摘要通過構造Lyapunov泛函、利用半鞅收斂定理得到了變時滯隨機CohenGrossberg 神經網絡幾乎肯定指數穩定的判別準則.
關鍵詞 隨機神經網絡;時滯;It公式;穩定性
1引言
CohenGrossberg神經網絡(CGNN)在1983年首先由CohenGrossberg \[1\]提出,在信號和圖像處理、人工智能、數字計算、工業自動化的應用等方面這類網絡的研究已經引起了廣泛的關注,近20年來獲得了許多檢測這類神經網絡全局穩定性的準則\[2-6\],但這里提到的模型都是確定型的.而文獻\[7\]指出噪聲是不可避免的,應該要被考慮到模型中.近年來有很多學者致力于隨機CohenGrossberg 神經網絡(SCGNN)的研究,已經取得了一些成果,見文獻\[8-14\].
2模型及預備知識
參考文獻
[1]M S COHEN, S GROSSBERG. Absolute stability and global pattern formation and parallel memory storage by competitive neural networks[J]. IEEE Trans Syst Man Cybern SMC, 1983, 13: 815-825
\[2\]J CAO, J LIANG. Boundedness and stability for CohenGrossberg neural networks with timevarying delays[J]. J Math Anal Appl, 2004, 296: 665-685
\[3\]W XIONG, J CAO. Global exponential stability of discretetime CohenGrossverg neural networks[J].Neurocomputing, 2005, 64:433-446
\[4\]J CAO,X LI. Stability in delayed CohenGrossberg neural network: LMI optimization approach[J].Physica D, 2005, 212: 54-65
\[5\]L WAN, J SUN. Global exponential stability and periodic solutions of CohenGrossberg neural networks with continuouslydistributed delays[J]. Physica D, 2005, 208: 1-20
\[6\]X LIAO, C LI, K WONG. Criteria for exponential stability of CohenGrossberg neural networks[J].Neural Networks, 2004, 17: 1401-1414
\[7\]S HAYKIN. Neural Networks[M]NJ: PrenticeHall, 1994
\[8\]牛健人,張子方,徐道義.變時滯CohenGrossberg隨機神經網絡的均方指數穩定性[J].工程數學學報, 2005, 22(6): 1001-1005
\[9\]H ZHAO, N DING. Dynamic analysis of stochastic CohenGrossberg enural networks with time delays[J].Applied Mathematics and Computation, 2006, 183: 464-470
\[10\]Z WANG, Y LIU, M LI, et al. Stability analysis for stochastic CohenGrossberg neural networks with mixed time delays[J].IEEE Trans, 2006, 17(3): 814-820
\[11\]M DONG, H ZHANG, Y WANG. Dynamics analysis of impulsive stochastic CohenGrossberg neural networks with Markovian jumping and mixed time delays[J].Neurocomputing, 2009, 72: 1999-2004
\[12\]X WANG, Q GUO, D XU. Exponential pstability of impulsive stochastic CohenGrossberg neural networks with mixed delays[J]Mathematics and Computers in Simulation, 2009, 79(5): 1698-1710
\[13\]Z LI, K LI. Stability analysis of impulsive CohenGrossberg neural networks with distributed delays and reactiondiffusion terms[J].Applied Mathematical Modelling, 2009, 33(3): 1337-1348
\[14\]L WAN, Q ZHOU. Exponential stability of stochastic reactiondiffusion CohenGrossberg neural networks with delays[J].Applied Mathematics and Computation, 2008, 206(2): 818-824
\[15\]X MAO. Stochastic differential equations and applications[J]. Chichester:Harwood, 1997
\[16\]G CARPENTER. Neural network Models for pattern recognition and associative memor[J]. Neural Networks, 1989, 2: 243-257
\[17\]C HUANG, P CHEN, Y HE, et al. Almost sure exponential stability of delayed Hopfield neuralnetworks[J]. Applied Mathematics Letters, 2008, 7: 701-705