摘要:為研究地震導(dǎo)致滲漏的供水管網(wǎng)的水力特性,引入日本水道協(xié)會(huì)提出的震害計(jì)算式,改進(jìn)地震導(dǎo)致的供水管網(wǎng)滲漏的計(jì)算方法,構(gòu)建地震導(dǎo)致滲漏的供水管網(wǎng)水力模型。提出適用于低壓供水管網(wǎng)“分步迭代”的水力計(jì)算方法,實(shí)現(xiàn)對(duì)不同地震烈度下供水管網(wǎng)的漏損量、節(jié)點(diǎn)壓力及流量的定量分析。基于EPANET軟件,對(duì)舉例供水管網(wǎng)應(yīng)用所構(gòu)建的模型和“分步迭代”水力計(jì)算方法,預(yù)測了其在不同地震烈度下的水力狀態(tài)。預(yù)測結(jié)果表明,構(gòu)建的模型能合理描述震損管網(wǎng)的水力特性,所提出的方法能避免水力計(jì)算時(shí)迭代的發(fā)散、提高迭代的收斂速度,并可直接應(yīng)用現(xiàn)有商業(yè)軟件求解。
關(guān)鍵詞:地震;供水管網(wǎng);滲漏模型;低壓水力分析
中圖分類號(hào):TU991.32
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1674-4764(2013)03-0126-05
Simulation for Leaky Water Distribution System Caused by Earthquake
Du Kun1,Long Tianyu1,Guo Jinsong1,An Qiang1, Li Lingzhi2
(1.The Key Laboratory of the Three Gorges Reservoir Area Ecological Environment,
Ministry of Education, Chongqing University, Chongqing 400045, P. R. China;
2.Department of Mechanical Engineering, Southwest Jiaotong University(Emei), Emei 614202, Sichuan, P.R.China)
Abstract:In order to analyze the hydraulic characteristics of the leaky water distribution system (WDS) caused by earthquake, the method to calculate the leakage flow of WDS in a possible earthquake was improved by introducing the formula suggested by Japan Water Works Association (JWWA) to calculate the failure probability of pipes in an earthquake, and the hydraulic model for leaky WDS caused by earthquake was established. A novel method of hydraulic calculation named “two-step iteration” was developed specially to simulate the WDS with deficient operating pressure, so as to realize the quantitative analysis of leakage flow, pressure and flow of WDS in different earthquake intensities. Finally, the proposed model and method were implemented to predict the performance of a sample networks in different earthquake intensities based on the EPANET software. The prediction results indicate that the proposed model can describe the hydraulic characteristics of damaged WDS in a possible earthquake reasonably; the presented method can avoid the iteration divergence and improve the rate of iteration convergence in the process of hydraulic calculation. Furthermore, the model can be solved by the existing calculation software directly.
Key words:
earthquakes; water distribution systems; leakage model; deficient-pressure hydraulic analysis
歷次震害統(tǒng)計(jì)表明,各種埋地管線在地震中會(huì)遭受不同程度的破壞。汶川地震中都江堰市供水管網(wǎng)約有60%受損,管網(wǎng)滲漏點(diǎn)達(dá)2 000余處,供水壓力僅為震前供水壓力的一半[1]。供水管網(wǎng)作為重要的生命線工程系統(tǒng)之一,震損不僅對(duì)人們的生產(chǎn)與生活產(chǎn)生影響,而且使生命及財(cái)產(chǎn)等面臨火災(zāi)等的潛在危害[2]。因此,開展地震導(dǎo)致滲漏的供水管網(wǎng)的水力特性研究具有重要意義。
針對(duì)滲漏供水管網(wǎng)的水力模型與分析計(jì)算,Lin[3]在假定滲漏點(diǎn)壓力等于零(大氣壓)且滲漏量為常數(shù)的條件下對(duì)滲漏管網(wǎng)進(jìn)行了水力分析。Lin的假設(shè)較適用于爆管狀態(tài)下的供水管網(wǎng),對(duì)于中等滲漏的供水管網(wǎng),滲漏點(diǎn)壓力不為零,且滲漏量與壓力相關(guān)。為此,陳玲俐等[4]提出“點(diǎn)式滲漏模型”,在管網(wǎng)節(jié)點(diǎn)用水量不變的假設(shè)下進(jìn)行了滲漏管網(wǎng)的水力計(jì)算。然而,管網(wǎng)節(jié)點(diǎn)用水量不變的假設(shè)僅適用于滲漏量很小的情況,當(dāng)滲漏量達(dá)到一定程度時(shí),供水管網(wǎng)將處于低壓工作狀態(tài),用水節(jié)點(diǎn)的實(shí)際配水量將減少,若仍假定所有節(jié)點(diǎn)用水量不變,部分節(jié)點(diǎn)的計(jì)算水壓可能為負(fù)值,這將導(dǎo)致負(fù)壓出流的不合理現(xiàn)象。因此,對(duì)低壓供水管網(wǎng)的水力計(jì)算,需考慮節(jié)點(diǎn)流量隨水壓的動(dòng)態(tài)變化[5]。低壓用水點(diǎn)的流量隨水壓的變化關(guān)系通常不能用單一函數(shù)來表示[6-9],這大大增加了管網(wǎng)水力方程求解的計(jì)算量,且采用傳統(tǒng)的迭代方法進(jìn)行水力計(jì)算時(shí),迭代的收斂與否將取決于初始值的選取,并且難以直接應(yīng)用現(xiàn)有的商業(yè)軟件求解。為解決該問題,Pathirana[10]利用EPANET軟件中噴嘴出流模擬低壓用水點(diǎn)時(shí),通過修改傳統(tǒng)的迭代步驟與計(jì)算引擎,實(shí)現(xiàn)了低壓供水管網(wǎng)在EPANET軟件中的水力計(jì)算。但當(dāng)管網(wǎng)中存在滲漏點(diǎn)時(shí),由于滲漏點(diǎn)與低壓用水點(diǎn)的流量都隨水壓動(dòng)態(tài)變化,為實(shí)現(xiàn)低壓用水點(diǎn)的水力模擬與自動(dòng)識(shí)別,修改后的計(jì)算引擎屏蔽了滲漏點(diǎn)的模擬功能,因此不適用于管網(wǎng)中存在滲漏點(diǎn)的水力計(jì)算。對(duì)于地震導(dǎo)致滲漏的供水管網(wǎng)的水力模型及水力分析,基本上都是采用常用的滲漏水力模型,而滲漏模型均未考慮地震烈度的影響。為預(yù)測地震導(dǎo)致滲漏的供水管網(wǎng)的水力狀態(tài),首先應(yīng)構(gòu)建相應(yīng)的水力模型,為此,筆者引入日本水道協(xié)會(huì)提出的震害計(jì)算式改進(jìn)地震導(dǎo)致的供水管網(wǎng)滲漏的計(jì)算方法,構(gòu)建了地震誘發(fā)滲漏的供水管網(wǎng)的水力模型。
管網(wǎng)的水力模型是非線性代數(shù)方程組,需要通過迭代求解。為避免計(jì)算過程中迭代的發(fā)散和提高迭代的收斂速度,實(shí)現(xiàn)低壓用水點(diǎn)與滲漏點(diǎn)在迭代中的同步計(jì)算,且迭代的收斂與否不依賴初始值的選取,筆者對(duì)常用水力計(jì)算迭代方法進(jìn)行改進(jìn),提出了“分步迭代”的水力計(jì)算法。該方法首先根據(jù)管網(wǎng)震損評(píng)估結(jié)果在管段中添加虛擬滲漏點(diǎn),并假設(shè)所有用水節(jié)點(diǎn)為低壓用水點(diǎn),對(duì)管網(wǎng)進(jìn)行首輪迭代;依據(jù)首輪迭代結(jié)果修正用水節(jié)點(diǎn)的出流類型;然后進(jìn)行第2輪迭代,當(dāng)管網(wǎng)中各用水節(jié)點(diǎn)出流狀態(tài)滿足約束條件時(shí)完成水力計(jì)算。
1 地震導(dǎo)致滲漏的供水管網(wǎng)水力模型
式中,qij為管段流量,n為管網(wǎng)節(jié)點(diǎn)數(shù),Aj為與i節(jié)點(diǎn)直接相連的節(jié)點(diǎn)集合,Qi為節(jié)點(diǎn)流量,Rij為管段的水損系數(shù),Hi和Hj分別為i、j節(jié)點(diǎn)的水壓。當(dāng)管網(wǎng)中存在滲漏時(shí),需補(bǔ)充滲漏流量和壓力的關(guān)系;當(dāng)滲漏等引起供水管網(wǎng)處于低壓狀態(tài)時(shí),導(dǎo)致部分節(jié)點(diǎn)流量變化,還需補(bǔ)充節(jié)點(diǎn)流量變化關(guān)系,這樣才能使方程(1)和(2)封閉。
1.1管段滲漏點(diǎn)的水力方程
假定地震誘發(fā)的管段滲漏為點(diǎn)式滲漏,根據(jù)已有研究[6],滲漏點(diǎn)的流量與水壓的關(guān)系采用:
QL=421·AL·H0.5L
式中,QL為滲漏量,L/s;AL為管段滲漏面積,m2;HL為虛擬滲漏點(diǎn)水壓,m。地震中管段滲漏量與管段滲漏面積相關(guān),由于影響滲漏面積的因素復(fù)雜,假設(shè)管段的滲漏面積與管段在地震中的失效概率滿足反弦函數(shù)關(guān)系[11]:
定義δL為地震時(shí)管段滲漏系數(shù),δL=426·D2L·arcsin(PL-0.3)。要應(yīng)用式(5)計(jì)算地震時(shí)管段的滲漏量,需確定管段在地震中的失效概率。地震導(dǎo)致管段的失效概率與管段的材質(zhì)、管徑、管長、接口形式、場地條件、地震動(dòng)參數(shù)等因素有關(guān)[12-13]。由于采用理論方法計(jì)算失效概率十分困難,通常采用統(tǒng)計(jì)方法進(jìn)行估算。通過分析發(fā)現(xiàn),采用日本水道協(xié)會(huì)提出的統(tǒng)計(jì)計(jì)算式更適用于管段震損失效概率的估算[14]。研究表明,地震時(shí)管道的失效概率PL服從泊松分布:
式中:L為計(jì)算管段長度,m;λ為平均震害率(每km管道破壞次數(shù)),且λ=CP·Cd·Cg·Cy·R(v);CP為管材修正系數(shù);Cd為管徑修正系數(shù);Cg為地形地質(zhì)修正系數(shù);Cy為土壤液化修正系數(shù);R(v)為標(biāo)準(zhǔn)震害率,且R(v)=3.11×10-3×(v-15)1.3;v為地震峰值速度,cm/s,各參數(shù)取值參見文獻(xiàn)[14]。
1.2低壓用水點(diǎn)的水力方程
由于地震引起供水管網(wǎng)漏損,導(dǎo)致用水點(diǎn)處于低壓狀態(tài),低壓用水點(diǎn)的流量隨水壓的變化關(guān)系通常不能用單一函數(shù)來表示而服從分段函數(shù)的關(guān)系,且難以用理論方法導(dǎo)出。為了實(shí)現(xiàn)低壓用水點(diǎn)與漏損點(diǎn)在迭代過程中的同步計(jì)算,假定低壓用水點(diǎn)的流量與壓力滿足如下分段函數(shù)[10]:
2低壓狀態(tài)下供水管網(wǎng)水力計(jì)算
在采用傳統(tǒng)的迭代法對(duì)式(1)、(2)求解時(shí),由于低壓用水點(diǎn)無法被預(yù)先識(shí)別,因此節(jié)點(diǎn)用水量Q可能為常數(shù)或?yàn)榕c壓力H相關(guān)的變量,若選取的迭代初始值(q或H)與實(shí)際中節(jié)點(diǎn)的出流狀態(tài)不符,將導(dǎo)致計(jì)算結(jié)果的錯(cuò)誤或迭代無法收斂。
為避免計(jì)算結(jié)果依賴于迭代初始值的選取,可將傳統(tǒng)的迭代法修改為分步迭代。首先,在迭代的開始假設(shè)所有用水節(jié)點(diǎn)都處于低壓工作狀態(tài),使迭代初始值的選取與節(jié)點(diǎn)的出流狀態(tài)無關(guān)。然后,對(duì)管網(wǎng)進(jìn)行第一輪迭代,若計(jì)算結(jié)果中節(jié)點(diǎn)i的水壓Hi≥Hides,表明該節(jié)點(diǎn)不處于低壓工作狀態(tài),則在第2輪迭代的開始將該節(jié)點(diǎn)修正為正常出流類型。最后,對(duì)修正后管網(wǎng)進(jìn)行第2輪迭代,根據(jù)管網(wǎng)處于穩(wěn)態(tài)時(shí)的水力狀態(tài)設(shè)置相應(yīng)約束,當(dāng)管網(wǎng)中所有節(jié)點(diǎn)的出流狀態(tài)都滿足約束條件時(shí),則迭代結(jié)束并完成水力計(jì)算。
式中:Q為噴嘴出流量,L/s;C為擴(kuò)散系數(shù);p為噴嘴工作壓力,m;r為壓強(qiáng)系數(shù)。在利用EPANET軟件對(duì)管網(wǎng)進(jìn)行水力計(jì)算時(shí),可采用噴嘴出流模型模擬低壓用水點(diǎn)與滲漏點(diǎn),對(duì)滲漏節(jié)點(diǎn)CL=δL,對(duì)低壓用水節(jié)點(diǎn)Ci=Si,壓強(qiáng)系數(shù)r=0.5。地震產(chǎn)生滲漏時(shí),當(dāng)供水管網(wǎng)處于穩(wěn)態(tài)時(shí)各節(jié)點(diǎn)出流狀態(tài)應(yīng)滿足如下條件:
1)正常用水節(jié)點(diǎn),Hi≥Hdesi,Qi=Qnori;
2)低壓用水節(jié)點(diǎn),0 3)滲漏節(jié)點(diǎn),HL>0,QL=δL·H0.5L; 因此,在對(duì)滲漏狀態(tài)下低壓供水管網(wǎng)進(jìn)行水力計(jì)算時(shí),可以將上述條件作為判斷迭代結(jié)束的標(biāo)準(zhǔn),則利用EPANET實(shí)現(xiàn)“分步迭代”水力計(jì)算的步驟如下: 1)對(duì)管網(wǎng)進(jìn)行震損評(píng)估并在管段中間添加滲漏點(diǎn),令滲漏點(diǎn)的擴(kuò)散系數(shù)CL=δL。 2)假設(shè)所有用水節(jié)點(diǎn)為低壓用水點(diǎn),將其替換為噴嘴出流類型并定義擴(kuò)散系數(shù)Ci=Si。 3)調(diào)用EPANET進(jìn)行第一輪迭代計(jì)算。 4)校核各用水節(jié)點(diǎn)水壓,若存在用水節(jié)點(diǎn)Hi≥Hides則將該節(jié)點(diǎn)修改為正常出流類型,在此過程中仍保持滲漏點(diǎn)的出流類型。 5)調(diào)用EPANET對(duì)修改后的管網(wǎng)進(jìn)行第2輪的迭代,若計(jì)算結(jié)果中所有節(jié)點(diǎn)的出流狀態(tài)都滿足條件1)、2)、3)時(shí),則完成水力計(jì)算,否則轉(zhuǎn)入第4)步。 4實(shí)例分析 圖1為文獻(xiàn)[11]中所列供水管網(wǎng),包括17個(gè)管段、10個(gè)用水節(jié)點(diǎn)、17個(gè)虛擬滲漏點(diǎn)(位于各管段中間位置)。該管網(wǎng)由2個(gè)水源供水,其中水泵的額定流量及揚(yáng)程均為720 L/s、45 m。管網(wǎng)的管段編號(hào)、節(jié)點(diǎn)編號(hào)及當(dāng)前供水時(shí)段的節(jié)點(diǎn)流量見圖1,管長及管徑信息可通過文獻(xiàn)[11]獲得。分別對(duì)該管網(wǎng)在正常供水狀態(tài)及地震烈度為7、8、9度時(shí)進(jìn)行水力模擬,其中各節(jié)點(diǎn)的Hdes=10 m,CP=0.3,Cg=1.5,Cy=1.0,根據(jù)中國地震烈度表,地震烈度(EI)為7、8、9度時(shí),地震峰值速度v分別為130 cm/s,250 cm/s,500 cm/s,模擬結(jié)果見圖2、3、4。 當(dāng)管網(wǎng)在正常狀態(tài)下運(yùn)行時(shí),節(jié)點(diǎn)12為最不利用水點(diǎn),其水壓約24 m。當(dāng)?shù)卣鹆叶葹?度時(shí),管網(wǎng)中部分管段發(fā)生滲漏,總體滲漏水平為11.38%,各節(jié)點(diǎn)水壓均略有下降但仍能保證正常供水。當(dāng)?shù)卣鹆叶葹?度時(shí),管網(wǎng)中各管段都出現(xiàn)不同程度的漏損,總體滲漏水平為52.27%,各節(jié)點(diǎn)壓力均大幅下降,除了離水源較近的3、6節(jié)點(diǎn)外,其它節(jié)點(diǎn)均不能保證正常供水。當(dāng)?shù)卣鹆叶葹?度時(shí),管網(wǎng)遭受嚴(yán)重破壞其總體滲漏水平為70.58%,管網(wǎng)末端節(jié)點(diǎn)處于無壓狀態(tài)已基本喪失供水能力。通過對(duì)比,不同地震烈度下各管段的滲漏程度及滲漏對(duì)管網(wǎng)供水能力的影響都不同。如在地震烈度為7度時(shí),管段14的滲漏量最大但并未對(duì)管網(wǎng)供水能力造成較大影響,而在地震烈度為8度與9度時(shí),管段3的漏損最大,同時(shí)隨著管段3、5漏損量的增加,供水管網(wǎng)水壓大幅下降,甚至出現(xiàn)癱瘓的狀況。總體而言,離水源較近管段的滲漏對(duì)管網(wǎng)的影響相對(duì)較大,而離水源較遠(yuǎn)管段的滲漏對(duì)管網(wǎng)的影響則相對(duì)較小,該結(jié)論與實(shí)際情況相符。 5結(jié)論 針對(duì)地震導(dǎo)致滲漏的供水管網(wǎng)的水力特性,通過研究分析現(xiàn)有滲漏供水管網(wǎng)的水力模型,在其基礎(chǔ)上考慮不同地震烈度下供水管網(wǎng)中各管段的震損失效概率,構(gòu)建了地震誘發(fā)滲漏的供水管網(wǎng)的水力模型。管網(wǎng)的水力模型是非線性的方程組,需要通過迭代求解,為提高水力計(jì)算時(shí)迭代的收斂速度、避免迭代的發(fā)散,并直接應(yīng)用現(xiàn)有計(jì)算軟件進(jìn)行模型求解,筆者提出了適用于低壓狀態(tài)下滲漏供水管網(wǎng)的“分步迭代”水力計(jì)算方法。結(jié)合EPANET軟件,利用構(gòu)建的模型與提出的方法,實(shí)現(xiàn)了不同地震烈度下供水管網(wǎng)中各管段的漏損量、節(jié)點(diǎn)壓力及流量的預(yù)測。預(yù)測結(jié)果表明,構(gòu)建的模型和提出的水力計(jì)算方法可預(yù)測震后管網(wǎng)供水能力。 參考文獻(xiàn): [1]何維華.汶川“5.12”大地震誘發(fā)供水管網(wǎng)等損壞的思考[J].給水排水, 2009, 35(12):7-11. He W H, Discussion on the water distribution network damage caused by the Wenchuan “5.12” earthquake [J]. Water and Wastewater, 2009, 35(12):7-11. [2]ORourke T D, Beaujon P A, Scawthom C R. Large ground deformations and their effects on lifelines facilities: 1906 San Francisco earthquake [G]// ORourke T D, Hamada M. Case Studies of Liquefaction and Lifeline Performance during Past Earthquakes, NCEER Technical Report 92-0002, 1992:130-136. [3]Lin H. Seismic performance assessment of water delivery systems using GIS technology [D]. Memphis: The University of Memphis, 1997. [4]陳玲俐, 李杰. 供水管網(wǎng)滲漏分析研究[J]. 地震工程與工程振動(dòng), 2003, 23(1): 115-121. Chen L L, Li J. Leakage analysis of water supply network [J]. Journal of Earthquake Engineering and Engineering Vibration, 2003, 23(1): 115-121. [5]周建華,趙洪賓.低水壓供水時(shí)的管網(wǎng)平差計(jì)算方法[J]. 給水排水, 2003,19(3): 43-45. Zhou J H, Zhao H B. The study of calculation for pressure driven modeling of water distribution [J]. China Water and Wastewater, 2003, 19(3): 43-45. [6]Soares A K, Reis L F R, Carrijo I B. Head-driven simulation model(HDSM) for water distribution system calibration [J]. Advances in Water Supply Management, Maksimovic, 2003(1): 197-202. [7]Cheung P B, van Zyl J E, Reis L F R. Extension of EPANET for pressure driven demand modeling in water distribution system [C]//Proceedings of CCWI 2005-Water Management for the 21st Century, Exeter, UK, 2005: 215-220. [8]Wu Z Y, Wang R H, Walski T M, et al. Efficient pressure dependent demand model for large water distribution system analysis [C]//Proceeding of the 8th Annual Water Distribution System Symposium, Cincinnati, Ohio, USA, 2006: 27-32. [9]Liu C G, He S H. Seismic reliability and rehabilitation decision of water distribution system [J]. Transactions of Tianjin University, 2010, 16(3): 223-228. [10]Pathirana A. EPANET2 desktop application for pressure driven demand modeling [C]//Water Distribution System Analysis 2010, Tucson, AZ, USA, 2010. [11]符圣聰,江靜貝,黃世敏.地震時(shí)供水管網(wǎng)的可靠性和功能分析[J]. 工程抗震與加固改造, 2007, 29 (2):95-99. Fu S C, Jiang J B, Huang S M. Reliability and functional analysis of the water supply network in the earthquake [J]. Earthquake Resistant Engineering and Retrofitting, 2007, 29(2): 95-99. [12]American Life Line Alliance. Seismic fragility formulations for water system [R]. ASCE, 2001. [13]水道施設(shè)耐震工法指針·解説[M].北京:科學(xué)出版社,2009. [14]楊超,蔣健群. 城市供水管道震害評(píng)估方法的比較與應(yīng)用[J]. 城市道橋與防洪, 2011, 3(3):51-55. Yang C, Jiang J Q. Comparison and application of earthquake damage assessment methods to the urban water distribution system [J]. Urban Roads Bridges Flood Control, 2011, 3(3):51-55. [15]李樹平. 基于EPANET本地化的給水管網(wǎng)教學(xué)軟件開發(fā) [J]. 給水排水, 2011, 37(7):161-164. Li S P. Development of the education software for water supply network based on EPANET localization [J]. Water and Wastewater, 2011, 37(7) :161-164.