張景熙,趙立軍,石薈,白沖,李強
聚肌胞苷酸、脂多糖及肽聚糖對人氣道黏膜天然免疫功能影響的實驗研究
張景熙,趙立軍,石薈,白沖,李強
目的研究聚肌胞苷酸[Poly(I:C)]、脂多糖(LPS)及肽聚糖(PGN)對人氣道黏膜屏障及炎性介質表達的影響,進而了解氣道黏膜對不同Toll樣受體配體的天然免疫應答反應。方法采用Transwell系統培養人16HBEs氣道上皮細胞建立人氣道黏膜體外模型,分別給予Poly(I:C)、LPS及PGN頂側刺激,對照組僅給予MEM+GlutaMax-Ⅰ培養基培養。通過測定跨膜電阻抗(TER)判斷16HBEs細胞間的小分子通透性,測定基底側培養液中FITC-右旋糖酐濃度判斷大分子細胞通透性,用ELISA法檢測干預24h后培養細胞頂側及基底側上清液中IL-8、粒-巨噬細胞集落刺激因子(GMCSF)及TNF-α的蛋白含量。結果10μg/m l Poly(I:C)導致人氣道上皮細胞間TER顯著降低,FITC-右旋糖酐通透性增加(P<0.01),10μg/m l LPS及100μg/m l PGN刺激對氣道上皮細胞TER及FITC-右旋糖酐通透性無明顯影響。IL-8和TNF-α表達在Poly(I:C)、LPS及PGN組細胞頂側和基底側均較對照組顯著增加(P<0.05)。GM-CSF表達在3組細胞頂側均較對照組增加(P<0.05),僅Poly(I:C)組基底側表達較對照組增加(P<0.05),LPS和PGN組基底側與對照組比較無明顯變化。Poly(I:C)組、LPS組和PGN組細胞頂側IL-8和GM-CSF濃度增高程度高于基底側,形成濃度梯度。結論Poly(I:C)可破壞氣道黏膜屏障完整性,導致小分子和大分子通透性增加,同時刺激細胞定向向頂側分泌炎性介質,LPS及PGN對氣道黏膜屏障無影響,但能誘導細胞向頂側定向分泌炎性介質,提示病毒及細菌感染所致氣道炎癥與Toll樣受體通路介導的氣道黏膜天然免疫應答有關。
氣道上皮細胞;聚肌胞苷酸;脂多糖類;肽聚糖;免疫,天然;免疫,黏膜
人體呼吸道黏膜直接與外界相通,形成一道天然屏障抵御病原微生物的入侵[1]。作為機體防御系統的第一道防線,黏膜免疫發揮著重要作用,致病性病原體侵入機體后,首先遭遇到天然免疫的抵抗,隨后產生獲得性免疫,兩者共同發揮防御作用[2]。病毒及細菌是引起下呼吸道感染的主要病原體,也是多種慢性氣道疾病急性加重的重要誘因[3-4]。病毒或細菌進入下呼吸道后首先與氣道黏膜接觸,氣道黏膜上皮細胞通過自身表達的多種模式識別受體來識別不同病原體并產生應答,參與病原體清除及氣道炎癥的發生[4-5]。
Toll樣受體(Toll-like receptor,TLR)是一個重要的模式識別受體家族,其中TLR2、TLR3、TLR4分別特異性識別肽聚糖(peptidoglycan,PGN)、雙鏈RNA及脂多糖(lipopolysaccharide,LPS)[6]。雙鏈RNA是多種呼吸道病毒在細胞內的代謝產物,聚肌胞苷酸(polyinosinic:polycytidylic acid)簡稱Poly(I:C),是一種人工合成的雙鏈RNA,能特異性地與細胞內TLR3結合,因其結構類似于多種病毒在細胞內代謝所產生的核糖核酸,常被用作病毒感染的模擬物[7]。PGN和細菌內毒素LPS分別是革蘭陽性菌和革蘭陰性菌的標志性結構,能夠被上皮細胞表達的TLR2和TLR4特異性識別[8]。目前病毒及細菌感染相關的TLR特異性配體對氣道黏膜天然免疫應答影響的研究較少。本研究采用氣道黏膜體外模型,分別給予Poly(I:C)、LPS和PGN刺激,觀察三者對氣道黏膜體外模型天然免疫反應的影響。
1.1試劑與儀器 人支氣管上皮細胞株16HBEs由英國南安普頓大學醫學院Davies DE教授惠贈,Transwell培養皿購于Corning公司,Ⅰ型膠原購自Fremont公司,MEM+GlutaM ax-I培養基、胎牛血清(FBS)、青霉素、鏈霉素購自Gibco公司,銅綠假單胞菌內毒素(LPS)、PGN、4kD異硫氰酸熒光素-右旋糖酐(fluorescein-5-isothiocyanate dextra,FITC-Dextran)購自Sigma公司,ELISA試劑盒購自R&D公司。Fluoroskan Ascent FL2.5儀購自 Thermofisher Scientific公司。
1.2方法
1.2.1細胞培養及實驗分組 將16HBEs細胞常規接種于含10%FBS的MEM+GlutaMax-I培養液(青霉素50U/m l,鏈霉素50μg/m l)的12孔Transwell培養板中,接種密度為0.15×106/m l,培養瓶提前30min用1:100 Ⅰ型膠原包被,置于37℃、5% CO2培養箱中培養1周。
實驗分4組,即對照組,Poly(I:C)組,LPS組,PGN組,各組細胞在刺激前,頂側和基底側分別給予200μl MEM+GlutaMax-I培養液和500μl含10%FBS的MEM+GlutaMax-I培養液培養24h,然后按照分組分別給予10μg/m l Poly(I:C),10μg/m l LPS和100μg/ m l PGN刺激,對照組給予MEM+GlutaMax-I培養液。實驗至少重復3次。
1.2.2細胞間離子通透性測定 通過測量跨膜電阻抗(trans-epithelial electrical resistance,TER)的方法測定細胞間離子通透性,采用EVOM上皮伏歐表(WPI公司)測定16HBEs細胞培養1周后的電阻,TER大于260Ω·cm2提示細胞生長融合良好、細胞間連接完整。分別測量刺激前及刺激后1、2、3、4、6、8、24h的TER值,記錄刺激后各時間點TER占刺激前(記時間點為0h)TER值的百分比(%)。
1.2.3細胞間大分子通透性測定 測定FITC-右旋糖酐的濃度(μg/m l)以反映細胞間大分子通透性。按分組施加干預2h后在16HBEs細胞頂側加入2mg/m l 4kD FITC-右旋糖酐,24h后應用Fluoroskan Ascent FL2.5儀測定基底側培養基FITC-右旋糖酐吸光值,激發波長480nm,發射波長530nm,以乙二醇-雙-(2-氨基乙醚)四乙酸(EGTA)刺激作為陽性對照。
1.2.4ELISA法測定白介素8(IL-8)、粒-巨噬細胞集落刺激因子(GM-CSF)及腫瘤壞死因子α(TNF-α)蛋白的表達 采用ELISA法檢測刺激24h后頂側及基底側培養基中IL-8、GM-CSF及TNF-α的蛋白濃度,操作均嚴格按照試劑盒說明進行。先在酶譜儀上測量標準品吸光度并繪制標準曲線,然后測量樣品吸光度(A)值,每個樣品重復2孔檢測,并根據測得的A值在標準曲線計算出樣品濃度。
1.3統計學處理 應用GraphPad Prism 5.0軟件進行資料錄入、整理及統計分析,計量資料以±s表示,多組均數比較采用單因素方差分析。P<0.05為差異有統計學意義。
2.1細胞間通透性檢測結果 10μg/m l Poly(I:C)從頂側刺激16HBEs細胞2、3、4、6、8、24h后,TER均較對照組下降,分別為對照組相應時間點的89.9%、77.5%、77.1%、74.3%、73.2%、32.8%,差異有統計學意義(圖1A),10μg/m l LPS或100μg/m l PGN從頂側刺激16HBEs細胞后1、2、3、4、6、8、24h,TER與對照組比較均無明顯下降,提示Poly(I:C)可增加16HBEs細胞間離子通透性,而LPS及PGN刺激對細胞間離子通透性無明顯影響。
2.2細胞間大分子通透性檢測結果 10μg/m l Poly(I:C)從頂側刺激16HBEs細胞24h后,基底側FITC-右旋糖酐濃度(295.81±45.46μg/m l)是對照組(75.81±5.82μg/m l)的3.9倍,差異有統計學意義(P<0.001),10μg/m l LPS和100μg/m l PGN從頂側刺激16HBEs細胞24h后,細胞基底側FITC-右旋糖酐濃度分別為84.59±8.96μg/m l和90.20±16.06μg/m l,與對照組比較無明顯差異,提示Poly(I:C)可增加16HBEs細胞間大分子的通透性,而LPS及PGN刺激對細胞間大分子通透性并無明顯影響(圖1B)。

圖1 Poly(I:C)(10μg/m l)、LPS(10μg/m l)、PGN(100μg/ m l)經Transwell系統頂側刺激對16HBEs細胞間通透性的影響Fig. 1 Effect of apical stimulation of Poly(I:C)(10μg/m l), LPS(10μg/m l) and PGN(100μg/m l) on the permeability between cellsviatranswell system
2.3細胞分泌炎性介質IL-8、GM-CSF及TNF-α蛋白的檢測結果 10μg/m l Poly(I:C)、10μg/m l LPS和100μg/m l PGN從頂側刺激16HBEs細胞24h后,向頂側分泌的IL-8蛋白水平均較對照組升高,分別是對照組的4.38、2.35、2.40倍,差異有統計學意義(P<0.01,表1),各刺激組向基底側分泌的IL-8蛋白較對照組基底側升高,分別是對照組的3.15、1.35、1.32倍,差異有統計學意義(P<0.01或P<0.05,表1)。
Poly(I:C)、LPS和PGN從頂側刺激16HBEs細胞24h后,向頂側分泌的GM-CSF蛋白水平均較對照組升高,分別是對照組的13.64、3.68、3.31倍,差異有統計學意義(P<0.01),Poly(I:C)刺激組向基底側分泌的GM-CSF蛋白較對照組升高,是對照組的1.53倍,差異有統計學意義(P<0.05),LPS和PGN刺激組向基底側分泌的GM-CSF蛋白與對照組比較無明顯差異(表1)。
Poly(I:C)、LPS和PGN從頂側刺激16HBEs細胞24h后,向頂側分泌的TNF-α蛋白水平均較對照組明顯升高,分別是對照組的4.22、1.81、2.02倍,差異有統計學意義(P<0.01),各刺激組向基底側分泌的TNF-α蛋白較對照組明顯升高,分別是對照組的4.82、1.83、2.03倍,差異有統計學意義(P<0.01或P<0.05,表1)。
表1 Poly(I:C)、LPS及PGN刺激后16HBEs細胞向頂側及基底側分泌IL-8、GM-CSF和TNF-α的含量(pg/m l,±s,n=3)Tab. 1 Apical and basal content of IL-8, GM-CSF and TNF-α in 16HBEs after stimulation by Poly(I:C), LPS and PGN(pg/m l,±s,n=3)

表1 Poly(I:C)、LPS及PGN刺激后16HBEs細胞向頂側及基底側分泌IL-8、GM-CSF和TNF-α的含量(pg/m l,±s,n=3)Tab. 1 Apical and basal content of IL-8, GM-CSF and TNF-α in 16HBEs after stimulation by Poly(I:C), LPS and PGN(pg/m l,±s,n=3)
(1)P<0.05, (2)P<0.01 compared with control group
?
天然免疫應答是氣道黏膜抵御外界病原體的一種與生俱來的防御機制。氣道上皮細胞通過自身表達的多種Toll樣受體來特異性識別不同病原體的特定結構,啟動防御機制并清除入侵病原體[9-10]。氣道黏膜通過氣道上皮細胞間的緊密連接構成一道天然物理屏障,不僅具有控制細胞生長分化、維持上皮細胞正常極性及通透性的作用,還將黏膜下組織結構與外界隔絕,避免病原體向下侵襲[11],維持黏膜屏障的完整性,是發揮天然免疫功能的一個重要方面。本研究發現,TLR3特異性配體Poly(I:C)可導致氣道上皮細胞間離子及大分子物質通透性增加,而LPS及PGN對細胞間通透性無明顯影響,表明TLR3受體激活是破壞氣道黏膜完整性的一個相關因素。文獻報道,LPS能破壞血-腦脊液[12]、腸道[13]等黏膜屏障,PGN刺激后皮膚角質細胞通透性增加[14],這些差異可能與實驗細胞的種系不同有關,也反映出相同的TLR配體對不同黏膜的影響有所不同。氣道黏膜屏障破壞有可能為細菌、各種抗原侵襲深部組織創造條件。Sajjan等[15]報道鼻病毒(RV)感染后氣道黏膜屏障被破壞,流感嗜血桿菌、金黃色葡萄球菌、銅綠假單胞菌等細菌通過細胞間向下侵襲的數量相應增加,可見維持黏膜屏障的完整性對避免黏膜下組織損傷具有一定意義。
氣道上皮細胞在病原微生物等外界刺激下可產生多種細胞因子和趨化因子,這種化學屏障功能具有招募并激活免疫細胞參與局部炎癥的重要作用,是氣道黏膜天然免疫反應的另一組成部分[11]。Ohkuni等[16]研究發現,Poly(I:C)刺激人原代鼻黏膜上皮細胞后,不僅細胞間通透性增加,而且IL-8和TNF-α蛋白的分泌明顯增加,表明上呼吸道黏膜物理屏障破壞與炎性介質表達增加同時存在,并都與p38MAPK被激活有關,提示兩種反應共用同一條信號通路。本研究顯示,Poly(I:C)、LPS及PGN可不同程度地刺激氣道上皮細胞表達IL-8、GM-CSF及TNF-α蛋白,其中以Poly(I:C)的刺激作用最為明顯。IL-8是一種重要的中性粒細胞趨化因子,可招募循環中的中性粒細胞向組織浸潤并釋放溶酶體酶,產生活性氧,從而損傷周圍組織[17]。GM-CSF具有調節嗜酸細胞成熟、分化、活化、凋亡和脫顆粒等功能,參與嗜酸細胞性炎癥的形成[18]。前炎性細胞因子TNF-α主要由活化的單核巨噬細胞產生[19],可引起血管內皮損傷,增加微血管通透性,誘導上皮、內皮細胞表達黏附分子,刺激血小板活化因子(PAF)、前列腺素(PGs)、白三烯(LTs)等炎性介質合成,同時具有促進IL-8、GM-CSF分泌,加重炎癥細胞浸潤與活化等作用[20]。本研究結果表明,氣道上皮細胞是病原體感染后多種炎性因子產生的重要來源之一。LPS及PGN刺激后炎性介質表達雖升高,但對黏膜屏障無明顯影響,說明化學屏障的激活與物理屏障的破壞不一定會同時出現,提示黏膜屏障及炎性介質表達可能受不同信號通路的調控,其分子機制值得進一步深入研究。
黏膜屏障破壞有利于病原體向深部侵襲,造成黏膜下組織細胞的激活,如Papadopoulos等[21]曾在病毒感染后的氣道黏膜下成纖維細胞內發現病毒顆粒,而多種細胞的激活成為炎性介質增多的其他來源,如Bedke等[22]發現鼻病毒感染刺激人支氣管成纖維細胞IL-6、IL-8、RANTES分泌增多,Baines等[23]發現LPS刺激后中性粒細胞中IL-8、IL-1β和TNF-α分泌增加,因此我們推測氣道上皮細胞是病原體進入下呼吸道后首先接觸的靶器官,氣道黏膜的天然免疫應答反應可能是氣道炎癥的一個啟動因素。
我們前期研究顯示,Poly(I:C)及LPS刺激單層培養的16HBEs細胞后,IL-8和IP-10等炎性介質表達增高[24]。上皮細胞生長時會產生極性,導致頂側與基底細胞膜的結構和受體表達有所不同[25],但其生物學功能方面的差異尚不得而知。在本研究中,我們采用Transwell系統培養的16HBEs具有正常細胞極性,為研究細胞頂側與基底側的功能差異提供了一種可選擇的體外氣道黏膜模型[26]。本實驗結果顯示,IL-8及GM-CSF在細胞頂側的濃度有高于基底側的趨勢,表明氣道上皮細胞具有介導部分炎性介質定向表達的能力,炎性介質向腔面一側釋放形成濃度梯度,部分解釋了炎性細胞向氣道浸潤及向氣道腔內聚集的分子機制。同時我們發現,GMCSF在Poly(I:C)刺激后形成的濃度差異遠較IL-8及TNF-α的濃度差異明顯,可能有利于嗜酸細胞向黏膜下聚集,導致氣道炎癥向Th2型炎癥方向傾斜。
綜上,Poly(I:C)可在導致人氣道黏膜屏障破壞的同時刺激細胞向頂側方向分泌炎性介質,LPS及PGN亦可刺激氣道上皮細胞分泌炎性介質,提示病毒及細菌感染所致氣道炎癥與氣道黏膜天然免疫應答反應有關,進一步深入研究其分子機制將為控制氣道炎癥提供新的手段。
[1] Sw ind le EJ, Collins JE, Davies DE. Breakdown in epithelial barrier function in patients with asthma: identification of novel therapeutic app roaches[J]. J Allergy C lin Immuno l, 2009, 124(1): 23-34.
[2] Fang MM, Wang D, Zhang B. Relationship between To lllike receptor-mediated innate immune response and common pathogens lung infection[J]. Int J Respir, 2012, 32(14): 1070-1074.[方明明, 王東, 張波. Toll樣受體介導的天然免疫應答與常見病原體肺部感染之間的關系[J]. 國際呼吸雜志, 2012, 32(14): 1070-1074.]
[3] Jackson DJ, Sykes A, Mallia P,etal. Asthma exacerbations:origin, effect, and prevention[J]. J Allergy Clin Immunol, 2011, 128(6): 1165-1174.
[4] Li Q, Chen P, Chen LA,etal. New advances in prevention and treatment for respiratory disease[J]. Med J Chin PLA, 2010, 35(9): 1074-1078. [李琦, 陳萍, 陳良安, 等. 呼吸系統疾病防治新進展[J]. 解放軍醫學雜志, 2010, 35(9): 1074-1078.]
[5] Eisele NA, Anderson DM. Host defense and the airway epithelium: frontline responses that protect against bacterial invasion and pneumonia[J]. J Pathog, 2011: 249802.
[6] Abdelsadik A, Trad A. Toll-like recep tors on the fork roads between innate and adaptive immunity[J]. Hum Immunol, 2011, 72(12): 1188-1193.
[7] Choi JP, Kim YS, Tae YM,etal. A viral PAMP double-stranded RNA induces allergen-specific Th17 cell response in the airways which is dependent on VEGF and IL-6[J]. Allergy, 2010, 65(10): 1322-1330.
[8] Bauer S, Müller T, Hamm S. Pattern recognition by Toll-like receptors[J]. Adv Exp Med Biol, 2009, 653: 15-34.
[9] Waterer GW. Airway defense mechanisms[J]. Clin Chest Med, 2012, 33(2): 199-209.
[10] Li YQ, Xu WL, Yan JP,etal. Effect of Toll-like receptor-4 and NF-κB on expression of matrix metalloprotease 9 induced by lipopolysaccharide in human airway epithelial cells[J]. Med J Chin PLA, 2011, 36(10): 1048-1052. [李亞清, 許武林, 嚴建平, 等. Toll樣受體4及核因子-κB在脂多糖誘導的氣道上皮細胞基質金屬蛋白酶9表達中的作用[J]. 解放軍醫學雜志, 2011, 36(10): 1048-1052.]
[11] Holgate ST. The sentinel role of the airway epithelium in asthma pathogenesis[J]. Immunol Rev, 2011, 242(1): 205-219.
[12] Choi JJ, Choi YJ, Chen L,etal. Lipopolysaccharide potentiates polychlorinated biphenyl-induced disruption of the blood-brain barrierviaTLR4/IRF-3 signaling[J]. Toxicology, 2012, 302(2-3): 212-220.
[13] Gu L, Li N, Gong J,etal. Berberine am eliorates intestinal epithelial tight-junction damage and down-regulates myosin light chain kinase pathways in a mouse model of endotoxinem ia[J]. J Infect Dis, 2011, 203(11):1602-1612.
[14] Yuki T, Yoshida H, Akazawa Y,etal. Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes[J]. J Immunol, 2011, 187(6): 3230-3237.
[15] Sajjan U, Wang Q, Zhao Y,etal. Rhinovirus disrupts the barrier function of polarized airway epithelial cells[J]. Am J Respir Crit Care Med, 2008, 178(12): 1271-1281.
[16] Ohkuni T, Kojima T, Ogasawara N,etal. Poly(I:C) reduces expression of JAM-A and induces secretion of IL-8 and TNF-αviadistinct NF-κB pathways in human nasal epithelial cells[J]. Toxicol Appl Pharmacol, 2011, 250(1): 29-38.
[17] Suzaki I, Asano K, Shikama Y,etal. Suppression of IL-8 production from airway cells by tiotropium brom ideinvitro[J]. Int J Chron Obstruct Pulmon Dis, 2011, 6: 439-448.
[18] Lopez AF, Williamson DJ, Gamble JR,etal. Recombinant human granulocyte-macrophage colony-stimulating factor stimulatesinvitromature human neutrophil and eosinophil function, surface receptor expression, and survival[J]. J Clin Invest, 1986, 78(5): 1220-1228.
[19] Clark IA. How TNF was recognized as a key mechanism of disease[J]. Cytokine Grow th Factor Rev, 2007, 18(3-4): 335-343.
[20] Lampinen M, Carlson M, H?kansson LD,etal. Cytokine-regulated accumulation of eosinophils in inflammatory disease[J]. Allergy, 2004, 59(8): 793-805.
[21] Papadopoulos NG, Bates PJ, Bardin PG,etal. Rhinoviruses infect the lower airways[J]. J Infect Dis, 2000, 181(6): 1875-1884.
[22] Bedke N, Haitchi HM, Xatzipsalti M,etal. Contribution of bronchial fibroblasts to the antiviral response in asthma[J]. J Immunol, 2009, 182(6): 3660-3667.
[23] Baines KJ, Simpson JL, Scott RJ,etal. Immune responses of airway neutrophils are impaired in asthma[J]. Exp Lung Res, 2009, 35(7): 554-569.
[24] Zhang JX, Xu WJ, Han YP,etal. Effects on chemotactic factor expression in bronchial epithelial cells by co-stimulation of po ly(I:C) and lipopo lysaccharide and the underlying mechanism[J]. Chin J Cell Mol Immunol, 2012, 28(10): 1046-1050. [張景熙, 胥武劍, 韓一平, 等. Poly(I:C)和LPS共刺激對人氣道上皮細胞趨化因子表達的影響及機制[J]. 細胞與分子免疫學雜志, 2012, 28(10): 1046-1050.]
[25] Chen YT, Gallup M, Nikulina K,etal. Cigarette smoke induces epidermal grow th factor receptor-dependent redistribution of apical MUC1 and junctional beta-catenin in polarized human airway epithelial cells[J]. Am J Pathol, 2010, 177(3): 1255-1264.
[26] Rezaee F, Meednu N, Emo JA,etal. Polyinosinic:polycytidylic acid induces protein kinase D-dependent disassembly of apical junctions and barrier dysfunction in airway epithelial cells[J]. J Allergy Clin Immunol, 2011, 128(6): 1216-1224.
Effects of Poly(I:C), LPS and PGN stimulation on the innate immune function of human bronchial epithelium
ZHANG Jing-xi, ZHAO Li-jun, SHI Hui, BAI Chong, LI Qiang
Department of Respiratory Diseases, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
This work was supported by the National Natural Science Foundation of China (81100017) and Shanghai Health Bureau Foundation(2010065)
ObjectiveTo study the effect of polyinosinic:polycytidylic acid (poly(I:C)), lipolysaccharide (LPS), peptidoglycan (PGN) on the barrier function and inflammatory mediators release of bronchial epithelium, and explore the impact of different specific Toll-like receptor (TLR 2, 3, 4) ligands on airway mucosal innate immune responses.MethodsPolarized human bronchial epithelial cells (16HBEs) were cultured using transwell system to establish human bronchial epithelium modelinvitro. The stimulation of Poly(I:C), LPS and PGN, respectively, was given on 16HBEs apically. The permeabilities of m icromolecule and macromolecule between cells were measured by detecting trans-epithelial electrical resistance (TER) and basolateral medium FITC-dextran concentrations after 24h stimulation. IL-8, GM-CSF and TNF-α protein content of apical and basal supernatants released by 16HBEs were measured by ELISA after 24h stimulation.Results10μg/m l Poly(I:C) resulted in decrease of TER and reduction of increase of FITC-dextran permeability significantly (P<0.001), while 10μg/m l LPS and 100μg/m l PGN showed no obvious effects on TER and FITC-dextran permeability. Poly(I:C), LPS and PGN induced an increase in apical and basolateral IL-8, TNF-α release and apical GM-CSF release of the cells. There was no change in basal expression of GM-CSF after being stimulated by LPS and PGN. The apical increase in IL-8 and GM-CSF was higher in Poly(I:C), LPS and PGN groups than their basal increase, thus forming the concentration gradient between two sides of the polarized cells.ConclusionsPoly (I:C) can damage the barrier integrity of the bronchial epithelium, leading to an increase in m icromolecular and macromolecular permeability, and induce the secretionof inflammatory mediators towards the top side at the same time. LPS and PGN can only induce the secretion of inflammatory mediators towards the top side m ildly, w ithout affecting the barrier function. It is suggested that airway mucosal innate immune response through TLR signaling pathways may be involved in airway inflammation caused by virus and bacterial infection.
epithelial cells; poly I-C; lipopolysaccharides; peptidoglycan; immunity, natural; immunity, mucosal
R562
A
0577-7402(2013)07-0552-05
2012-12-29;
2013-03-17)
(責任編輯:沈寧)
國家自然科學基金(81100017);上海市衛生局面上項目基金(2010065)
張景熙,醫學博士,副主任醫師,副教授。主要從事氣道黏膜屏障與免疫方面的研究
200433 上海 第二軍醫大學長海醫院呼吸內科(張景熙、趙立軍、石薈、白沖、李強)