摘 要 本文利用不動點定理,考慮了一類中立型隨機變時滯微分方程,給出了零解均方漸近穩(wěn)定的條件,改進和推廣了一些相關(guān)文獻的結(jié)果。
關(guān)鍵詞 穩(wěn)定性 不動點 時滯隨機微分方程
中圖分類號:O175 文獻標識碼:A
在研究微分方程和泛函微分方程時,李雅普諾夫直接法是最普遍的方法,但在研究帶時滯方程穩(wěn)定性時,常對系數(shù)函數(shù)和時滯要求有界。近年來,Burton[1~3] 和Luo[4~5]運用不動點定理成功地解決了一些無法利用李雅普諾夫直接法解決的問題,得到了很優(yōu)異的結(jié)果,開辟了研究穩(wěn)定性的新方法。本文利用此法,考慮一類中立型隨機變時滯微分方程,所得結(jié)果改進和推廣了已有文獻的結(jié)論。
1 模型假設(shè)
參考文獻
[1] BURTON T A. Perron-type stability theorems for neutral equations[J]. Nonlinear Anal, 2003.55(3):285-297.
[2] BURTON T A, ZHANG B. Fixed points and stability of an integral equation: nonuniqueness[J]. Appl Math Lett, 2004.l7(7):839-846.
[3] BURTON T A. Fixed points and stability of a nonconvolution equation[J]. Proc Amer Math Soc, 2004.132(12):3679-3687.
[4] LUO J W. Fixed points and stability of neutral stochastic delay differential equations[J]. J Math Anal Appl, 2007.334(1):431-440.
[5] JIN C H, LUO J W. Stability in functional differential equations established using fixed point theory[J]. Nonlinear Anal, 2008.68(11):3307-3315.
[6] ZHANG B. Fixed points and stability in differential equations with variable delays[J]. Nonlinear Anal, 2005.63(30):e233-e242.
[7] BURTON T A, FURUMOCHI T. Asymptotic behavior of solutions of functional differentiale quations by fixed point theorems[J]. Dynam Systems Appl, 2002.11(4):499-519.
[8] ARDJOUNI A , DJOUDI A . Fixed points and stability in neutral nonlinear differential equations with variable delays[J]. Opuscula Math, 2012.32(1): 5-19.