999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

子孔徑拼接檢測非球面時調整誤差的補償

2013-04-26 06:34:30王孝坤
中國光學 2013年1期
關鍵詞:測量檢測

王孝坤

(中國科學院長春光學精密機械與物理研究所光學系統先進制造技術中國科學院重點實驗室,吉林長春130033)

子孔徑拼接檢測非球面時調整誤差的補償

王孝坤

(中國科學院長春光學精密機械與物理研究所光學系統先進制造技術中國科學院重點實驗室,吉林長春130033)

針對在子孔徑拼接測量非球面的過程中干涉儀與待測非球面相對位置存在的對準誤差,提出了一種基于模式搜索迭代算法的調整誤差補償方法。該方法可以很好地從測量的子孔徑相位數據中消除由拼接測量位置沒有對準帶來的調整誤差,實現多個子孔徑的精確拼接。對該方法的基本原理和實現步驟進行了分析和研究,建立了子孔徑拼接測量的調整誤差補償模型。對口徑為230 mm×141 mm的離軸碳化硅非球面反射鏡進行了調整誤差補償和相位數據拼接,得到了精確的全口徑面形分布。作為驗證,對待測非球面進行了零位補償檢測,結果顯示兩種測試方法的面形PV值和RMS值的相對偏差僅為0.57%和2.74%。

子孔徑拼接干涉術;非球面;調整誤差;模式搜索算法;非共路誤差

1 引 言

子孔徑拼接干涉測量(SSI)是利用小口徑干涉儀的標準球面參考波前對大口徑非球面上各區域的相位進行逐次測量,然后通過SSI算法獲得非球面全口徑面形信息的測量方法[1-6]。SSI技術拓寬了干涉儀測量非球面的橫向和縱向動態范圍,使干涉儀測量非球面的口徑和相對口徑都有了很大的增加。此外,由于對小塊子孔徑區域測量所利用的干涉儀CCD像元面積與全口徑干涉測量所利用的干涉儀CCD像元面積是相同的,所以SSI能夠獲得非球面面形中高頻段的信息。

使用SSI技術無需補償透鏡、計算全息、大口徑輔助鏡等光學輔助元件就能實現對大口徑非球面、離軸非球面、甚至自由曲面的檢驗,同時可以獲得面形中高頻的相位信息,這不僅提高了分辨率,而且降低了成本,節省了時間[7-13]。

由于SSI利用標準球面波檢測非球面,對于單個子孔徑相位數據的測量,需要干涉儀出射波前的曲率半徑與待測子孔徑區域的最接近球面半徑吻合,因此對拼接調整機構的定位精度和重復精度有很高的要求。但是在拼接測量過程中,干涉儀與待測非球面實際的相對位置關系與理論的相對位置關系肯定存在偏差,而該偏差會影響最終的拼接檢測精度。為了解決該問題,本文提出了一種基于模式搜索迭代算法的調整誤差補償方法。

2 基本原理和流程

SSI測量非球面的示意圖如圖1,在拼接測量過程中,調整干涉儀與待測非球面的相對位置,使干涉儀標準球面波前對準非球面待測區域,從而使從非球面上反射返回的光束與干涉儀的參考光束產生干涉,進而測定和記錄各子孔徑的相位分布。利用模式搜索誤差補償方法從測量的子孔徑相位數據中消除由于拼接測量位置失準帶來的調整誤差,實現多個子孔徑的拼接,從而精確地完成非球面全口徑面形拼接檢測。

圖1 子孔徑拼接測量非球面面形的示意圖Fig.1 Sketch of testing convex asphere by SSI

利用標準球面波檢測非球面會產生非共路誤差(即標準參考球面波面與待測子孔徑區域非球面波面的偏差)。對于非球面度比較小的非球面的拼接,可以采用理論位置時各子孔徑的非球面方程與參考球面方程的理論偏差或用Zemax軟件模擬子孔徑干涉測量來求解非共路誤差。從每個子孔徑的干涉相位數據中剔除該誤差,通過SSI算法實現拼接檢測[14-16]。但是對于偏離量比較大的非球面,尤其是離軸非球面,也采用這一方法進行拼接就會產生很大的拼接誤差。

本文提出采用模式搜索算法來補償這一拼接誤差。該算法首先對初始位置的參數進行迭代優化,找出最接近實際位置的調整參數,從每個子孔徑的相位數據消除優化參數位置的非共路誤差,再通過子孔徑拼接算法就能夠實現子孔徑拼接檢測。模式搜索算法又稱為Hooke-Jeeves法,是在某點附近按一定的步長搜索函數值更小的點,且步長隨搜索過程的進行而減小,通過該算法來搜索出最大最小正基模式。它可以處理邊界約束、線性代數、線性不等式、并且不需要函數連續或可微,而大多數傳統優化方法通過使用梯度或者高階導數的方法來搜尋優化點,它們一般要求函數連續可微。

一般待測非球面都是回轉對稱的,無需繞Z軸的轉動,因此對于單個子孔徑的位置調整,僅需考慮5個方向,分別是沿X軸、Y軸、Z軸的平動以及繞X軸和Y軸的轉動。所以,調整誤差補償模型中共有5個優化參量,即分別為:沿X軸方向的平移dx;沿Y軸方向的平移dy;沿Z軸方向的平移dz;繞X軸的轉動α;繞Y軸的轉動β。

圖2 調整誤差補償方法的流程圖Fig.2 Flow chart of the compensation ofmisalignment

為實現調整誤差補償,完成子孔徑精確拼接測量,本文的模式搜索調整誤差補償方法的流程如圖2所示,具體步驟如下:

(1)定義目標函數

算法中定義子孔徑相位數據除去非共路誤差后的相位分布的RMS值為目標函數f。

(2)選定優化參量

調整誤差補償模型中共有5個優化參數,分別是dx、dy、dz、α和β。

(3)計算理論位置調整參數值

根據子孔徑測量規劃,求解測量某一子孔徑時待測非球面與干涉儀之間的相對位置理論調整量dx0、dy0、dz0、α0和β0。

(4)坐標變換,求解目標函數方程

建立待測非球面的母鏡坐標系(x,y,z)以及以某個子孔徑幾何中心為坐標原點的直角坐標系(x′,y′,z′),如圖3所示,Z為光軸方向,O為待測非球面的母鏡坐標系原點,O′為某個測量子孔徑的幾何中心。坐標系(x′,y′,z′)相對坐標系(x,y,z)的平移和旋轉分別為dx、dy、dz、α和β。

圖3 坐標系定義圖Fig.3 Sketch of the coordinates

設鏡面上任意點在坐標系(x,y,z)下的坐標為P(x,y,z),P的矢量為p=(x y z 1)T,其調整后在坐標(x′,y′,z′)下的坐標為P′(x′y′z′),P′的矢量為:p′=(x′y′z′1)T。由剛體運動定理可得兩個矢量之間的坐標變換矩陣T為式(1):

二次非球面的母鏡可以用式(2)表示:

利用空間坐標變換矩陣(1)求解在以子孔徑區域中心為坐標原點的新坐標系下非球面方程表達式為:

式中:

則子孔徑的矢高方程為:

參考球面波前的矢高方程為:

令子孔徑的矢高F與參考球面波前的矢高S的差值為P:

對于偏離量不是很大的淺度非球面,非共路誤差可以近似為參考球面方程S與待測子孔徑區域非球面方程F的偏差(即為P值)。由于以子孔徑的矢高F與參考球面波前的矢高S的差值作為非共路誤差(Z軸方向),與法向像差存在一定的偏差,對于高陡度、離軸子孔徑更明顯,因此對于偏離量較大的子孔徑,其非共路誤差值P′為:

式中,θ為子孔徑區域各點的法向角。

由于各子孔徑的相位數據值可以通過干涉儀測量直接獲得,設定某個子孔徑測量所得的相位分布為W,定義相位數據中消去非共路誤差后的相位分布為U,即U=W-P′,則目標函數f為:

式中,N為子孔徑數據中采樣點的個數。

(5)初始化,計算基點函數值

初始化程序,將理論位置調整初值代入目標函數,計算基點函數值f(dx0,dy0,dz0,α0,β0)。

(6)約束取值范圍,設定步長

給5個未知量約束一定的取值范圍以使優化結果符合實際要求,并設定一定步長,按模式搜索法分別沿dx0,dy0,dz0,α0,β0按一定的步長搜索。

(7)判定結果

如果某一輪搜索失敗,即搜尋計算值大于基點函數值,則步長減半進行重新搜索迭代。

(8)精度判斷

設定閾值,若相鄰兩次搜尋計算目標函數值的偏差小于10-5nm,則停止搜尋,此時搜尋結果值可以認定為實際位置的調整量。更新基點,將最終的搜尋結果帶入方程(10),即可很好地補償調整誤差,精確地將非共路誤差從子孔徑數據中分離,從而很好地實現了全口徑拼接檢測。

3 拼接檢測實驗

為了驗證調整誤差補償方法數學模型的可行性,對一偏離量為64.1μm的離軸非球面進行了拼接檢測實驗。該非球面的通光口徑為230 mm× 141 mm,頂點曲率半徑為-1 358.8 mm,二次曲面系數為-1.59,離軸量為-88.44 mm。

SSI裝置如圖4所示,待測非球面安置在四維調整機構上,可以精確調整非球面在X軸、Z軸方向上的平動以及沿X軸和Y軸方向的傾斜,干涉儀安裝在精密升降機構上,可以調節其在X方向上的平動,所有測試裝備都安放在氣浮防震平臺上,子孔徑劃分如圖5所示。

圖4 SSI設備圖Fig.4 Experimental setup of SSI

圖5 子孔徑分布圖Fig.5 Distribution diagram of subapertures

首先,調節好干涉儀,使其參考球面波前的曲率半徑與待測非球面中心區域(中心基準子孔徑0)的最接近球面半徑吻合,用干涉儀測量該區域的相位分布圖和干涉圖,如圖6(a)所示。調整待測非球面與干涉儀之間的相對位置,使干涉儀出射波前分別對準待測非球面上區域(子孔徑1)和下區域(子孔徑2),并分別使子孔徑1和子孔徑2與基準子孔徑0有一定的重疊區域,用干涉法測定這兩個區域的干涉圖和相位分布分別如圖6 (b)和圖6(c)所示。

圖6 子孔徑測量結果Fig.6 Phasemaps and interferograms of three subapertures

圖7 按理論位置拼接面形分布Fig.7 Surfacemap by SSIwith theoretic parameters

利用理論位置調整參數值消除非共路誤差后全口徑拼接的面形誤差分布如圖7所示,其PV值和RMS值分別為4.763λ和0.682λ(λ= 632.8 nm),可以看出,由于未對調整誤差進行尋優補償,此時面形分布有很大的“拼痕”。利用模式搜索算法求解各子孔徑的最優位置參數如表1所示。各子孔徑的迭代目標函數值的變化如圖8所示,3個子孔徑經過70次左右迭代就能夠收斂到最優解。從各子孔徑中消去最優位置的非共路誤差,并利用Fuducial標定投影畸變將各子孔徑的CCD像素坐標統一到鏡面坐標上,對重疊區域的數據進行分析和求解,求得各子孔徑相對中心基準子孔徑的調整誤差,通過綜合優化拼接算法求得拼接后的面形分布,如圖9所示,面形誤差分布沒有明顯的“拼痕”,其PV值和RMS值分別為4.087λ和0.525λ。

表1 理論位置參數和搜索最優化參數Table 1 Initial and optimum parameters of location

圖8 迭代目標函數值的變化圖Fig.8 Trendline of iterative objective function

圖9 拼接后全口徑面形分布圖Fig.9 Surfacemap of whole aperture after stitching

圖10 零位補償測量面形分布圖Fig.10 Surfacemap of null-compensation test

為了驗證和對比子孔徑拼接檢驗的準確性,設計了補償透鏡,利用零位補償干涉法對該離軸非球面進行了全口鏡面形測量,檢測結果如圖10所示,其面形誤差分布的PV值和RMS值分別為4.064λ和0.511λ。比較可得:兩種測試方法所得的面形誤差分布是一致的,其PV值和RMS值的偏差分別為0.023λ和0.014λ,PV值和RMS值的相對偏差分別僅為0.57%和2.74%。

4 結 論

基于模式搜索迭代算法,提出了一種拼接調整誤差補償方法,該方法能很好地消除和補償子孔徑拼接測量過程中由于調整機構沒有對準所帶來的誤差,從而很好地完成對非球面子孔徑拼接的檢測。對該方法的基礎理論和實現步驟進行了分析和研究,推導了子孔徑拼接測量調整誤差補償數學模型。結合工程實例對一高陡度離軸碳化硅非球面反射鏡進行了調整誤差補償和相位數據拼接,所得的全口徑面形分布沒有明顯的“拼痕”,相對理論位置數據拼接更為準確。拼接檢測與零位補償測量全口徑面形誤差分布是一致的,兩種測試方法面形PV值和RMS值的偏差分別優于λ/40和λ/70。

[1] HNSEL T,NICKEL A,SCHINDLER A.Stitching interferometry of aspherical surfaces[J].SPIE,2001,4449:265-275.

[2] CATANZARO B,CONNELL S.Cryogenic(70K)measurement of an all-composite 2-meter diameter mirror[J].SPIE,2001,4444:238-255.

[3] JON F,PAUL D,PAUL E M,et al..An automated subaperture stitching interferometer workstation for spherical and aspherical surfaces[J].SPIE,2007,5188:296-307.

[4] TRICARD M,SHOREY A,HALLOCK B,et al..Cost-effective,subaperture approaches to finishing and testing astronomical optics[J].SPIE,2006,6273:62730L.

[5] MURPHY P,FLEIG J,FORBESG.Subaperture stitching interferometry for testingmild aspheres[J].SPIE,2006,6293:62930J.

[6] 鞏巖,趙磊.單點金剛石機床及其在光學工程領域的應用[J].中國光學,2011,4(6):537-545. GONG Y,ZHAO L.Single point diamond machines and their applications to optical engineering[J].Chinese Optics,2011,4(6):537-545.(in Chinese)

[7] ZHAO CH Y,BURGE JH.Stitching of off-axis sub-aperture nullmeasurements of an aspheric surface[J].SPIE,2008,7063:706316.

[8] MARC T,PAUL D,GREG F.Sub-aperture approaches for asphere polishing and metrology[J].SPIE,2005,5638:284-299.

[9] 王孝坤,王麗輝,張學軍,等.子孔徑拼接法檢測非球面[J].光學精密工程,2007,15(2):527-532. WANG X K,WANG L H,ZHANG X J.Testing asphere by subaperture stitching interferometric method[J].Opt.Precision Eng.,2007,15(2):192-198.(in Chinese)

[10] 潘君驊.光學非球面的設計、加工和檢驗[M].北京:科學出版社,1994. PAN JH.Design,Fabrication and Testing of Optical Aspheres[M].Beijing:Science Press,1994.(in Chinese)

[11] MALACARA D.Optical Shop Testing[M].New York:John Wiley&Sons,Inc.1992.

[12] 侯溪,伍凡.大型雙曲面次鏡面形檢測技術現狀及發展趨勢[J].中國光學與應用光學,2010,3(4):310-317. HOU X,WU F.Status and trends of surface measurement technologies for large hyperboloidal secondary mirrors[J]. Chinese J.Opt.Appl.Opt.,2010,3(4):310-317.(in Chinese)

[13] 韓昌元.近代高分辨地球成像商業衛星[J].中國光學與應用光學,2010,3(3):201-208. HAN CH Y.Recent earth imaging commercial satelliteswith high resolutions[J].Chinese J.Opt.Appl.Opt.,2010,3 (3):201-208.(in Chinese)

[14] WANG X K,WANG L H.Measurement of large aspheric surfaces byannular subaperture stitching interferometry[J]. Chinese Optics Letters,2007,11(5):645-647.

[15] WANG X K,ZHENG LG,ZHANGB Z,etal..Subaperture stitching interferometry for testing ofa large hyperboloid[J]. Infrared and Laser Eng.,2009,38(1):88-93.

[16] WANG X K,ZHENG L G,ZHANG B ZH,et al..Test of an off-axis asphere by subaperture stitching interferometry[J]. SPIE,2009,7283:72832J.

Compensation ofm isalignment error on testing aspheric surface by subaperture stitching interferometry

WANG Xiao-kun
(Key Laboratory of Optical System Advanced Manufacturing Technology,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China)
*Corresponding author,E-mail:jimwxk@sohu.com

For the purpose to decrease the misalignment error from a testing aspheric surface by Subaperture Stitching Interferometry(SSI),a translated error compensationmethod is proposed to subtract themisalignment error from each phase detum and to stitchmulti-subapertures precisely.The basic principle and process of the method are researched,and a compensationmode is established based on themode search algorithm.The experiment is carried on for an off-axis SiC asphericmirrorwith a clear aperture of230mm×141mm,the phase data of the whole aperture are stitched precisely and the figure error is compensated by eliminating the misalignment error.For the comparison and validation,the asphere mirror is also tested by null compensation method,and the relative errors of PV and RMS are 0.57%and 2.74%,respectively.

Subaperture Stitching Interferometry(SSI);aspheric surface;misalignment error;mode search algorithm;non-common path error

TQ171.65;O436.1

A

10.3788/CO.20130601.0088

1674-2915(2013)01-0088-08

2012-09-14;

2012-11-13

國家863高技術研究發展計劃資助項目(No.08663NJ090);國家自然科學基金重點項目(No.61036015)

王孝坤(1980—),男,江蘇丹陽人,博士,副研究員,碩士生導師,2003年于徐州師范大學獲得學士學位,2008年于中國科學院長春光學精密機械與物理研究所獲得博士學位,主要從事先進光學制造技術等方面的研究。E-mail:jimwxk@sohu.com

猜你喜歡
測量檢測
“不等式”檢測題
“一元一次不等式”檢測題
“一元一次不等式組”檢測題
“幾何圖形”檢測題
“角”檢測題
把握四個“三” 測量變簡單
滑動摩擦力的測量和計算
滑動摩擦力的測量與計算
測量的樂趣
小波變換在PCB缺陷檢測中的應用
主站蜘蛛池模板: www.91在线播放| 熟妇丰满人妻| 国产黑丝一区| 91成人免费观看| 中文精品久久久久国产网址 | 亚洲国产欧美中日韩成人综合视频| 精品综合久久久久久97超人| 亚洲中文字幕手机在线第一页| 国产真实乱子伦精品视手机观看| 国产精品女同一区三区五区| 萌白酱国产一区二区| 丁香五月激情图片| 伊人色天堂| 亚洲中文字幕日产无码2021| 久久国产亚洲偷自| 国产午夜一级毛片| 国产永久免费视频m3u8| 在线欧美a| 精品亚洲国产成人AV| 国产精品自在在线午夜区app| 国产肉感大码AV无码| 亚洲精品第五页| 亚洲大尺码专区影院| 久久这里只有精品23| 久久黄色小视频| 国产产在线精品亚洲aavv| 日韩人妻少妇一区二区| 五月天综合网亚洲综合天堂网| 欧美日韩高清在线| 伊人久久久大香线蕉综合直播| 高清欧美性猛交XXXX黑人猛交| 国产三区二区| 激情午夜婷婷| 亚洲美女高潮久久久久久久| 91亚洲影院| 国产精品一区二区国产主播| 孕妇高潮太爽了在线观看免费| 亚洲欧美天堂网| 日韩成人在线视频| 中文字幕亚洲第一| 精品综合久久久久久97超人该| 色播五月婷婷| 亚洲成年人片| 日韩天堂视频| 亚洲中文字幕手机在线第一页| 久久久久青草大香线综合精品 | 中文无码日韩精品| 成人免费黄色小视频| 丝袜久久剧情精品国产| 久久久久亚洲精品成人网| 1769国产精品视频免费观看| 2021国产乱人伦在线播放| 亚洲第一香蕉视频| 精品在线免费播放| 暴力调教一区二区三区| 国产黄在线免费观看| 在线观看国产精美视频| 日韩专区欧美| 国产欧美又粗又猛又爽老| 视频二区欧美| 激情综合五月网| 亚洲天堂网在线视频| 99国产精品一区二区| 伊人丁香五月天久久综合| 1769国产精品免费视频| www.99在线观看| 91亚洲免费视频| 国产资源站| 色哟哟色院91精品网站| 小13箩利洗澡无码视频免费网站| 亚洲一本大道在线| 国产在线拍偷自揄拍精品| 中文字幕色在线| 54pao国产成人免费视频| 久久特级毛片| 中文字幕色站| 69视频国产| 麻豆精选在线| 91精品aⅴ无码中文字字幕蜜桃| 亚洲免费黄色网| 中文一区二区视频| 国产丝袜91|