楊 赫(綜述),唐 強(qiáng)(審校)
(1.黑龍江中醫(yī)藥大學(xué),哈爾濱 150040; 2.黑龍江中醫(yī)藥大學(xué)附屬第二醫(yī)院康復(fù)中心,哈爾濱 150001)
血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)自1983年首次由Senger等發(fā)現(xiàn)就被命名為血管通透因子,是兩條單鏈鏈接而成的二聚體糖蛋白,能夠自發(fā)地與肝素結(jié)合使血管內(nèi)皮細(xì)胞產(chǎn)生有絲分裂并誘使血管生成,具有增強(qiáng)內(nèi)皮細(xì)胞通透性、神經(jīng)保護(hù)作用、促進(jìn)血管內(nèi)皮細(xì)胞增殖分化的作用[1]。30多年來,VEGF調(diào)控血管生成的作用是炙手可熱的研究課題,新血管的生長和成熟是一個非常復(fù)雜的過程,其與腫瘤生長、轉(zhuǎn)移和炎性反應(yīng)關(guān)系密切,如中耳膽脂瘤、喉癌、鼻咽癌、膽管癌、乳腺癌等。因此,VEGF常被作為血管內(nèi)皮細(xì)胞必不可少的促生因子。
1.1VEGF和同源異構(gòu)體的結(jié)構(gòu)特征 VEGF家族包括6種不同的同源二聚體蛋白,即VEGF-A、B、C、D、E以及胎盤生長因子[2]。人類VEGF編碼基因定位于染色體6p21.3,編碼區(qū)約含有14 kb。由于外顯子剪切的不同構(gòu)成多種亞型,包括VEGF(121)、VEGF(165)、VEGF(189)和VEGF(206),分別含有121,165,189,206個氨基酸;還有較少見的變異亞型,如VEGF(145)、VEGF(183)和VEGF(162)構(gòu)成血管生成亞型家族[VEGF(XXX)]。VEGF(165)b、VEGF(121)b、VEGF(145)b、VEGF(183)b和VEGF(189)b[3]構(gòu)成抗血管生成亞型家族[VEGF(XXX)b]。各亞型都以二聚體的形式被分泌出來。VEGF(165)具有肝素結(jié)合活性,VEGF(121)不能與肝素結(jié)合。VEGF(183)在組織內(nèi)廣泛分布。
1.2VEGF受體 VEGF的產(chǎn)生方式有兩種:一種是旁分泌;另一種是自分泌[4]。必須與對應(yīng)的受體結(jié)合引起受體自身磷酸化,激活絲裂原活化的蛋白激酶,誘導(dǎo)內(nèi)皮細(xì)胞的增殖才能產(chǎn)生促進(jìn)血管生成的效應(yīng),VEGF-A、VEGF-B、胎盤生長因子與血管內(nèi)皮生長因子受體(vascular endothelial growth factor receptor,VEGFR)1結(jié)合;VEGF-A、VEGF-E與VEGFR-2結(jié)合;VEGF-C,VEGF-D既能與VEGFR-2結(jié)合也能與VEGFR-3結(jié)合,然而其結(jié)合效率遠(yuǎn)低于與VEGFR-3的結(jié)合效率[5]。VEGF是經(jīng)由蛋白激酶/磷酸肌醇3-激酶/絲裂原活化蛋白激酶等信號通路與VEGFR-1、VEGFR-2結(jié)合發(fā)揮促進(jìn)內(nèi)皮細(xì)胞增殖、遷移和侵襲的作用。VEGFR-1對游離的單核細(xì)胞和巨噬細(xì)胞具有正調(diào)節(jié)作用,但對VEGFR-2的信號傳遞則起著雙向調(diào)控作用。與VEGFR-2相比,VEGFR-1競爭性結(jié)合VEGF的能力更強(qiáng);VEGFR-3可調(diào)控淋巴管內(nèi)皮細(xì)胞的生長和功能。
2.1增加血管通透性 VEGF是迄今最強(qiáng)的可增加血管通透性的物質(zhì)之一,在濃度不足每升納摩爾的水平即可發(fā)揮作用,為組胺作用強(qiáng)度的5萬倍。VEGF主要通過增加內(nèi)皮細(xì)胞的間隙調(diào)控細(xì)胞通透性,一方面通過激活組織分泌降解酶,類似基質(zhì)金屬蛋白酶類,酶解微小血管,削弱血管壁完整性;另一方面,憑借增加獨(dú)立的微血管水流傳導(dǎo)系數(shù),迫使Ca2+內(nèi)流使微血管滲透性增加,特別是微小靜脈的滲透性增高[6]。Levy等[7]將VEGF注射于動物局部心肌后觀察到小囊泡器的功能增強(qiáng),提示VEGF可能通過開啟小囊泡器之間窗口的調(diào)節(jié)而達(dá)到增加血管通透性的目的。
2.2促進(jìn)血管生成 VEGF作為重要的有絲分裂原是血管生成過程不可或缺的。VEGF與其特有的受體進(jìn)行匹配式結(jié)合在內(nèi)皮細(xì)胞表面激活細(xì)胞內(nèi)的酪氨酸致活酶引發(fā)多重下游信號促使血管生成[8]。VEGFR-2介導(dǎo)了微血管一系列活動,包括管壁通透性,內(nèi)皮細(xì)胞增生、浸潤、遷移及重構(gòu)[9]。有報道描述,VEGFR調(diào)節(jié)血管幼芽形成,參與調(diào)節(jié)血管出芽與遷移[10]。大腦中動脈閉塞后2~14 d缺血邊緣區(qū)的VEGF表達(dá)呈現(xiàn)出一種逐步增加的態(tài)勢,故此新生血管可存活 7~28 d[11]。Sun等[12]證明,局灶性腦缺血后7~28 d給予紋狀體的VEGF治療組缺血半暗帶血管性血友病因子陽性血管密度增加。
2.3神經(jīng)保護(hù)作用 當(dāng)發(fā)生缺血損傷時,腦內(nèi)VEGF的表達(dá)水平顯著上調(diào)以產(chǎn)生腦保護(hù)效應(yīng)[13-14]。人們普遍認(rèn)為,VEGF通過外周和腦神經(jīng)元細(xì)胞甚至膠質(zhì)細(xì)胞來表達(dá),越來越多的線索提示其在中樞神經(jīng)系統(tǒng)和周圍神經(jīng)系統(tǒng)指揮血管化的作用也十分重要。VEGF刺激一些神經(jīng)元來保護(hù)神經(jīng)營養(yǎng)活動,包括增殖星形膠質(zhì)細(xì)胞、施萬細(xì)胞、小膠質(zhì)細(xì)胞、皮質(zhì)神經(jīng)元;保護(hù)海馬、皮質(zhì),多巴胺和周邊的感覺神經(jīng)元以及一些由缺氧所導(dǎo)致神經(jīng)細(xì)胞株細(xì)胞死亡;免受血清回撤或興奮毒性刺激影響[15]。
2.4促進(jìn)內(nèi)皮細(xì)胞的增殖 VEGF可以誘導(dǎo)內(nèi)皮細(xì)胞表達(dá)整合αvβ3、αvβ5及其配體,以此介導(dǎo)內(nèi)皮細(xì)胞產(chǎn)生酶和分子,促使內(nèi)皮細(xì)胞繁殖和增生[16]。來自日本的一項(xiàng)研究表明,促血管生成因子VEGF除了使內(nèi)皮細(xì)胞增殖外還趨化著微血管密度的表達(dá)[17]。Ohno-Matsui等[18]利用轉(zhuǎn)基因小鼠模型觀察到不論血管床發(fā)育成熟與否,VEGF的表達(dá)增加均可導(dǎo)致血管形成。
3.1保護(hù)神經(jīng)元 VEGF刺激軸突的生長并且提高體外培養(yǎng)小鼠的上頸椎和背根神經(jīng)節(jié)的生存[19-20]。VEGF增強(qiáng)了離體器官內(nèi)培養(yǎng)的中腦神經(jīng)元存活[21]。Hao等[22]研究認(rèn)為,神經(jīng)細(xì)胞營養(yǎng)應(yīng)激下VEGF及受體(VEGFR-1、VEGFR-2、神經(jīng)纖毛蛋白1)表達(dá)有所增加,同時增強(qiáng)VEGFR-2的磷酸化水平。此外,VEGF可以抑制胱天蛋白酶3的活化,降低神經(jīng)元的凋亡,減輕軸突變性[23]。
3.2促進(jìn)新生血管形成 VEGF可以促進(jìn)缺血區(qū)側(cè)支循環(huán)的建立,增加缺血組織的血液供應(yīng),改善其缺血狀況。黃越芳等[24]對新生大鼠缺血缺氧腦病模型研究,可見模型組的梗死灶周圍腦組織神經(jīng)元胞質(zhì)中VEGF表達(dá)顯著;模型組梗死灶周圍毛細(xì)血管密度從第3日開始顯著多于假手術(shù)組;到第7日達(dá)到高峰;VEGF在不同的中樞神經(jīng)系統(tǒng)疾病實(shí)驗(yàn)?zāi)P椭械难苄律饔米顝?qiáng),局灶性腦缺血治療作用最明顯[25]。一項(xiàng)多中心二期80例冠狀動脈缺血患者雙盲試驗(yàn)證實(shí),VEGF基因治療有良好的抗心肌缺血作用,改善了左心室功能和臨床癥狀[26]。
3.3增強(qiáng)血管通透性 VEGF使微血管系統(tǒng)呈現(xiàn)高滲透性令大分子循環(huán),此種效能大約是組胺的50 000倍[27]。體現(xiàn)在小鼠短暫性局灶性腦缺血再灌注模型梗死區(qū)有腦水腫[28]。其他一些實(shí)驗(yàn)可證實(shí),把含有VEGF的藥物注入腦表面會不同程度地降低腦水腫和減小梗死體積[29]。
3.4抑制細(xì)胞凋亡 VEGF參與調(diào)節(jié)生理和某些病理?xiàng)l件下的細(xì)胞數(shù),拮抗細(xì)胞凋亡同時刺激內(nèi)皮細(xì)胞增殖。研究結(jié)果表明,VEGF阻礙了胱天蛋白酶3 mRNA的表達(dá),抑制其活化[30]且VEGF可通過多個信號通路誘導(dǎo)抗凋亡基因及蛋白逆轉(zhuǎn)細(xì)胞凋亡[31]。
3.5參與腦內(nèi)葡萄糖轉(zhuǎn)運(yùn) 當(dāng)大腦缺血、缺氧時導(dǎo)致葡萄糖向大腦轉(zhuǎn)輸失敗,啟動了一系列應(yīng)激反應(yīng),VEGF mRNA激活參與葡萄糖攝取和糖酵解過程[32-33]。維持腦內(nèi)血糖的水平,以達(dá)到調(diào)節(jié)血糖水平、血管新生及神經(jīng)保護(hù)的作用。
缺血性卒中的發(fā)生、發(fā)展、康復(fù)與VEGF有天然不可分割的關(guān)系,隨著對VEGF及VEGFR結(jié)構(gòu)和功能等方面的深入研究,可以預(yù)見以 VEGF為靶點(diǎn)治療缺血性卒中策略將是今后亟需解決的問題。并有望成為今后人類攻克缺血性腦卒中這一課題的突破口。這不僅有助于研發(fā)新的藥物,而且可以指導(dǎo)臨床用藥,提高臨床療效。
[1] Gonzalez-Perez RR,Rueda BR.Tumor angiogenesis regulators[M].Boca Raton,F(xiàn)lorida:The Chemical Rubber Company Press,2013:10-11.
[2] Wittko-Schneider IM,Schneider FT,Plate KH.Brain homeostasis:VEGF receptor 1 and 2-two unequal brothers in mind[J].Cell Mol Life Sci,2013,70(10):1705-1725.
[3] Perrin RM,Konopatskaya O,Qiu Y,etal.Diabetic retinopathy is associated with a switch in splicing from anti-to pro-angiogenic isoforms of vascular endothelial growth factor[J].Diabetologia,2005,48(11):2422-2427.
[4] Ferrara N,Gerber HP,LeCouter J.The biology of VEGF and its receptors[J].Nat Med,2003,9(6):669-676.
[5] Suto K,Yamazaki Y,Morita T,etal.Crystal structures of novel vascular endothelial growth factors (VEGF) from snake venoms insight into selective VEGF binding to kinase insert domain-containing receptor but not to fms-like tyrosine kinase-1[J].J Biol Chem,2005,280(3):2126-2131.
[6] Ferrara N.Role of vascular endothelial growth factor in regulation of physiological angiogenesis[J].Am J Physiol Cell Physiol,2001,280(6):C1358-C1366.
[7] Levy AP,Levy NS,Loscalzo J,etal.Regulation of vascular endothelial growth factor in cardiac myocytes[J].Circ Res,1995,76(5):758-766.
[8] Beck H,Plate KH.Angiogenesis after cerebral ischemia[J].Acta neuropathol,2009,117(5):481-496.
[9] Hicklin DJ,Ellis LM.Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis[J].J Clinical Oncol,2005,23(5):1011-1027.
[10] Kearney JB,Kappas NC,Ellerstrom C,etal.The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis[J].Blood,2004,103(12):4527-4535.
[11] Zhang ZG,Zhang L,Tsang W,etal.Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia[J].J Cereb Blood Flow Metab,2002,22(4):379-392.
[12] Sun Y,Jin K,Xie L,etal.VEGF-induced neuroprotection,neurogenesis,and angiogenesis after focal cerebral ischemia[J].J Clin Invest,2003,111(12):1843-1851.
[13] Shore PM,Jackson EK,Wisniewski SR,etal.Vascular endothelial growth factor is increased in cerebrospinal fluid after traumatic brain injury in infants and children[J].Neurosurgery,2004,54(3):605-611.
[14] Nishijima K,Ng YS,Zhong L,etal.Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury[J].Am J pathol,2007,171(1):53-67.
[15] Zachary I.Neuroprotective role of vascular endothelial growth factor:signalling mechanisms,biological function,and therapeutic potential[J].Neurosignals,2005,14(5):207-221.
[16] Otrock ZK,Makarem JA,Shamseddine AI.Vascular endothelial growth factor family of ligands and receptors:review[J].Blood Cells Mol Dis,2007,38(3):258-268.
[17] Imura S,Miyake H,Izumi K,etal.Correlation of vascular endothelial cell proliferation with microvessel density and expression of vascular endothelial growth factor and basic fibroblast growth factor in hepatocellular carcinoma[J].J Med Invest,2004,51(3/4):202-209.
[18] Ohno-Matsui K,Hirose A,Yamamoto S,etal.Inducible expression of vascular endothelial growth factor in adult mice causes severe proliferative retinopathy and retinal detachment[J].Am J Pathol,2002,160(2):711-719.
[19] Sondell M,Lundborg G,Kanje M.Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth,enhancing cell survival and Schwann cell proliferation in the peripheral nervous system[J].J Neurosci,1999,19(14):5731-5740.
[20] Sondell M,Sundler F,Kanje M.Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor[J].Eur J Neurosci,2000,12(12):4243-4254.
[21] Silverman WF,Krum JM,Mani N,etal.Vascular,glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures[J].Neuroscience,1999,90(4):1529-1541.
[22] Hao T,Rockwell P.Signaling through the vascular endothelial growth factor receptor VEGFR-2 protects hippocampal neurons from mitochondrial dysfunction and oxidative stress[J].Free Radic Biol Med,2013.63:421-431.
[23] Liu Y,Figley S,Spratt SK,etal.An engineered transcription factor which activates VEGF-A enhances recovery after spinal cord injury[J].Neurobiol Dis,2010,37(2):384-393.
[24] 黃越芳,莊思齊,陳東平,等.新生大鼠缺氧缺血性腦病模型腦組織新生血管形成及調(diào)控因素[J].中華兒科雜志,2004,42(3):210-214.
[26] Kastrup J,J?rgensen E,Rück A,etal.Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris A randomized double-blind placebo-controlled study:the Euroinject One trial[J].J Am Coll of Cardiol,2005,45(7):982-988.
[27] Fava RA,Olsen NJ,Spencer-Green G,etal.Vascular permeability factor/endothelial growth factor (VPF/VEGF):accumulation and expression in human synovial fluids and rheumatoid synovial tissue[J].J Exp Med,1994,180(1):341-346.
[28] Bouleti C,Mathivet T,Coqueran B,etal.Protective effects of angiopoietin-like 4 on cerebrovascular and functional damages in ischaemic stroke[J].Eur Heart J,2013,34(47):3657-3668.
[29] Tao T,Liu Y,Zhang J,etal.Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model[J].Brain Res,2013,1533:52-62.
[30] Shen F,Su H,Fan Y,etal.Adeno-associated viral vector-mediated hypoxia-inducible vascular endothelial growth factor gene expression attenuates ischemic brain injury after focal cerebral ischemia in mice[J].Stroke,2006,37(10):2601-2606.
[31] Kim I,Kim HG,So JN,etal.Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway[J].Circ Res,2000,86(1):24-29.
[32] Harjes U,Bensaad K,Harris AL.Endothelial cell metabolism and implications for cancer therapy[J].BrJ Cancer,2012,107(8):1207-1212.
[33] Xiao H,Gu Z,Wang G,etal.The possible mechanisms underlying the impairment of HIF-1α pathway signaling in hyperglycemia and the beneficial effects of certain therapies[J].Int J Med Sci,2013,10(10):1412.