高萬里,王宗秀,王對興,李春麟
1.中國地質科學院地質力學研究所/中國地質科學院頁巖油氣評價重點實驗室,北京 1000812.中國地質大學(北京)地球科學與資源學院,北京 1000833.石家莊經濟學院資源學院,石家莊 050031
浙東南晚中生代花崗巖的鋯石U-Pb年代學、地球化學及其地質意義
高萬里1,王宗秀1,王對興2,3,李春麟1
1.中國地質科學院地質力學研究所/中國地質科學院頁巖油氣評價重點實驗室,北京 1000812.中國地質大學(北京)地球科學與資源學院,北京 1000833.石家莊經濟學院資源學院,石家莊 050031
浙東南地區(江紹斷裂帶東南)是位于華南東北部瀕太平洋的沿海地區,是理解古太平洋板塊俯沖作用的重要地區。本次研究選取巖坦、梁弄、新鋪3個典型的巖體進行巖相學、鋯石年代學和地球化學研究,并結合前人對該地區花崗巖體的研究結果,探討古太平洋板塊俯沖與巖漿活動之間的關系。LA-ICP-MS鋯石U-Pb定年結果顯示:新鋪花崗巖的年齡為(145.8±1.4) Ma,表明浙東南地區晚侏羅世仍存在巖漿活動的記錄;梁弄花崗巖和巖坦花崗巖的形成時代分別為(106.2±1.4)和(94.7±1.4) Ma,代表早白堊世晚期典型的巖漿活動。地球化學特征上,3個巖體均富SiO2、Al2O3,具有高的A/CNK,屬高鉀鈣堿性花崗巖;稀土元素球粒隕石標準化分布型式圖中具顯著的負Eu異常,稀土元素總量偏低;微量元素原始地幔標準化分布型式圖中富集Rb、Cs、U、Th、Pb,虧損Ba、Sr、Nb、Ti,為典型的殼源型花崗巖。結合已有的資料,本次研究表明,新鋪花崗巖形成在由侏羅紀擠壓向白堊紀伸展轉變的構造背景下,梁弄花崗巖和巖坦花崗巖形成在巖石圈減薄的伸展構造背景下,它們形成均受到了古太平洋板塊俯沖作用的影響。
浙東南;晚中生代;花崗巖;LA-ICP-MS;地球化學;古太平洋板塊
中國東南部晚中生代以來發生了大規模的火山活動和巖漿侵入,構成舉世矚目的中生代火山-侵入雜巖帶,是瀕太平洋地區一個宏偉的構造-巖漿帶的組成部分[1]。前人曾對該區大規模巖漿活動的地質背景進行了深入研究,并分別提出了幾種解釋這一巖漿活動的動力學模型,主要分為兩類:板內活動作用,諸如陸陸碰撞模型[2],大陸拉張裂解模型[3-7],地幔柱模型[8-10];古太平洋板塊俯沖模型,包括平板俯沖模型[11-12],俯沖角度變化模型[13-16]。隨著越來越多的地質數據的累積,太平洋板塊俯沖作用逐漸被人們所接受。然而前人所建立的俯沖模型中均認為古太平洋板塊的漂移方向是北西向;孫衛東[17-18]研究則表明,太平洋板塊在地質歷史上曾發生過多次的轉向。其中,在125~140 Ma,其漂移方向顯示為南西向。而且,太平洋洋殼年齡展布(130~170 Ma)也顯現出自北向南逐漸變老的特征[19],顯示太平洋當時漂移方向應該總體向南。因此,古太平洋板塊的俯沖作用與華南晚中生代巖漿活動的關系仍需進一步研究。
浙東南地區(江紹斷裂帶東南)是位于華南東北部瀕太平洋的沿海地區,是理解古太平洋板塊俯沖作用的重要地區。浙東南地區晚中生代巖漿活動的規律可以為理解古太平洋板塊俯沖作用提供關鍵線索。筆者以浙東南地區晚中生代花崗巖為研究對象,在對區內花崗巖已有年齡全面甄別、清理的基礎上,選取區內梁弄、巖坦和新鋪3個巖體進行巖相學、鋯石U-Pb年代學及巖石地球化學研究(取樣位置見圖1)。并結合區內已有的花崗巖數據,探討巖漿活動的構造背景及與古太平洋板塊俯沖之間的關系。
中國東南部出露了較大規模的前震旦紀變質巖層,保留有較多的古構造形跡[20]。其中前震旦紀的變質基底以面狀分布的片巖、片麻巖為主,構成中國東南部最古老的陸殼基底之一,稱為華夏古陸[21]。中生代特別是晚中生代以來,該區發生了大規模的巖漿侵入與火山活動,形成了巨厚的火山沉積地層[6, 13]。除在江紹斷裂帶附近出露少量的元古宙基底之外,區內大部分為晚中生代火山沉積巖所覆蓋,巖性以流紋巖、凝灰巖為主,有少量的玄武巖、安山巖等中基性巖;晚中生代侵入巖主要以花崗巖類為主,中基性巖主要以包體的形式出現。同時區內零星分布一些晚白堊世-新生代的盆地。
巖坦巖體位于永嘉縣巖坦鎮,巖體出露面積約56 km2。巖體主要侵位于上侏羅統諸暨組與黃山組中。前人的區域地質調查中,認為其屬于燕山晚期第三階段巖漿侵入的產物。巖性主要為鉀長花崗巖與正長花崗巖。樣品DY11-79采自巖坦鎮,坐標為N28°27′05″,E120°43′22″。巖性為細中粒正長花崗巖,細中粒花崗結構,局部文象結構,塊狀構造。巖石由斜長石、鉀長石、石英、黑云母組成。斜長石呈半自形板狀,雜亂分布,粒度一般為0.2~2.0 mm,少部分為2.0~5.0 mm;核部多具絹云母化、硅化、不均勻高嶺土化等,少見環帶構造。鉀長石呈他形粒狀,雜亂分布,粒度一般為2.0~5.0 mm,少部分為0.2~2.0 mm;具高嶺土化等,晶內嵌布少量斜長石等小包體,部分與石英呈文象狀交生。石英呈他形粒狀,填隙狀分布,粒度一般為0.2~2.0 mm,少部分為2.0~3.0 mm;黑云母呈葉片狀、星散狀分布,粒度一般為0.15~1.5 mm,少部分綠泥石化(圖2a、b)。
梁弄巖體位于余姚縣梁弄鎮,受北北東向斷裂的控制,為一個由燕山晚期和喜馬拉雅期花崗巖構成的復合巖體,面積88.19 km2。巖體侵入于下白堊統和上侏羅統中,又被上新統嵊縣群玄武巖所覆蓋。樣品DY11-137采自梁弄鎮,采樣坐標為N29°45′54″,E120°59′36″,為燕山晚期侵入巖。巖性為灰白色石英閃長巖,塊狀構造,中粒等粒結構,礦物成分主要為斜長石(55%~65%)、角閃石(15%~25%)、鉀長石(10%)、石英(5%)(圖2c、d)。
新鋪巖體位于遂昌縣北部雙溪口鎮新鋪村,呈北東向展布。該處為燕山早晚期侵入巖構成的復合巖體,巖體北部侵入到元古宙八都群中,南部為蘇村晶洞鉀長花崗巖侵入。樣品DY11-158采自新鋪巖體的北部,采樣坐標為N28°47′17″,E119°19′24″。巖性為斑狀鉀長花崗巖,巖石主要由斑晶和基質組成,斑晶主要為鉀長石,粒度大小為0.5 mm左右,體積分數約15%;基質主要為長英質礦物(圖2e、f)。
鋯石按常規方法分選,最后在雙目鏡下挑純;將分選鋯石用雙面膠粘在載玻片上,罩上PVC環,然后將環氧樹脂和固化劑進行充分混合后注入PVC環中,待樹脂充分固化后,將樣品靶從載玻片上剝離,并對其進行打磨和拋光;然后對靶上的樣品進行反射光和透射光照相,以及陰極發光(CL)照相(圖3)。3個花崗巖樣品的CL圖像分析均在中國地質科學院國土資源部成礦作用與資源評價重點實驗室完成。鋯石的Th、U、Pb同位素分析在國土資源部成礦作用與資源評價重點實驗室采用激光燒蝕電感耦合等離子質譜儀(LA-MC-ICP-MS)完成。采用的儀器、相關參數及測試流程參見文獻[22]。分析結果應用ICPMSDatacal程序[23]和Ludwig的Isoplot程序進行數據處理[24],并采用208Pb校正法進行普通鉛校正[25]。實驗分析結果見表1,測試數據的誤差均為1σ。
進行定年的鋯石以透明為主,局部半透明,裂紋不發育,無核或核部小。從鋯石CL圖像(圖3)上可以看出,3個巖體鋯石多為長柱狀晶體,長寬比為1∶1至3∶1,顆粒大小為80~215 μm,鋯石的Th/U為0.71~2.99。CL圖像顯示較弱,部分鋯石發育鋯石核,呈現典型的核幔結構。所有樣品均發育典型的振蕩環帶結構,顯示鋯石均為典型的巖漿鋯石。測點都選擇在韻律環帶結構清晰的部位,盡可能避開核部。本次研究中,主要根據206Pb/238U來確定巖體的形成時間。所有鋯石U-Pb年代學測定結果列于表1,圖3為年齡諧和圖。
巖坦正長花崗巖(DY11-79)鋯石Th/U為1.74~2.99,13顆鋯石的206Pb/238U表面年齡比較一致,為92.43~101.08 Ma。在協和曲線上,具有較好的群落性,13個測點的206Pb/238U的加權平均年齡為(94.7±1.4)Ma,MSWD=2.9,代表巖體的結晶年齡。
梁弄石英閃長巖(DY11-137)的15顆鋯石進行了同位素分析,除去1個測點可能由于Pb丟失的緣故偏離協和曲線外,其余14個測點均落在協和曲線上,具有較好的群落性。206Pb/238U表面年齡比較一致,為100.00~108.57 Ma,14個測點的206Pb/238U的加權平均年齡為(106.2±1.4)Ma,MSWD=1.4,代表巖體的結晶年齡。
新鋪鉀長花崗巖(DY11-158)的16顆鋯石進行了同位素分析,除去1個測點明顯偏離協和曲線外,其余15個測點均具有較好的群落性。206Pb/238U表面年齡比較一致,為140.51~150.10 Ma,15個測點的206Pb/238U加權平均年齡為(145.8±1.4)Ma,MSWD=0.84,代表巖體的結晶年齡。

圖1 浙東南花崗巖分布圖及取樣點位置圖Fig.1 Map of granite distribution and sample location in southeastern Zhejiang

a、b.巖坦正長花崗巖;c、d.梁弄石英閃長巖;e、f.新鋪斑狀鉀長花崗巖。圖2 樣品的顯微特征照片Fig.2 Photomicrographs of the samples

圖3 代表性鋯石陰極發光圖像與鋯石U-Pb年齡協和圖Fig.3 Representative zircon CL images with analyzed spots and zircon U-Pb concordia diagram

點位wB/10-6ThUTh/U同位素比值207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ年齡/Ma207Pb/206Pb206Pb/238UDY11-7979.1146.5277.011.900.04900.00250.09880.00510.01460.0003150.09±115.7393.59±1.7979.251.6629.721.740.05640.00520.11720.01340.01500.0005477.82±202.696.02±3..2179.3220.84119.481.850.04830.00400.10200.00930.01440.0001122.31±175.992.43±0.7179.497.5942.922.270.04710.00420.09900.00900.01530.000453.80±196.2797.95±2.5079.5223.65114.171.960.05330.00260.11190.00540.01530.0003338.95±111.197.77±1.9879.6629.93249.592.520.05140.00100.10540.00280.01490.0002261.18±46.2995.17±1.2079.7389.70194.932.000.04760.00140.09650.00300.01470.000179.72±68.5194.29±0.7679.8140.6249.062.870.05230.00300.10490.00610.01460.0003298.21±134.2493.55±1.7279.9149.7565.042.300.04860.00250.10580.00640.01580.0004127.87±72.22101.08±2.8079.10382.18212.361.800.05280.00180.10790.00270.01490.0002320.43±79.6295.23±1.4379.11299.51100.172.990.04870.00150.10270.00320.01530.0002200.08±74.9998.16±1.4879.12118.8966.311.790.04820.00340.09860.00830.01480.0005109.35±224.0494.64±3.4779.1368.6933.352.060.04650.00340.10040.00730.01570.000333.43±157.39100.51±2.00DY11-137137.159.9143.401.380.05130.00460.11070.01000.01570.0004253.77±211.09100.22±2.29137.246.5631.041.500.05580.00620.12870.01790.01670.0010442.64±251.82106.54±6.50137.368.8559.691.150.05330.00470.11860.00990.01640.0007342.65±199.98104.64±4.50137.4102.4083.331.230.04770.00120.10430.00280.01600.000283.43±61.11102.10±1.55137.568.5453.921.270.05200.00250.12060.00580.01700.0004287.10±107.39108.47±2.49137.6106.4981.691.300.05020.00150.11650.00350.01690.0003211.19±100.91108.25±1.69137.759.9360.171.000.05430.00340.11500.00880.01560.0008388.94±140.73100.00±5.28137.861.8353.571.150.05120.00280.11670.00590.01660.0003250.07±125.91106.32±1.87137.9154.69110.431.400.05130.00120.11790.00320.01670.0003253.77±53.69106.79±1.65137.10184.63162.511.140.04880.00090.11170.00240.01670.0003138.98±42.59106.50±1.66137.11320.18149.362.140.05210.00090.12110.00200.01700.0002287.10±34.36108.57±1.22137.1257.3648.861.170.04830.00180.11140.00430.01670.0002122.31±85.18106.86±1.50137.1373.4449.051.500.05950.00330.12880.00800.01590.0006583.36±122.21101.57±3.93137.14116.3167.641.720.05130.00170.11660.00410.01650.0002253.77±75.91105.64±1.44137.1592.0285.681.070.05020.00180.11560.00580.01660.0004211.19±81.47106.35±2.69DY11-158158.1152.69172.180.890.05130.00060.15830.00300.02240.0004253.77±27.28143.00±2.22158.237.6750.180.750.05150.00130.16690.00550.02360.0005261.18±54.62150.10±3.43158.3139.9373.361.910.04820.00110.15250.00400.02300.0004122.31±51.85146.50±2.74158.439.2338.641.020.05090.00200.16240.00700.02320.0006238.96±88.88147.87±3.58158.5255.61286.990.890.04890.00270.15310.02050.02250.0018142.68±162.02143.56±11.39

表1(續)
將全巖地球化學樣品破碎成<1 cm的巖屑,從中挑選出200 g新鮮無蝕變、無晚期巖脈的巖屑,用1 mol/L的HCl溶液浸泡,去除表面污染,然后用去離子水反復洗凈,烘干,用剛玉板小型鄂式破碎機細碎,最后用瑪瑙球磨機磨至約200目。樣品的主要元素及痕量元素(稀土元素除外)在中國地質科學院地球物理與地球化學研究所用X熒光光譜法測定,稀土元素用電感耦合等離子體發射光譜(ICP-AES)測定,輕稀土元素(La、Ce、Pr、Nd、Sm)相對標準誤差RSD<5,重稀土元素(Eu-Lu)相對標準偏差<10%。
3.1 主量元素
主量元素、微量元素如表2所示。3個巖體的花崗巖具有高SiO2、Al2O3、K2O,低MgO、CaO、P2O5特征:w(SiO2)為73.28%~75.79%,w(Na2O+K2O)為8.39%~9.46%;w(K2O)>w(Na2O),K2O/Na2O為1.13~1.57,在圖4a上落入高鉀鈣堿性系列范圍;A/CNK=1.05~1.15,鋁飽和指數高,在圖4b上基本都落入偏鋁質-過鋁質區域,屬于準鋁質或弱過鋁質高鉀鈣堿性花崗巖。
3.2 微量元素特征
由稀土元素球粒隕石標準化分布型式圖(圖5a)可知,3個巖體的稀土元素總量(∑REE)為(183.43~247.24)×10-6,富集輕稀土,LREE/HREE為1.17~6.64,(La/Yb)N=2.09~18.95,其中輕稀土分餾較重稀土更為顯著;(La/Sm)N和(Gd/Yb)N值分別為2.31~7.57和0.65~1.51,銪負異常明顯,其中尤以新鋪花崗巖(δEu=0.07)顯著,指示成巖過程中經歷了明顯的斜長石分離結晶。微量元素原始地幔標準化分布型式圖(圖5b)上,3個巖體基本上富集Rb、Cs、Th、U、Pb,明顯虧損Nb、Ba、Sr、Ti,屬于低Ba、Sr花崗巖。Rb、Ba、Sr、Ti質量分數的變化主要受造巖礦物控制,Rb升高和Sr、Ba的降低是鉀長石和斜長石、黑云母分離結晶造成的,Ti的負異常表明它們經歷了鈦鐵礦的分離結晶作用。
4.1 巖石成因
新鋪、梁弄和巖坦巖體的主量元素特征顯示,它們均為富硅(73.28%~75.79%)、富鋁(12.81%~13.64%)、富堿(w(Na2O+K2O)=8.39%~9.46%),鉀大于鈉(K2O/NaO=1.13~1.57)。稀土元素均呈現“海鷗”式的分配模式,巖坦巖體與梁弄巖體La/Yb=10.08~18.95,比新鋪巖體(La/Yb=2.09)明顯偏高,顯示出更明顯的輕重稀土元素分餾。銪負異常明顯,巖坦巖體及梁弄巖體δEu為0.52~0.54,而新鋪花崗巖δEu=0.07更為顯著,指示其源區有穩定的斜長石存在。微量元素特征為,富集大離子親石元素(Cs、Rb、K),虧損高場強元素(Nb、Ti、P),表明這3個巖體均為高分異I型花崗巖或殼源型花崗巖。

表2 巖坦、梁弄及新鋪花崗巖的主量元素及微量元素成分
注:ALK=w(Na2O)+w(K2O);A/CNK=w(Al2O3)/w(CaO+Na2O+K2O);δEu=(Eu/0.735)/(0.5(Sm/0.195+Gd/0.259));DI為分異指數。主量元素質量分數單位為%,微量元素質量分數單位為10-6。

1-7源自文獻[26-32],8源自本文實測;w(K2O)-w(SiO2)底圖據文獻[33],A/CNK-A/NK底圖據文獻[34]。a.w(K2O)-w(SiO2)圖解; b.A/CNK-A/NK圖解。圖4 浙東南晚中生代花崗質巖石分類圖解Fig.4 Classification diagram for Late Mesozoic granities from southeastern Zhejiang

球粒隕石標準值源自文獻[35],原始地幔標準值源自文獻[36];數據來源同圖4。圖5 浙東南花崗質巖石稀土元素球粒隕石標準化配分圖(a)及原始地幔標準化微量元素蛛網圖(b)Fig.5 Chondrite-normalized REE patterns (a)and primitive mantle normalized element spider diagram(b) for granitic rocks from southeastern Zhejiang

a底圖據文獻[37];b底圖據文獻[38]。圖6 巖坦、新鋪和梁弄巖體的Rb/Ba-Rb/Sr圖解(a)及A/MF-C/MF圖解(b)Fig.6 Rb/Ba-Rb/Sr (a) and A/MF-C/MF (b) diagrams of the Yantan, Xinpu and Liangnong granites
在不相容元素比值上,梁弄巖體Rb/Nb值為17.79,高于巖坦巖體(7.23)和新鋪巖體(6.35),均大于全殼平均值(5.36),表明它們主要為殼源組分熔融形成的。巖坦巖體的Nb/Ta值為16.03,高于新鋪巖體(8.86)和梁弄巖體(9.15),指示其成巖過程中可能有更多的地幔物質參與。關于源區物質成分特征,在Rb/Sr-Rb/Ba圖解上(圖6a),新鋪巖體投影于右上方的富黏土源巖區域內,而梁弄巖體及巖坦巖體投影于砂質源巖區域內;在A/MF-C/MF圖解上(圖6b),它們則落入了變質雜砂巖的部分熔融區域內,而新鋪巖體則落入區域外,這表明新鋪巖體的成巖過程中有更多地殼物質的參與。
4.2 地質意義
鋯石LA-ICP-MS U-Pb年齡分析表明,新鋪鉀長花崗巖的形成時代為(145.8±1.4)Ma,這與廣山巖體花崗斑巖((147.2±1.7)Ma),柵溪巖體黑云母花崗巖((150±2.6)Ma)[39]以及在浙西北發現的淳安開嶺角巖體(151 Ma)和里陳家巖體(148 Ma)[40]等形成時代一致,均屬于晚侏羅世晚期巖漿活動的產物。新鋪花崗巖(145.8±1.4)Ma的年齡表明在浙江東南部燕山期巖漿演化過程中,沒有缺失侏羅紀侵入活動的記錄。此后,位于浙東南地區的蘇村鉀長花崗巖侵位于133 Ma[41],洪公鋁質A型花崗巖侵位于124 Ma[32],均形成在早白堊世伸展構造背景下。而新鋪花崗巖地球化學特征與產于由擠壓向拉張轉變過程中形成的富鉀鈣堿性花崗巖(KCG)特征有相似之處[42];前人大量的地質研究表明,華南乃至整個中國東南部燕山期區域構造經歷了從侏羅紀擠壓到白堊紀拉張的構造環境,伴隨有一系列花崗巖巖漿活動[13, 43-45]。邢光福等[46]通過區域地質構造及地層對比研究認為,華南中生代構造體制轉折結束于晚侏羅世( 149.8~142.3 Ma),這表明新鋪花崗巖可能形成于由擠壓向伸展轉變的過程中。

syn-COLG.同碰撞花崗巖;WPG.板內花崗巖;VAG.火山弧花崗巖;ORG.洋脊花崗巖。底圖據文獻[53];數據來源同圖4。圖7 浙東南晚中生代花崗巖構造環境判別圖Fig.7 Tectonic discrimination diagrams of Late Mesozoic granites from southeastern Zhejiang
梁弄石英閃長巖與巖坦正長花崗巖LA-ICP-MS鋯石U-Pb年代分別為(106.2±1.4)Ma和(94.7±1.4)Ma,與黃巖望海崗巖體[27]、曹門堿性花崗巖體[28]、石平川花崗巖體[30]等形成時代一致,為早白堊世晚期巖漿活動的產物。該時期花崗巖常與A型花崗巖共生,形成特征的I-A型花崗巖體[47],均形成在伸展構造背景下[5]。除了I-A型花崗巖組合之外(如舟山普陀山,桃花島[47],瑤坑堿性花崗巖[31]),該區還發育雙峰式的火山巖(玄武巖-流紋巖)及雙峰式侵入巖(輝長巖-花崗巖),它們共同構成了陸緣伸展型構造火成巖組合[48]。Li[5]的研究表明,該時期形成的花崗巖與巖石圈的幕式減薄有關,地球化學特征顯示出弧巖漿巖的特征,暗示巖石圈的減薄與板塊俯沖有關。
東南沿海地區晚中生代普遍出現A型花崗巖或堿性巖,一系列NNE、NE向的斷裂、盆地的展布,淺成鎂鐵質巖脈的侵入均表明晚中生代中國東南部整體上處在伸展拉張的構造環境下[5-7, 49-51]。但是關于伸展性質仍然存在爭論,目前爭論的焦點在于該時期的伸展屬于板內伸展還是弧后伸展。Li[5]曾指出華南白堊紀鈣堿性巖漿活動與巖石圈伸展引發的減壓熔融作用有關,與俯沖作用無關;Li等[11]用平板俯沖模型來解釋華南1 300 km巖漿活動,提出190~90 Ma的巖漿活動與俯沖板片的塌陷和拆沉作用有關[12]。與此相反,一些學者基于晚中生代巖漿巖帶呈北東走向展布,且巖漿巖年齡有從內陸至沿海逐漸變年輕的趨向這一基本事實[13, 52],提出用古太平洋板塊俯沖來解釋華南晚中生代的巖漿活動,認為中國東南部晚中生代處在活動大陸邊緣的構造環境下。與典型的活動大陸邊緣花崗巖主要落入火山弧花崗巖(VAG)區域不同,浙東南花崗巖在構造環境圖解(圖7)上大多跨越火山弧(VAG)及板內花崗巖(WPG)區域,這一特征與大陸弧后盆地伸展環境下形成的花崗巖相似[54]。Gilder等[4]在研究中國裂谷分布時曾指出,中國東部中生代的伸展環境是伴隨古太平洋板塊向華南大陸之下俯沖消減作用發生的,這一時期的伸展環境主要是由于弧后擴張作用所導致的。毛建仁等[55]認為燕山晚期整個中國東部主要受到庫拉板塊向歐亞大陸北北西向俯沖的太平洋構造體系控制,處于活動大陸邊緣及其弧后擴張盆地的構造環境下;隨著時代的更新,大陸巖石圈不斷伸展-減薄,擴張作用不斷增強,由早期庫拉板塊向歐亞大陸俯沖碰撞-伸展走滑演化為晚期的伸展-裂解。舒良樹等[56]通過對比北美西部與中國東南部盆嶺構造的異同,認為中國東南部與北美西部中、新生代時期均受太平洋構造體制制約,早白堊前后俯沖角度的變化導致弧后進一步伸展塌陷,巖石圈減薄。劉國興等[57]對華南東南沿海地區的巖石圈電性結構研究也發現,東部地殼由于太平洋板塊的俯沖作用發生過劇烈減薄。因此,中國東南部晚中生代花崗巖形成在古太平洋板塊俯沖導致的弧后拉張背景、巖石圈減薄的背景下。
1)新鋪、梁弄和巖坦巖體的主量元素特征顯示,它們均為弱過鋁質-準鋁質的高鉀鈣堿性花崗巖,分異演化程度高(DI=94.58%~97.84%);稀土元素均呈現“海鷗”式的分配模式,銪負異常明顯,富集大離子親石元素(Cs、Rb、K),虧損高場強元素(Nb、Ti、P),表明這3個巖體均為殼源型花崗巖。
2)LA-ICP-MS鋯石U-Pb測年結果表明:新鋪花崗巖年齡為(145.8±1.4)Ma,表明浙東南存在晚侏羅晚期的巖漿活動,其形成于侏羅紀擠壓向白堊紀伸展轉變的構造背景下;梁弄和巖坦花崗巖的結晶年齡分別為(106.2±1.4)Ma和(94.7±1.4)Ma,代表浙東南早白堊世晚期典型的巖漿活動,二者均形成在伸展構造背景下。整體上,新鋪、巖坦和梁弄巖體均形成在古太平洋板塊俯沖影響的巖石圈拉張減薄構造背景下。
[1] 王德滋,周金城. 我國花崗巖研究的回顧與展望[J]. 巖石學報,1999, 15(2): 161-169. Wang Dezi, Zhou Jincheng. Look Back and Look Forward to Granite Research[J]. Acta Petrologica Sinica, 1999, 15(2):161-169.
[2] Hsü K J, Li J, Chen H, et al. Tectonics of South China: Key to Understanding West Pacific Geology[J]. Tectonophysics,1990, 183: 9-39.
[3] Gilder S A, Gill J, Coe R S, et al. Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China[J]. Journal of Geophysical Research,1996, 101(B7): 16137-16154.
[4] Gilder S A, Keller G R, Luo M, et al. Eastern Asia and the Western Pacific Timing and Spatial Distribution of Rifting in China[J]. Tectonophysics,1991, 197: 225-243.
[5] Li X H. Cretaceous Magmatism and Lithospheric Extension in Southeast China[J]. Journal of Asian Earth Sciences,2000, 18: 293-305.
[6] Li X H, Chen Z, Liu D, et al. Jurassic Gabbro-Granite-Syenite Suites from Southern Jiangxi Province, SE China: Age, Origin, and Tectonic Significance[J]. International Geology Review, 2003, 45: 898-921.
[7] Li X H, Li Z X, Li W X, et al. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?[J]. Lithos,2007, 96: 186-204.
[8] 毛景文,王志良. 中國東部大規模成礦時限及其動力學背景的初步探討[J]. 礦床地質,2000, 19(4): 289-296. Mao Jingwen, Wang Zhiliang.Time Limits of Large-Scale Mineralization in East China and Its Dynamic Background[J]. Mineral Deposits,2000, 19(4): 289-296.
[9] 毛建仁,陶奎元,邢光福,等. 中國東南大陸邊緣中新生代地幔柱活動的巖石學記錄[J]. 地球學報, 1999, 20(3): 253-258. Mao Jianren, Tao Kuiyuan, Xing Guangfu, et al. Petrological Records of the Mesozoic-Cenozoic Mantle Plume Tectonics in Epicontinental Area of Southeast China[J]. Acta Geoscientia Sinica, 1999, 20(3): 253-258.
[10] 毛建仁,陶奎元,邢光福,等. 中國南方新生代地幔柱活動的地球化學證據[J]. 地質論評, 1999, 45(增刊1): 698-702. Mao Jianren, Tao Kuiyuan, Xing Guangfu, et al. Geochemical Evidence for Cenozoic Mantle Plume in Southern China[J]. Geological Review,1999, 45(Sup.1): 698-702.
[11] Li Z X, Li X H. Formation of the 1 300 km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model[J]. Geology, 2007, 35: 179-182.
[12] Li Z X, Li X H, Chung S L, et al. Magmatic Switch-on and Switch-Off Along the South China Continental Margin Since the Permian: Transition from an Andean-Type to a Western Pacific-Type Plate Boundary[J]. Tectonophysics, 2012,532/535: 271-290.
[13] Zhou X M, Sun T, Shen W Z, et al. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution[J]. Episodes, 2006, 29: 26-33.
[14] Zhou X M, Li W X. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas[J]. Tectonophysics, 2000, 326: 269-287.
[15] Liu Q, Yu J H, Wang Q, et al. Ages and Geochemistry of Granites in the Pingtan-Dongshan Metamorphic Belt, Coastal South China: New Constraints on Late Mesozoic Magmatic Evolution[J]. Lithos, 2012, 150:268-286.
[16] Liu L, Xu X S, Zou H B. Episodic Eruptions of the Late Mesozoic Volcanic Sequences in Southeastern Zhejiang, SE China: Petrogenesis and Implications for the Geodynamics of Paleo-Pacific Subduction[J]. Lithos, 2012, 154: 166-180.
[17] Sun W D, Ding X, Hu Y H, et al. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific[J]. Earth and Planetary Science Letters, 2007, 262: 533-542.
[18] Sun W D, Yang X Y, Fan W M, et al. Mesozoic Large Scale Magmatism and Mineralization in South China[J]. Lithos, 2012, 150: 1-5.
[19] Ludden J N, Plank T, Larson R, et al. Leg 185 Synthesis: Sampling the Oldest Crust in the Ocean Basins to Understand Earth’s Geodynamic and Geochemical Fluxes[Online][J]. Proc Ocean Drill Program Sci Results,2006, 185: 35.
[20] 鄧平,舒良樹,肖旦紅. 中國東南部晚中生代火成巖的基底探討[J]. 高校地質學報, 2002, 8(2): 169-179. Deng Ping, Shu Liangshu, Xiao Danhong. A Study on the Tectonic Basement of Late Mesozoic Igneous Rocks in Southeastern China[J]. Geological Journal of China Universities, 2002, 8(2): 169-179.
[21] Li X H, Li Z X, Ge W, et al. Neoproterozoic Granitoids in South China: Crustal Melting Above a Mantle Plume at ca. 825 Ma?[J]. Precambrian Research, 2003, 122: 45-83.
[22] 侯可軍,李延河,田有榮. LA-MC-ICP-MS鋯石微區原位U-Pb定年技術[J]. 礦床地質, 2009, 28(4): 481-492. Hou Kejun, Li Yanhe, Tian Yourong. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting LA-MC-ICP-MS[J]. Mineral Deposits, 2009, 28(4): 481-492.
[23] Liu Y, Hu Z, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1): 34-43.
[24] Ludwig K R. User’s Manual for Isoplot/Ex (rev. 2.49): A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Centre Special Publication, 2001.
[25] Andersen T. Correction of Common Lead in U-Pb Analyses that do not Report204Pb[J]. Chemical Geology, 2002, 192: 59-79.
[26] 劉亮,邱檢生,李真. 浙江沐塵石英二長巖及其鎂鐵質包體的鋯石U-Pb年齡和Hf同位素組成:對巖漿混合作用的示蹤[J]. 地質論評, 2011, 57(3): 327-336. Liu Liang, Qiu Jiansheng, Li Zhen. Zircon U-Pb Age and Hf Isotopic Compositions of Quartz Monzonite and Enclosed Mafic Enclaves in Muchen Pluton, Zhejiang Province: Tracing Magma Mixing in Their Petrogenesis[J]. Geological Review, 2011, 57(3): 327-336.
[27] 邱檢生,劉亮,李真. 浙江黃巖望海崗石英正長巖的鋯石U-Pb年代學與Sr-Nd-Hf同位素地球化學及其對巖石成因的制約[J]. 巖石學報, 2011, 27(6): 1557-1572. Qiu Jiansheng,Liu Liang, Li Zhen. Zircon U-Pb Geochronology and Sr-Nd-Hf Isotopic Geochemistry of Quartz Syenite from Wanghaigang Pluton in Huangyan County,Zhejiang Province and Their Implications for Petrogenesis[J]. Acta Petrologica Sinica, 2011, 27(6): 1557-1572.
[28] 李艷軍,魏俊浩,姚春亮,等. 浙東南懷溪銅金礦床與曹門堿性花崗巖體成因關系的年代學制約[J]. 地球科學:中國地質大學學報, 2010, 35(4): 585-596. Li Yanjun, Wei Junhao, Yao Chunliang, et al. Genetic Relationship of the Copper-Gold Deposit and the Caomen Alkaline Granite, Southeastern Zhejiang Province, China: Constraint from Geochronologies[J]. Earth Science:Journal of China University of Geosciences, 2010, 35(4): 585-596.
[29] 董傳萬,沈忠悅,杜振永,等. 浙東晚中生代巖漿混合作用新證據:新昌儒岙巖石包體群的發現與地質意義[J]. 浙江大學學報:理學版, 2009, 36(2): 224-230. Dong Chuanwan, Shen Zhongyue, Du Zhenyong, et al. A New Case of Late Mesozoic Magma Mixing in Eastern Zhejiang: Discovery of the Ru’ao Enclave Swarms, Xinchang County and Its Geological Implication[J]. Journal of Zhejiang University:Science Edition, 2009, 36(2): 224-230.
[30] 李艷軍,魏俊浩,姚春亮,等. 浙東南石平川花崗巖體LA-ICP-MS鋯石U-Pb年代學及構造意義[J]. 地質論評, 2009, 55(5): 673-684. Li Yanjun, Wei Junhao, Yao Chunliang, et al. Zircon U-Pb Dating and Tectonic Significance of the Shipingchuan Granite in Southeastern Zhejiang Province, SE China[J]. Geological Review, 2009, 55(5): 673-684.
[31] 肖娥,邱檢生,徐夕生,等. 浙江瑤坑堿性花崗巖體的年代學、地球化學及其成因與構造指示意義[J]. 巖石學報, 2007, 23(6): 1431-1440. Xiao E, Qiu Jiansheng, Xu Xisheng, et al. Geochronology and Geochemistry of the Yaokeng Alkaline Granitic Pluton in Zhejiang Province: Petrogenetic and Tectonic Implications[J]. Acta Petrologica Sinica, 2007, 23(6): 1431-1440.
[32] 盧成忠,汪慶華,董傳萬,等. 浙江洪公鋁質A型花崗巖類的巖石地球化學及其構造環境[J]. 高校地質學報, 2006, 12(4): 500-506. Lu Chengzhong, Wang Qinghua, Dong Chuanwan, et al. Geochemical Characteristics of the Honggong Aluminous A-Type Granite Pluton in Zhejiang Province and Its Tectonic Setting[J].Geological Journal of China Universities, 2006, 12(4): 500-506.
[33] Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58: 63-81.
[34] Shand S. Eruptive Rocks. Their Genesis, Com-position, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite[M]. New York: John Wiley & Sons,1943.
[35] Boynton W V. Geochemistry of the Rare Earth Elements: Meteorite Studies[C]//Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elservier, 1984: 63-114.
[36] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. London: Geological Society Special Publications, 1989: 313-345.
[37] Sylvester P J. Post-Collisional Strongly Peraluminous Granites[J]. Lithos, 1998, 45(1/2/3/4): 29-44.
[38] Altherr R, Hol A, Hegner E, et al. High-Potassium, Calc-Alkaline I-Type Plutonism in the European[J]. Lithos, 2000, 50: 51-73.
[39] 顧明光,馮立新,胡艷華,等. 浙江紹興地區廣山-柵溪巖體LA-ICP-MS鋯石U-Pb定年:對漓渚鐵礦成礦時代的限定[J]. 地質通報, 2011, 30(8): 1212-1219. Gu Mingguang, Feng Lixin, Hu Yanhua, et al. LA-ICP-MS U-Pb Dating of Zircons from Guangshan and Zhaxi Plutons in Shaoxing Area, Zhejiang Province: Constraint on the Ore-Forming Epoch of the Lizhu Iron Ore Deposit[J]. Geological Bulletin of China, 2011, 30(8): 1212-1219.
[40] 汪建國,汪隆武,陳小友,等. 浙西開嶺腳和里陳家花崗閃長巖鋯石SHRIMP U-Pb年齡及其地質意義[J]. 中國地質, 2010, 37(6): 1559-1565. Wang Jianguo, Wang Longwu, Chen Xiaoyou, et al. SHRIMP U-Pb Ages of Zircons from Kailingjiao and Lichenjia Granodiorites in Western Zhejiang and Their Geological Implications[J].Geology in China, 2010, 37(6):1559-1565.
[41] 王強,趙振華,簡平,等. 華南腹地白堊紀A型花崗巖類或堿性侵入巖年代學及其對華南晚中生代構造演化的制約[J]. 巖石學報, 2005, 21(3): 795-808. Wang Qiang, Zhao Zhenhua, Jian Ping, et al. Geochronology of Cretaceous A-Type Granitoids or Alkaline Intrusive Rocks in the Hinterland, South China: Constraints for Late-Mesozoic Tectonic Evolution[J]. Acta Petrotogica Sinica, 2005, 21(3): 795-808.
[42] Barbarin B. A Review of the Relationships Between Granitoid Types,Their Origins and Their Geodynamic Environments[J]. Lithos, 1999, 46: 605-626.
[43] 張岳橋,徐先兵,賈東,等. 華南早中生代從印支期碰撞構造體系向燕山期俯沖構造體系轉換的形變記錄[J]. 地學前緣,2009, 16(1): 234-247. Zhang Yueqiao, XU Xianbing, Jia Dong, et al. Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic Systemin South China During the Early Mesozoic[J]. Earth Science Froniers, 2009, 16(1):234-247.
[44] 余心起,吳淦國,舒良樹,等. 白堊紀時期贛杭構造帶的伸展作用[J]. 地學前緣, 2006, 13(3): 31-43. Yu Xinqi, Wu Ganhuo, Shu Liangshu, et al. The Cretaceous Tectonism of the Gan-Hang Tectonic Belt, Southeastern China[J]. Earth Science Froniers, 2006, 13(3):31-43.
[45] 余心起,吳淦國,張達,等. 中國東南部中生代構造體制轉換作用研究進展[J]. 自然科學進展, 2005, 15(10): 17-24. Yu Xinqi, Wu Ganguo, Zhang Da, et al. Progress in Researching into the Mesozoic Tectonic Regime Transformation in Southeast China[J]. Progress in Natural Science, 2005, 15(10): 563-572.
[46] 邢光福,盧清地,陳榮,等. 華南晚中生代構造體制轉折結束時限研究:兼與華北燕山地區對比[J]. 地質學報, 2008, 82(4): 451-463. Xing Guangfu, Lu Qingdi, Chen Rong, et al. Study on the Ending Time of Late Mesozoic Tectonic Regime Transition in South China:Comparing to the Yanshan Area in North China[J]. Acta Geologica Sinica, 2008, 82(4): 451-463.
[47] 邱檢生,王德滋,Brent I A Mclnnes. 浙閩沿海地區I型-A型復合花崗巖體的地球化學及成因[J]. 巖石學報. 1999,15(2): 237-246. Qiu Jiansheng, Wang Dezi, Brent I A McInnes. Geochemistry and Petrogenesis of the I-and A-Type Composite Granitemasses in the Coastal Area of Zhejiang and Fujian Province[J]. Acta Petrologica Sinica, 1999, 15(2): 237-246.
[48] 王德滋,沈渭洲. 中國東南部花崗巖成因與地殼演化[J]. 地學前緣, 2003, 10(3): 209-220. Wang Dezi, Shen Weizhou. Genesis of Granitoids and Crustal Evolution in Southeast China[J]. Earth Science Froniers, 2003, 10(3):209-220.
[49] 李福林,周漢文,唐增才,等. 浙江淳安木瓜基性巖墻群U-Pb年齡、地球化學特征及意義[J]. 地球化學, 2011, 40(1): 22-34. Li Fulin, Zhou Hanwen, Tang Zengcai, et al. U-Pb Ages, Geochemistry and Tectonic Implications of Mafic Dyke Swarms in Mugua, Chun’an County, Zhejiang Province[J]. Chemical Geology, 2011, 40(1): 22-34.
[50] 秦社彩,范蔚茗,郭鋒,等. 浙閩晚中生代輝綠巖脈的巖石成因:年代學與地球化學制約[J]. 巖石學報, 2010, 26(11): 3295-3306. Qin Shechai, Fan Weiming, Guo Feng, et al. Petrogenesis of Late Mesozoic Diabase Dikes in Zhejiang-Fujian Provinces: Constraints from Ar-Ar Dating and Geochemistry[J]. Acta Petrologica Sinica, 2010, 26(11): 3295-3306.
[51] 董傳萬,閆強,張登榮,等. 浙閩沿海晚中生代伸展構造的巖石學標志:東極島鎂鐵質巖墻群[J]. 巖石學報, 2010, 26(4): 1195-1203. Dong Chuanwan, Yan Qiang, Zhang Dengrong, et al. Late Mesozoic Extension in the Coastal Area of Zhejiang and Fujian Province: A Petrologic Indicator from the Dongji Island Mafic Dike Swarms[J]. Acta Petrologica Sinica, 2010, 26(4): 1195-1203.
[52] Chen J F, Jahn B M. Crustal Evolution of Sou-theastern China: Nd and Sr Isotopic Evidence[J]. Tectonophysics, 1998, 284: 101-133.
[53] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4): 956-983.
[54] F?rster H J, Tischendorf G, Trumbull R B. An Evaluation of the Rb vs. (Y+Nb) Discrimination Diagram to Infer Tectonic Setting of Silicic Igneous Rocks[J]. Lithos, 1997, 40: 261-293.
[55] 毛建仁,高橋浩,厲子龍,等. 中國東南部與日本中-新生代構造-巖漿作用對比研究[J]. 地質通報, 2009,28(7):844-856. Mao Jianren, Yutaka Takahashi, Li Zilong, et al. Correlation of Meso-Cenozoic Tectono-Magmatism Between SE China and Japan[J]. Geological Bulletin of China, 2009, 28(7):844-856.
[56] 舒良樹,王德滋. 北美西部與中國東南部盆嶺構造對比研究[J]. 高校地質學報, 2006, 12(1): 1-13. Shu Liangshu, Wang Dezi. A Comparison Study of Basin and Range Tectonics in the Western North America and Southeastern China[J]. Geological Journal of China Universities, 2006, 12(1):1-13.
[57] 劉國興,韓凱,韓江濤. 華南東南沿海地區巖石圈電性結構[J]. 吉林大學學報:地球科學版,2012,42 (2): 536-544. Liu Guoxing, Han Kai, Han Jiangtao. Lithosphere Electrical Structure in Southeast Coastal Region, South China[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(2): 536-544.
Zircon U-Pb Geochronology, Geochemistry of Late-Mesozoic Granite in Southeastern (SE) Zhejiang Province and Its Tectonic Implication
Gao Wanli1, Wang Zongxiu1, Wang Duixing2,3, Li Chunlin1
1.Institute of Geomechanics,Key Lab of Shale Oil and Gas Geological Survey/ Chinese Academy of Geological Science, Beijing 100081,China2.School of Earth Science and Resources, China University of Geosciences,Beijing 100083,China3.School of Resources, Shijiazhuang University of Economics,Shijiazhuang 050031,China
The southeastern (SE) Zhejiang (southeast side of the Jiangshan-shaoxing fault) situated in coastal area of the Pacific Ocean, is an important area to understand the subduction of the Paleo-Pacific plate. Yantan, Xinpu and Liangnong plutons in SE Zhejiang are chosen for petrography, zircon geochronology and geochemistry study. Combined with previous research results of the granite in this area,the authors discuss the relationship between the subduction of the Paleo-Pacific plate and magmatism. LA-ICP-MS zircon U-Pb dating results show that the Xinpu granite has an crystallization age of (145.8±1.4) Ma, and emplaced in the first stage of Early Cretaceous in SE Zhejiang Province, and the Liangnong granodiorite and Yantan syenogranite, with emplacement ages of (106.2 ± 1.4) and (94.7 ±1.4) Ma, respectively, were resulted from the Late Cretaceous magmatism. Late Mesozoic granites are charactered by such geochemical characteristics as enrichment of SiO2, Al2O3, and high ratio of A/CNK, which indicates the granite belongs to the high-K calc-alkaline granite. In the primitive mantle-normalized distribution patterns, these granitic rocks are enriched in Rb, Cs,U,Th, Pb, and depleted in Ba,Sr, Nb, Ti. Their REE patterns are highly fractionated, strongly negative Eu anomalies and low total REE, which is corcandant with those of the crust-derived granite. The authors also conclude that the Xinpu granite (ca.145.8 ± 1.4 Ma) formed in the tectonic setting shifting from compression in the Late Jurassic to extension in Cretaceous, and Liangnong granite (ca. 106.2 ± 1.4 Ma) and Yantan granite (ca. 94.7 ± 1.4 Ma) are formed in the extensional dynamic setting which are all influenced by subduction of the Paleo-Pacific plate.
southeastern Zhejiang; Late-Mesozoic; granite; LA-ICP-MS; geochemistry; Paleo-Pacific plate
10.13278/j.cnki.jjuese.201403112.
2013-09-25
中國地質調查局地質大調查項目 (1212011121068)
高萬里(1985-),男,博士研究生,主要從事巖石大地構造方面研究,E-mail:gwanli851202@163.com
王宗秀(1959-),男,研究員,主要從事構造地質方面研究,E-mail:wzxmail@vip.sina.com。
10.13278/j.cnki.jjuese.201403112
P588.12
A
高萬里,王宗秀,王對興,等.浙東南晚中生代花崗巖的鋯石U-Pb年代學、地球化學及其地質意義.吉林大學學報:地球科學版,2014,44(3):861-875.
Gao Wanli, Wang Zongxiu, Wang Duixing,et al. Zircon U-Pb Geochronology, Geochemistry of Late-Mesozoic Granite in Southeastern(SE) Zhejiang Province and Its Tectonic Implication.Journal of Jilin University:Earth Science Edition,2014,44(3):861-875.doi:10.13278/j.cnki.jjuese.201403112.