遙感水稻種植面積提取、生物量反演與稻田甲烷排放模擬[D].浙江:浙江大學,2008.Zhang Y.Acreage Extraction and Biomass Estimation of Paddy Rice Based on Microwave Remote Sensing and Methane Emissions Simulation from Paddy Field[D].Zhejiang:Zhejiang University,2008.(in Chinese with English Abstract)
[25]彭映輝,簡永興,李仁東.鄱陽湖平原湖泊水生植物群落的多樣性[J].中南林學院學報,2003,23(4):22 -27.Peng Y H,Jian Y X,Li R D.Community Diversity of Aquatic Plants in the Lakes of Poyang Plain District of China[J].Journal of Central South Forestry University,2003,23(4):22 - 27(in Chinese with English Abstract).
[26]Karam M A,Amar F,Fung A K,et al.A Microwave Polarimetric Scattering Model for Forest Canopies Based on Vector Radiative Transfer Theory[J].Remote Sens Environ,1995,53(1):16 -30.
[27]Wang C Z,Wu J P,Zhang Y,et al.Characterizing L - band Scattering of Paddy Rice in Southeast China with Radiative Transfer Model and Multitemporal ALOS/PALSAR Imagery[J].IEEE Trans Geosci Remote Sens,2009,47(4):990 -995.
[28]Freeman A,Durden S L.A Three-component Scattering Model for Polaimetric SAR data[J].IEEE Trans Geosci Remote Sens,1998,36(3):963-973.
[29]Yamaguchi Y,Moriyama T,Ishido M,et al.Four- component Scattering Model for Polarimetric SAR Image Decomposition[J].IEEE Trans Geosci Remote Sens,2005,43(8):1699 -1706.
[30]Freeman A,Durden S L.A Three-component Scattering Model to Describe Polarimetric SAR Data[C]//Proceedings SPIE Conference on Radar Polarimetry,1992:213 -225.
[31]Foody G M,Cutler M E,Mcmorrow J,et al.Mapping the Biomass of Bornean Tropical Rain Forest from Remotely Sensed Data[J].Global Ecology and Biogeography,2001,10(4):379 -387.
[32]羅曉曙.人工神經網絡理論·模型·單法與應用[M].桂林:廣西師范大學出版社,2005.Luo X S.Artificial Neural Network Theory·Model·Algorithm and Application[M].Guilin:Guangxi Normal University Press,2005(in Chinese).
Retrieval of Wetland Vegetation Biomass in Poyang Lake Based on Quad-polarization Image
LIU Ju1,2,LIAO Jing - juan1,SHEN Guo - zhuang1
(1.Center for Earth Observation and Digital Earth Chinese Academy of Sciences,Beijing 100094,China;2.Graduate University of Chinese Academy of Sciences,Beijing 100049,China)
The Poyang Lake is the largest freshwater lake in China as well as an internationally important wetland.Long-term quantitative study of vegetation biomass in this area helps deepen our understanding of regional and global carbon balance.The authors investigated the approach and method of Radarsat-2C-Band quadpolarization imagery for biomass retrieval in wetland vegetation.The vegetation canopy scattering model was modified and used to simulate the backscattering characteristics.Polarization decomposition was adopted to prepare the testing data with the model output for BP neural network.After obtaining the retrieval values of vegetation biomass,the values were compared with the filed -measured values.The results show that the introduction of the output data of vegetation canopy scattering model and polarimetric decomposition technique to the BP neural network algorithm could reduce the retrieval error effectively,and that the Quad-polarization imagery has broad application prospect in the field of biomass retrieval.
biomass;vegetation canopy scattering model;polarization decomposition;BP neural network;Radarsat-2
TP 79
A
1001-070X(2012)03-0038-06
2011-03-12;
2011-04-05
中國科學院對地觀測與數字地球科學中心主任科學基金項目(編號:Y1ZZ05101B)資助。
10.6046/gtzyyg.2012.03.08
劉 菊(1986-),女,碩士研究生,主要從事極化雷達數據處理及信息提取。E-mail:liu_ju@126.com。
(責任編輯:刁淑娟)