姚樹桐,秦樹存
(泰山醫(yī)學(xué)院1動(dòng)脈粥樣硬化研究所,山東省高校動(dòng)脈粥樣硬化重點(diǎn)實(shí)驗(yàn)室,2基礎(chǔ)醫(yī)學(xué)院,山東泰安 271000)
·綜述·
內(nèi)質(zhì)網(wǎng)應(yīng)激在動(dòng)脈粥樣硬化發(fā)生、發(fā)展和防治中的作用*
姚樹桐1,2,秦樹存1△
(泰山醫(yī)學(xué)院1動(dòng)脈粥樣硬化研究所,山東省高校動(dòng)脈粥樣硬化重點(diǎn)實(shí)驗(yàn)室,2基礎(chǔ)醫(yī)學(xué)院,山東泰安 271000)
內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)是真核細(xì)胞內(nèi)蛋白合成、折疊修飾及轉(zhuǎn)運(yùn)的重要細(xì)胞器和鈣離子儲(chǔ)存庫,并與脂質(zhì)合成和氧化還原平衡的維持密切相關(guān)。ER對(duì)多種刺激非常敏感,例如氧化應(yīng)激、鈣穩(wěn)態(tài)失衡、膽固醇超負(fù)荷和糖基化改變等理化環(huán)境變化均可導(dǎo)致ER的功能紊亂,出現(xiàn)以未折疊和/或錯(cuò)誤折疊蛋白積聚以及鈣穩(wěn)態(tài)失衡為主要特征的內(nèi)質(zhì)網(wǎng)應(yīng)激(ER stress,ERS)反應(yīng)。未折疊和/或錯(cuò)誤折疊蛋白在ER腔內(nèi)大量積聚會(huì)導(dǎo)致一系列細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)途徑的激活稱為未折疊蛋白反應(yīng)(unfolded protein response,UPR)。一定程度的UPR有利于維持ER功能和細(xì)胞生存,但是過強(qiáng)或過久應(yīng)激則通過激活ERS相關(guān)信號(hào)途徑誘發(fā)細(xì)胞凋亡[1]。以動(dòng)脈粥樣硬化(atherosclerosis,AS)為病理基礎(chǔ)的心腦血管疾病嚴(yán)重危害人類健康,近年來大量基礎(chǔ)和臨床研究表明ERS在AS發(fā)生發(fā)展中起著重要作用,并有望成為AS治療的新靶點(diǎn)[2]。本文主要針對(duì)近年來ERS反應(yīng)在AS發(fā)病及防治機(jī)制中的研究做一綜述。
1 未折疊蛋白反應(yīng)
UPR是目前研究最為透徹的ERS信號(hào)通路,由3種ER跨膜蛋白感知和介導(dǎo),即雙鏈RNA依賴的蛋白激酶樣ER激酶(PKR-like ER kinase,PERK)、肌醇需求酶1(inositol-requiring enzyme 1,IREl)和活化轉(zhuǎn)錄因子6(activating transcription factor 6,ATF6)。在靜息狀態(tài)下,上述3種蛋白均與ER常駐分子伴侶葡萄糖調(diào)節(jié)蛋白78(glucose-regulated protein 78,GRP78)結(jié)合處于非活化狀態(tài),當(dāng)未折疊/錯(cuò)誤折疊蛋白在ER腔內(nèi)大量積聚而競(jìng)爭性與GRF78結(jié)合時(shí),則促使其與GRP78解離而得以激活。
PERK是I型ER跨膜蛋白,具有絲氨酸/蘇氨酸激酶活性。ERS時(shí),活化的PERK促使真核生物翻譯起始因子2α(eukaryotic translation initiation factor 2α,eIF2α)磷酸化,從而降低蛋白整體翻譯水平,減輕ER未折疊蛋白負(fù)荷。該過程是暫時(shí)性的,可被GADD34所激活的1型蛋白磷酸酶(type 1 protein serine/threonine phosphatase,PP1)所逆轉(zhuǎn)[3]。除了暫時(shí)性抑制蛋白翻譯外,磷酸化的eIF2α也可特異性促進(jìn)活化轉(zhuǎn)錄因子4(activating transcription factor 4,ATF4)的表達(dá)。ATF4進(jìn)入細(xì)胞核可激活ER分子伴侶、轉(zhuǎn)錄因子以及參與抗氧化、自噬、蛋白運(yùn)輸分泌等相關(guān)基因的表達(dá)以促使細(xì)胞生存。持久的ERS也會(huì)通過ATF4激活CCAAT/增強(qiáng)子結(jié)合蛋白同源蛋白(CCAAT/enhancer-binding protein homologous protein,CHOP)的表達(dá),使細(xì)胞進(jìn)入ERS相關(guān)凋亡程序[1]。
IRE1是I型ER跨膜蛋白,具有絲氨酸/蘇氨酸蛋白激酶和核糖核酸內(nèi)切酶雙重活性。與GRP78解離后,IRE1形成二聚體,激活其蛋白激酶活性并發(fā)生自身磷酸化,進(jìn)而激活其核酸內(nèi)切酶活性,剪切X盒結(jié)合蛋白1(X box-binding proterin 1,XBP1)前體mRNA的一個(gè)26 bp內(nèi)含子,翻譯生成有活性的轉(zhuǎn)錄因子XBP1s(spliced XBP1)。XBP1s進(jìn)入細(xì)胞核與ERS反應(yīng)元件(ER-stress response element,ERSE)的啟動(dòng)子結(jié)合,誘導(dǎo)GRP78、GRP94等分子伴侶和折疊酶基因的表達(dá),上調(diào)ER相關(guān)蛋白降解(ER associated degradation,ERAD)途徑相關(guān)蛋白,以促進(jìn)蛋白正確折疊和成熟及錯(cuò)誤折疊蛋白的降解。除了啟動(dòng)XBP1的mRNA剪切外,IRE1也可通過降解micro-RNAs激活凋亡和炎癥反應(yīng)信號(hào)途徑[4]。另外IRE1可通過磷酸化腫瘤壞死因子受體相關(guān)因子2(TNF receptor-associated factor 2,TRAF2)進(jìn)而活化JNK和NF-κB信號(hào)途徑啟動(dòng)炎癥反應(yīng)[1]。
ATF6為II型ER跨膜蛋白,在哺乳動(dòng)物有ATF6α和ATF6β 2種構(gòu)型,僅前者參與UPR相關(guān)基因的誘導(dǎo)。與GRP78解離后,ATF6從ER轉(zhuǎn)位至高爾基體,并被高爾基體內(nèi)S1P與S2P蛋白酶切割,產(chǎn)生活化型ATF6 p50。ATF6 p50作為轉(zhuǎn)錄因子進(jìn)入細(xì)胞核,與含有ERSE的啟動(dòng)子結(jié)合,誘導(dǎo)ER分子伴侶和XBP1、CHOP等轉(zhuǎn)錄因子以及ERAD相關(guān)蛋白的基因表達(dá)[1]。
2 內(nèi)質(zhì)網(wǎng)應(yīng)激介導(dǎo)的凋亡途徑
URP反應(yīng)是組織細(xì)胞的一種重要適應(yīng)性代償防御機(jī)制,但是過強(qiáng)或長時(shí)間ERS則通過激活CHOP、c-Jun氨基末端激酶(c-Jun amino-terminal kinase, JNK)和caspase-12等信號(hào)通路觸發(fā)細(xì)胞凋亡。(1) CHOP通路:CHOP又稱生長停滯及DNA損傷蛋白153(growth arrest and DNA damage-inducible protein 153,GADD153),是ERS特異的轉(zhuǎn)錄因子,可被PERK、IRE1及ATF6通路誘導(dǎo)轉(zhuǎn)錄,其中PERK-eIF2α-ATF4是誘導(dǎo)其表達(dá)的主要途徑[5]。過量表達(dá)的CHOP由胞漿轉(zhuǎn)位至細(xì)胞核,進(jìn)而通過下調(diào)抗凋亡蛋白Bcl-2、誘導(dǎo)促凋亡蛋白Bim等途徑促進(jìn)細(xì)胞凋亡[6]。另外,CHOP可通過上調(diào)ER氧化酶1α(ER oxidase 1α,ERO1α)誘導(dǎo)三磷酸肌醇受體(inositol 1,4,5-trisphosphate receptor,IP3R)介導(dǎo)的鈣釋放,激活鈣/鈣調(diào)蛋白依賴性蛋白激酶(calcium/calmodulindependent protein kinase II,CaMKII),進(jìn)而觸發(fā)Fas死亡受體、線粒體凋亡途徑及NADPH氧化酶介導(dǎo)ROS生成等途徑誘導(dǎo)細(xì)胞凋亡[7-8]。(2)JNK通路: JNK屬于促分裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)家族,可被IRE1、TRAF2和凋亡信號(hào)調(diào)節(jié)激酶1(apoptosis signal-regulating kinase 1,ASK1)共同形成的IRE1/TRAF2/ASK1復(fù)合物激活,進(jìn)而磷酸化c-Jun、c-Fos、Bcl-2等轉(zhuǎn)錄因子啟動(dòng)細(xì)胞凋亡[9]。(3)caspase-12通路:caspase-12以酶原形式存在于ER膜胞漿側(cè),在ERS時(shí)被特異激活,通過激活caspase-9和caspase-3而誘導(dǎo)細(xì)胞凋亡[10]。
線粒體凋亡途徑是公認(rèn)的經(jīng)典凋亡信號(hào)途徑之一,近年來研究表明,其與ERS凋亡途徑有著密切關(guān)系。ERS時(shí),從ER釋放的Ca2+被臨近的線粒體所攝取,進(jìn)而導(dǎo)致線粒體損傷、活性氧生成及凋亡信號(hào)的激活。ER與線粒體通過線粒體相關(guān)內(nèi)質(zhì)網(wǎng)膜(mitochondria-associated ER membranes,MAMs)在結(jié)構(gòu)和功能上有著密切聯(lián)系,在MAMs上富含IP3R鈣通道和電壓依賴性陰離子通道(voltage-dependent anion channel,VDAC)[11],調(diào)控線粒體對(duì)Ca2+的攝取。新近研究表明,ERS感受器PERK也是MAMs上的一個(gè)組分,在維持ER-線粒體并聯(lián)關(guān)系和氧化應(yīng)激介導(dǎo)的線粒體凋亡途徑中具有重要作用[12]。另外ER膜上的Bax抑制因子1(Bax inhibitor-1,BI-1)調(diào)控IRE1的活性,還可通過調(diào)節(jié)IP3R依賴性Ca2+釋放調(diào)控線粒體的能量代謝、氧化還原狀態(tài)以及細(xì)胞自噬作用[13]。
3 內(nèi)質(zhì)網(wǎng)應(yīng)激與動(dòng)脈粥樣硬化
近年來研究顯示,ERS反應(yīng)存在于AS發(fā)生發(fā)展的整個(gè)過程,參與血管內(nèi)皮細(xì)胞(vascular endothelial cells,VECs)、平滑肌細(xì)胞(vascular smooth muscle cells,VSMCs)及巨噬細(xì)胞活性的調(diào)控與凋亡,在高血脂、高同型半胱氨酸、高血糖等危險(xiǎn)因子致AS的過程中均發(fā)揮重要作用。
巨噬細(xì)胞是在AS進(jìn)展中起著關(guān)鍵作用的炎癥細(xì)胞,具有很強(qiáng)的可塑性,可根據(jù)其不同的表現(xiàn)和功能分為M1型和M2型2種表型,分別具有促炎和抗炎促修復(fù)能力[14]。對(duì)不同年齡段apoE-/-小鼠AS病變中浸潤的巨噬細(xì)胞表型的研究發(fā)現(xiàn),年輕小鼠以M2型(精氨酸酶I陽性)為主,可促進(jìn)VSMCs增殖,而在年老小鼠則以M1型(精氨酸酶II陽性)為主,與AS斑塊的易損性有關(guān)[15],提示促進(jìn)巨噬細(xì)胞向M2型轉(zhuǎn)化可能有助于增強(qiáng)AS斑塊的穩(wěn)定性。但是最近研究[16-17]發(fā)現(xiàn),與M1型巨噬細(xì)胞比較,M2型巨噬細(xì)胞對(duì)氧化低密度脂蛋白(oxidized low-density lipoprotein,ox-LDL)介導(dǎo)的脂毒性更為敏感,更易于攝取膽固醇,加速巨噬細(xì)胞泡沫化,且ERS是調(diào)節(jié)巨噬細(xì)胞表型轉(zhuǎn)換和膽固醇蓄積的重要機(jī)制。ERS激活時(shí),可通過JNK-PPARγ依賴性途徑使M2型巨噬細(xì)胞增多,且上調(diào)清道夫受體CD36和清道夫受體A1(scavenger receptor A1,SR-A1)促進(jìn)泡沫細(xì)胞形成;而抑制ERS則促使M2型巨噬細(xì)胞向M1型轉(zhuǎn)化,進(jìn)而通過增強(qiáng)HDL和apoA-I介導(dǎo)的膽固醇流出抑制細(xì)胞泡沫化,提示抑制ERS而促進(jìn)M2型巨噬細(xì)胞向M1型轉(zhuǎn)化可能減輕泡沫細(xì)胞形成和凋亡從而減緩AS斑塊進(jìn)展。因此巨噬細(xì)胞表型在AS病變中的具體轉(zhuǎn)換機(jī)制及其在AS進(jìn)展中的確切作用有待進(jìn)一步研究。
巨噬源性泡沫細(xì)胞是AS進(jìn)程中重要的病理學(xué)標(biāo)志,在AS進(jìn)展中起著重要作用,尤其巨噬細(xì)胞凋亡是導(dǎo)致易損斑塊形成、影響其穩(wěn)定性的重要因素。高脂血癥時(shí),巨噬細(xì)胞內(nèi)膽固醇蓄積,ER膜上過量的膽固醇能夠抑制肌漿網(wǎng)/ER鈣ATP酶(sarcoplasmic/endoplasmic reticulum Ca2+ATPase,SERCA),使ER內(nèi)Ca2+水平降低,激活ERS反應(yīng),引起巨噬細(xì)胞凋亡[18]。而ERS又會(huì)通過介導(dǎo)清道夫受體的上調(diào)而促進(jìn)巨噬細(xì)胞攝取更多的脂質(zhì)。研究報(bào)道棕櫚酸酯和ERS誘導(dǎo)劑毒胡蘿卜素均可上調(diào)巨噬細(xì)胞凝集素樣ox-LDL受體1(lectin-like oxidized LDL receptor 1,LOX-1),而沉默IRE1和PERK則明顯拮抗棕櫚酸酯對(duì)LOX-1的誘導(dǎo)作用[19],也有報(bào)道另一ERS誘導(dǎo)劑衣霉素可上調(diào)巨噬細(xì)胞CD36表達(dá),促進(jìn)泡沫細(xì)胞形成[20]。Myoishi等[21]對(duì)111例急性冠脈綜合征患者粥樣斑塊的研究發(fā)現(xiàn),凋亡的巨噬細(xì)胞主要位于薄弱纖維帽及破裂斑塊處,并伴有GRP78、CHOP等ERS標(biāo)志分子高表達(dá)。敲除CHOP基因可顯著縮小Ldlr-/-和apoE-/-小鼠AS斑塊面積、降低斑塊中巨噬細(xì)胞凋亡率和斑塊破裂的發(fā)生率,且分離自CHOP-/-小鼠的腹腔巨噬細(xì)胞對(duì)7-酮膽甾醇和ox-LDL誘導(dǎo)的凋亡具有更強(qiáng)的抵抗力[22],表明CHOP 與AS斑塊內(nèi)巨噬細(xì)胞凋亡及斑塊易損性密切相關(guān)。本課題組既往研究證實(shí),輕度氧化修飾低密度脂蛋白(minimally modified low-density lipoprotein,mm-LDL)[23]和ox-LDL[24]均可誘導(dǎo)巨噬細(xì)胞發(fā)生ERS,激活由IRE1所介導(dǎo)的UPR反應(yīng),而采用siRNA技術(shù)沉默ATF6后明顯抑制ox-LDL所誘導(dǎo)的細(xì)胞凋亡和CHOP表達(dá)上調(diào),且減輕巨噬細(xì)胞內(nèi)脂質(zhì)蓄積,提示ATF6介導(dǎo)的ERS信號(hào)途徑參與ox-LDL所誘導(dǎo)的巨噬細(xì)胞內(nèi)脂質(zhì)蓄積和細(xì)胞凋亡。
VECs損傷及功能紊亂是AS發(fā)生的始動(dòng)環(huán)節(jié),且其介導(dǎo)的炎癥反應(yīng)參與AS發(fā)生發(fā)展過程。來自VECs的研究證實(shí)氧化和糖化LDL可通過誘導(dǎo)氧化應(yīng)激反應(yīng)和抑制SERCA觸發(fā)持久ERS,顯著上調(diào)p-PERK、p-eIF2α、GRP78等ERS標(biāo)志分子表達(dá)[25]。高半胱氨酸可誘導(dǎo)人VECs CHOP表達(dá)和細(xì)胞凋亡,而抑制IRE1表達(dá)可拮抗高半胱氨酸的上述作用[26]。高遷移率族盒蛋白1(high-mobility group box 1 protein,HMGB1)是介導(dǎo)內(nèi)皮慢性炎癥反應(yīng)重要因素,研究表明沉默PERK和IRE1表達(dá)或抑制eIF-2 α 和JNK活性可明顯拮抗HMGB1所誘導(dǎo)的VECs細(xì)胞間黏附分子1(intercellular adhesion molecule-1,ICAM-1)和P-選擇素表達(dá)[27]。以上研究表明ERS 在VECs損傷及其所介導(dǎo)的炎癥反應(yīng)中具有重要的調(diào)節(jié)作用,進(jìn)而參與AS的發(fā)生發(fā)展。
VSMCs增殖、遷移參與AS的進(jìn)展及術(shù)后再狹窄,而其凋亡與AS斑塊易損性密切相關(guān)。在體外培養(yǎng)的VSMCs實(shí)驗(yàn)中發(fā)現(xiàn),ox-LDL主要成分7-酮膽甾醇可上調(diào)VSMCs上CHOP表達(dá),而沉默CHOP表達(dá)可抑制7-酮膽甾醇所誘導(dǎo)的細(xì)胞凋亡[28]。ox-LDL 和7-酮膽甾醇也可激活I(lǐng)RE1-JNK信號(hào)途徑,進(jìn)而活化NADPH氧化酶4(NADPH oxidase 4,NOX4)所誘導(dǎo)的氧化應(yīng)激導(dǎo)致凋亡的發(fā)生,且蛋白激酶Cδ(protein kinase C δ,PKCδ)可能在該過程中起著重要調(diào)控作用[29]。
4 內(nèi)質(zhì)網(wǎng)應(yīng)激是動(dòng)脈粥樣硬化防治的新靶點(diǎn)
鑒于ERS在AS發(fā)生發(fā)展中的重要作用,近年來在體外和動(dòng)物模型中證實(shí)對(duì)ERS信號(hào)通路進(jìn)行干預(yù),可減輕心血管細(xì)胞損傷,減緩AS進(jìn)展,可能成為AS防治的重要措施。
化學(xué)伴侶是一類能夠非特異性協(xié)助蛋白正確折疊、穩(wěn)定蛋白天然構(gòu)象的小分子。4-苯丁酸(4-phenylbutyric acid,PBA)和牛黃脫氧膽酸(tauro-ursodeoxycholic acid,TUDCA)是可用于臨床的化學(xué)伴侶分子。PBA能夠抑制高脂飼養(yǎng)的apoE-/-小鼠AS斑塊中p-eIF2α、p-PERK等ERS標(biāo)志分子表達(dá),并減輕AS病變和巨噬細(xì)胞凋亡[30]。體外實(shí)驗(yàn)表明PBA可減輕晚期糖化白蛋白、糖化脂蛋白和衣霉素所致的巨噬細(xì)胞ERS、ATP結(jié)合盒轉(zhuǎn)運(yùn)體A1(ATP-binding cassette transporter A1,ABCA1)下調(diào)、氧化應(yīng)激以及細(xì)胞凋亡[31-32],并抑制棕櫚酸酯和毒胡蘿卜素對(duì)LOX-1的誘導(dǎo)作用[19]。TUDCA是另一個(gè)具有ERS調(diào)控作用的化學(xué)伴侶,不僅在整體實(shí)驗(yàn)中可減緩AS進(jìn)展[33],而且可拮抗棕櫚酸酯和ERS誘導(dǎo)劑所致的巨噬細(xì)胞清道夫受體LOX-1和CD36的上調(diào),抑制泡沫細(xì)胞的形成[19-20]。以上結(jié)果提示化學(xué)伴侶分子通過改善ER功能可能成為治療AS的有效措施,但是其對(duì)ERS的調(diào)控在AS防治中的確切機(jī)制有待進(jìn)一步闡明。
除化學(xué)伴侶分子以外,近年來以ERS作為AS治療靶點(diǎn)的其它研究也有較多報(bào)道。eIF-2 α磷酸化抑制劑2-氨基嘌呤可以降低apoE-/-小鼠AS斑塊中p-eIF2α和GRP78水平,同時(shí)縮小AS斑塊面積、抑制泡沫細(xì)胞形成[34]。Bernal-Mizrachi課題組研究了維生素D(vitamin D,Vit D)與糖尿病患者體內(nèi)巨噬細(xì)胞表型轉(zhuǎn)換及活性的關(guān)系,結(jié)果發(fā)現(xiàn)血清Vit D低于30 μg/L的患者巨噬細(xì)胞以M2型為主,ERS反應(yīng)增強(qiáng),且黏附分子表達(dá)和黏附能力增加,若抑制巨噬細(xì)胞Vit D受體也可使ERS反應(yīng)和黏附能力增強(qiáng),而補(bǔ)充Vit D或給予PBA抑制ERS則可使巨噬細(xì)胞表型向M1轉(zhuǎn)化并降低游走黏附能力,且ERS誘導(dǎo)劑毒胡蘿卜素可抵消Vit D對(duì)巨噬細(xì)胞游走和黏附分子表達(dá)的抑制作用[35-36]。并在Ldlr-/-和apoE-/-AS小鼠模型上也發(fā)現(xiàn),Vit D缺乏可顯著增加AS斑塊面積和巨噬細(xì)胞浸潤,以M2型為主,并伴有脂質(zhì)蓄積和ERS活化,抑制ERS反應(yīng)則減輕AS斑塊和巨噬源性泡沫細(xì)胞形成[37],表明Vit D可通過抑制ERS反應(yīng)對(duì)AS發(fā)揮治療作用。Chen等[38]研究發(fā)現(xiàn)硫化氫(H2S)可抑制Western飲食飼養(yǎng)的apoE-/-小鼠AS斑塊caspase-12表達(dá),縮小斑塊壞死面積,減輕動(dòng)脈超微結(jié)構(gòu)損傷。一磷酸腺苷激活蛋白激酶(AMP-activated protein kinase,AMPK)活化與eIF2α磷酸化有關(guān),研究顯示阿伐他汀可激活A(yù)MPK,降低高同型半胱氨酸誘導(dǎo)的ERS反應(yīng),從而減輕血管壁損傷和AS進(jìn)展[39]。槲皮素是一種黃酮類化合物單體,具有抗氧化、抗炎、降血壓等作用。Derlindati等[14]研究發(fā)現(xiàn),槲皮素代謝產(chǎn)物槲皮素-3-O-葡糖苷酸抑制M1型巨噬細(xì)胞促炎基因的表達(dá),而增強(qiáng)M2型巨噬細(xì)胞抗炎能力。本課題組既往研究[40]證實(shí)槲皮素可顯著抑制ox-LDL誘導(dǎo)的巨噬細(xì)胞IRE磷酸化、ATF6核轉(zhuǎn)位和CHOP表達(dá)上調(diào),同時(shí)增加細(xì)胞活力,降低細(xì)胞凋亡率,且在ERS誘導(dǎo)劑衣霉素和毒胡蘿卜素[41]誘導(dǎo)的巨噬細(xì)胞ERS模型上也觀察到槲皮素的類似作用,表明槲皮素可通過抑制ERS-CHOP信號(hào)途徑減輕ox-LDL對(duì)巨噬細(xì)胞的損傷。
5 展望
ERS反應(yīng)是機(jī)體對(duì)內(nèi)外環(huán)境刺激的一種自我保護(hù)性防御機(jī)制,但是過強(qiáng)或過久的ERS則可導(dǎo)致細(xì)胞功能失調(diào),誘導(dǎo)細(xì)胞凋亡。大量研究顯示ERS參與AS的發(fā)生、發(fā)展。在此基礎(chǔ)上,對(duì)ERS反應(yīng)進(jìn)行干預(yù),包括上調(diào)ERS相關(guān)促生存信號(hào)分子、抑制過度的ERS及相關(guān)凋亡信號(hào)通路,已成為AS相關(guān)疾病中的研究熱點(diǎn)和治療新靶點(diǎn)。但是由于ERS促生存信號(hào)與促凋亡信號(hào)在疾病發(fā)展的不同時(shí)期并沒有明確的界限,且不同細(xì)胞如巨噬細(xì)胞、VECs、VSMCs在ERS狀態(tài)下的反應(yīng)及其在疾病發(fā)展中的意義也不盡相同,因此對(duì)于ERS相關(guān)信號(hào)通路精確的選擇性的調(diào)控還有待更廣泛深入的研究。
[1]Hetz C.The unfolded protein response:controlling cell fate decisions under ER stress and beyond[J].Nat Rev Mol Cell Biol,2012,13(2):89-102.
[2]Minamino T,Komuro I,Kitakaze M.Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease [J].Circ Res,2010,107(9):1071-1082.
[3]Ma Y,Hendershot LM.Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress[J].J Biol Chem,2003,278 (37):34864-34873.
[4]Lerner AG,Upton JP,Praveen PV,et al.IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress[J].Cell Metab,2012,16(2): 250-264.
[5]Bromati CR,Lellis-Santos C,Yamanaka TS,et al.UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/ CHOP stimulation of TRB3 expression[J].Am J Physiol Regul Integr Comp Physiol,2011,300(1):R92-R100.
[6]Ghosh AP,Klocke BJ,Ballestas ME,et al.CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress [J].PLoS One,2012,7(6):e39586.
[7]Li G,Mongillo M,Chin KT,et al.Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis[J].J Cell Biol,2009,186(6):783-792.
[8]Timmins JM,Ozcan L,Seimon TA,et al.Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways[J].J Clin Invest,2009,119(10):2925-2941.
[9]Kim YH,Joo HS,Kim DS.Nitric oxide induction of IRE1-alpha-dependent CREB phosphorylation in human glioma cells[J].Nitric Oxide,2010,23(2):112-120.
[10]Morishima N,Nakanishi K,Takenouchi H,et al.An endoplasmic reticulum stress-specific caspase cascade in apoptosis.Cytochrome c-independent activation of caspase-9 by caspase-12[J].J Biol Chem,2002,277(37): 34287-34294.
[11]Szabadkai G,Bianchi K,Várnai P,et al.Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+channels[J].J Cell Biol,2006,175(6):901-911.
[12]Verfaillie T,Rubio N,Garg AD,et al.PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress[J].Cell Death Differ,2012,19(11):1880-1891.
[13]Sano R,Hou YC,Hedvat M,et al.Endoplasmic reticulum protein BI-1 regulates Ca2+-mediated bioenergetics to promote autophagy[J].Genes Dev,2012,26(10): 1041-1054.
[14]Derlindati E,Dall'Asta M,Ardigò D,et al.Quercetin-3-O-glucuronide affects the gene expression profile of M1 and M2ahumanmacrophagesexhibitinganti-inflammatory effects[J].Food Funct,2012,3(11):1144-1152.
[15]Khallou-Laschet J,Varthaman A,F(xiàn)ornasa G,et al.Macrophage plasticity in experimental atherosclerosis[J].PLoS One,2010,5(1):e8852.
[16]Isa SA,Ruffino JS,Ahluwalia M,et al.M2 macrophages exhibit higher sensitivity to oxLDL-induced lipotoxicity than other monocyte/macrophage subtypes[J].Lipids Health Dis,2011,10:229.
[17]Oh J,Riek AE,Weng S,et al.Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation[J].J Biol Chem,2012,287(15):11629-11641.
[18]Li Y,Ge M,Ciani L,et al.Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids:implications for depletion of endoplasmic reticulum calcium stores and apoptosis in cholesterol-loaded macrophages[J].J Biol Chem,2004,279(35):37030-37039.
[19]Ishiyama J,Taguchi R,Akasaka Y,et al.Unsaturated FAs prevent palmitate-induced LOX-1 induction via inhibition of ER stress in macrophages[J].J Lipid Res,2011,52(2):299-307.
[20]Hua Y,Kandadi MR,Zhu M,et al.Tauroursodeoxycholic acid attenuates lipid accumulation in endoplasmic reticulum-stressed macrophages[J].J Cardiovasc Pharmacol,2010,55(1):49-55.
[21]Myoishi M,Hao H,Minamino T,et al.Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome[J].Circulation,2007,116(11):1226-1233.
[22]Thorp E,Li G,Seimon TA,et al.Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of ApoE-/-and Ldlr-/-mice lacking CHOP[J].Cell Metab,2009,9(5):474-481.
[23]Yao S,Yang N,Song G,et al.Minimally modified lowdensity lipoprotein induces macrophage endoplasmic reticulum stress via Toll-like receptor 4[J].Biochim Biophys Acta,2012,1821(7):954-963.
[24]Yao S,Zong C,Zhang Y,et al.Activating transcription factor 6 mediates oxidized LDL-induced cholesterol accumulation and apoptosis in macrophages by up-regulating CHOP expression[J].J Atheroscler Thromb,2013,20 (1):94-107.
[25]Dong Y,Zhang M,Wang S,et al.Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo[J].Diabetes,2010,59(6):1386-1396.
[26]Zhang C,Cai Y,Adachi MT,et al.Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response [J].J Biol Chem,2001,276(38):35867-35874.
[27]Luo Y,Li SJ,Yang J,et al.HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway[J].Biochem Biophys Res Commun,2013,438(4):732-738.
[28]Myoishi M,Hao H,Minamino T,et al.Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome[J].Circulation,2007,116(11):1226-1233.
[29]Larroque-Cardoso P,Swiader A,Ingueneau C,et al.Role of protein kinase C δ in ER stress and apoptosis induced by oxidized LDL in human vascular smooth muscle cells [J].Cell Death Dis,2013,4:e520.
[30]Erbay E,Babaev VR,Mayers JR,et al.Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis[J].Nat Med,2009,15 (12):1383-1391.
[31]Castilho G,Okuda LS,Pinto RS,et al.ER stress is associated with reduced ABCA-1 protein levels in macrophages treated with advanced glycated albumin:reversal by a chemical chaperone[J].Int J Biochem Cell Biol,2012,44(7):1078-1086.
[32]Lenin R,Maria MS,Agrawal M,et al.Amelioration of glucolipotoxicity-induced endoplasmic reticulum stress by a “chemical chaperone”in human THP-1 monocytes[J].Exp Diabetes Res,2012,2012:356487.
[33]Dong Y,Zhang M,Liang B,et al.Reduction of AMP-activated protein kinase α2 increases endoplasmic reticulum stress and atherosclerosis in vivo[J].Circulation,2010,121(6):792-803.
[34]Zhou L,Yang D,Wu DF,et al.Inhibition of endoplasmic reticulum stress and atherosclerosis by 2-aminopurine in apolipoprotein E-deficient mice[J].ISRN Pharmacol,2013,2013:847310.
[35]Riek AE,Oh J,Sprague JE,et al.Vitamin D suppression of endoplasmic reticulum stress promotes an antiatherogenic monocyte/macrophage phenotype in type 2 diabetic patients[J].J Biol Chem,2012,287(46):38482-38494.
[36]Riek AE,Oh J,Bernal-Mizrachi C.1,25(OH)2vitamin D suppresses macrophage migration and reverses atherogenic cholesterol metabolism in type 2 diabetic patients [J].J Steroid Biochem Mol Biol,2013,136:309-312.
[37]Weng S,Sprague JE,Oh J,et al.Vitamin D deficiency induces high blood pressure and accelerates atherosclerosis in mice[J].PLoS One,2013,8(1):e54625.
[38]Chen ZF,Zhao B,Tang XY,et al.Hydrogen sulfide regulates vascular endoplasmic reticulum stress in apolipoprotein E knockout mice[J].Chin Med J(Engl),2011,124(21):3460-3467.
[39]Jia F,Wu C,Chen Z,et al.Atorvastatin inhibits homocysteine-induced endoplasmic reticulum stress through activation of AMP-activated protein kinase[J].Cardiovasc Ther,2012,30(6):317-325.
[40]Yao S,Sang H,Song G,et al.Quercetin protects macrophages from oxidized low-density lipoprotein-induced apoptosis by inhibiting the endoplasmic reticulum stress-C/EBP homologous protein pathway[J].Exp Biol Med(Maywood),2012,237(7):822-831.
[41]岳雯,姚樹桐,鮑穎,等.槲皮素對(duì)毒胡蘿卜素誘導(dǎo)的巨噬細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激凋亡途徑的抑制作用及機(jī)制[J].中國病理生理雜志,2012,28(3):518-523.
The role of endoplasmic reticulum stress in pathogenesis,development,prevention and treatment of atherosclerosis
YAO Shu-tong1,2,QIN Shu-cun1
(1Institute of Atherosclerosis,Key Laboratory of Atherosclerosis in Universities of Shandong,2College of Basic Medical Sciences,Taishan Medical University,Taian 271000,China.E-mail:shucunqin@hotmail.com)
Endoplasmic reticulum(ER)is a multifunctional organelle responsible for the synthesis and folding of proteins and regulation of calcium homeostasis.Multiple stimuli,such as oxidative stress,glycosylation change and so on,lead to ER dysfunction characterized by the accumulation of unfolded and/or misfolded proteins and calcium homeostasis imbalance(ER stress).Mode-rate ER stress is an important cytoprotective mechanism against stressors.However,severe and/ or prolonged ER stress can trigger apoptotic signaling including CHOP,caspase-12 and JNK pathways.Recent studies have shown that ER stress plays a critical role in the development of atherosclerosis and it can bring about inhibitory effects on the progression of atherosclerosis through the intervention of the relevant pathways,which may be a new therapeutic target for atherosclerosis.
內(nèi)質(zhì)網(wǎng)應(yīng)激;細(xì)胞凋亡;動(dòng)脈粥樣硬化;治療靶點(diǎn)
Endoplasmic reticulum stress;Apoptosis;Atherosclerosis;Therapeutic target
1000-4718(2014)02-0364-06
R363
A
10.3969/j.issn.1000-4718.2014.02.032
2013-10-07
2013-12-12
國家自然科學(xué)基金資助項(xiàng)目(No.81202949;No.81370381);山東省泰山學(xué)者崗專項(xiàng)基金資助項(xiàng)目(No.zd056; No.zd057)
△通訊作者Tel:0538-6237252;E-mail:shucunqin@hotmail.com