許馨月 葉雪梅 陳柏松
摘 要: 為了深入探討車載網絡協議IEEE 802.11p的特性,首先對該協議的物理層、媒體控制訪問層及其幀結構進行了詳細介紹,然后從工作頻率、傳輸速率及最大功耗等方面與其他短距離無線通信技術進行對比分析,最后歸納出車載網絡協議IEEE 802.11p作為一項新的協議標準,在車載網絡的實際應用中有著區別于其他無線通信技術的特有優勢。因此,對該協議的突破性研究,將有助于車載網絡技術在智能交通系統領域走向實用,既具有一定的理論意義,又具有重要的應用前景。
關鍵詞: 智能交通系統; IEEE 802.11p; 無線通信技術; 車載自組網
中圖分類號: TN919?34; TP393 文獻標識碼: A 文章編號: 1004?373X(2014)10?0086?03
Abstract:In order to further investigate the characteristics of IEEE 802.11p protocol for vehicular networks, first of all, the physical layer, media access control layer and its frame structure are described in detail, and then the working frequency, transmission rate and maximum power consumption of the protocol are compared with those of other short distance wireless communication technologies. Finally, as a new protocol standard, IEEE 802.11p protocol for vehicular networks has a unique advantage from other wireless communication technologies. Therefore, the breakthrough research of the protocol will help vehicular network technologies to move towards practical application for sure in the field of intelligent transportation system, and has the theoretical significance and application prospect.
Keywords: intelligent transportation system; IEEE 802.11p; wireless communication technology; vehicular Ad hoc network
0 引 言
IEEE 802.11p協議(又稱WAVE),是由IEEE 802.11標準擴充的無線局域網標準,應用于智能交通系統(ITS)中,極大地促進了車載通信(DSRC)[1?2]發展。IEEE 802.11p在物理(PHY)層和媒體控制訪問(MAC)層上規范了下半層標準,與IEEE 1609系列標準共同組成了車載環境下無線接入WAVE協議棧。
當前,802.11p的研究逐漸深入,好幾類草案[3?5]標準相繼提出,其中應用最廣泛的是2010年美國發布的IEEE 802.11p標準[6]。
1 IEEE 802.11p協議標準
1.1 IEEE 802.11p物理層特性
IEEE 802.11p協議的物理層是由IEEE802.11a標準擴展而來,采用正交頻分復用(OFDM)技術。
OFDM技術是一種高速多載波傳輸技術,應用于無線環境下。這種技術的特點是各子信道相互正交并各由一個子載波調制,各子載波并行傳輸,保證了頻譜的重疊性,降低了子載波間的互干擾性,增加了頻譜利用率,有效抑制了無線信道的時間彌散帶來的相互干擾。
IEEE 802.11p的工作頻率在5.9 GHz附近,頻譜總帶寬由7個10 MHz的信道和一個5 MHz的安全邊界(圖中最左邊部分)組成,如圖1所示[7]。其中,信道Ch172和Ch184用于交通安全, Ch178為控制信道(CCH),用于與交通安全相關的通信、系統控制和高優先級管理,其余信道(Ch174,Ch176,Ch180,Ch182)為業務信道,主要用于傳統網絡應用中,傳送非安全性的消息等。
1.2 IEEE 802.11p MAC層特性
2.1 藍牙技術
藍牙[10]是一種支持設備短距離通信的無線個人網絡傳輸(WPAN)應用,能在眾多移動設備之間進行無線信息交換,進而提供一個全世界通行的無線傳輸環境。其載頻選用在全球都可用的2.45 GHz ISM頻帶,數據速率為1 Mb/s,收/發信機采用跳頻擴譜(FHSS)技術,使用IEEE 802.15協議。與其他工作在相同頻段的系統相比,藍牙調頻更快,數據包更短,從而系統更穩定。
2.2 Wi?Fi技術
Wi?Fi[9]技術的工作頻率包括2.4 GHz和5 GHz,速率可達1 Mb/s或2 Mb/s,采用16 MHz的直接序列擴頻(DSSS),作為OFDM調制技術的一個補充。為了抵抗噪聲干擾,Wi?Fi技術在MAC層采用ARQ糾錯與OFDM正交頻分復用技術。對于共享頻帶引發的干擾,Wi?Fi采取發射功率控制技術來抵抗。
相較藍牙,Wi?Fi技術的無線電波的覆蓋范圍更廣,傳輸速度更快。在數據安全性上,Wi?Fi采用的WPA2(數據加密和身份認證標準)相對藍牙的AES?128CCM加密算法更為有力。
2.3 ZigBee技術
ZigBee[10]技術的工作頻率為2.4 GHz,基本速率達到250 Kb/s,采用跳頻技術。ZigBee比藍牙更簡單,速率慢且功率及費用低,可靠性高,應用廣泛。此外,ZigBee技術可實現254個節點聯網,能更好地滿足人們對電子娛樂游戲、家庭自動化應用等需求。
2.4 幾種短距離無線通信技術的特點比較
ZigBee是以監控為明確目標的無線傳感器網絡應用標準,由藍牙發展而來,卻表現出更精簡的功能,速率相對更慢,功率及費用也更低,且大多數時間處于睡眠模式,更適用于工業控制和監控領域這些不需要實時傳輸或連續更新的場合。藍牙的跳頻技術使得無線鏈路自身具備了更高的安全性和抗干擾能力。而Wi?Fi在傳輸速率、可靠性、可移動性上更占優勢。
這3種技術及IEEE 802.11p標準在很大程度上是互補的,其中前3種技術都使用工業、科學和醫用的頻帶。相較而言,從傳輸速度、無線電波覆蓋范圍及行車具體動態變化的環境考慮,IEEE 802.11p的應用更適合室外高速移動的車輛環境,滿足在車載網絡[11]中對無線局域網的要求。
3 結 語
IEEE 802.11p協議在汽車通信[12?13]方面的巨大優勢將推動其發展和應用,在智能交通系統中,存在巨大的商用價值和使用價值。相較其他無線通信技術,應用IEEE 802.11p標準可使得熱點間切換更先進、更支持移動環境、增強了安全性、加強了身份認證等,保證在迅速變化的環境下運行和交換信息。
參考文獻
[1] LOCHERT C, SCHEUERMANN B, WEWETZER C, et a1. Data aggregation and roadside unit placement for a VANET traffic information system [C] // Proceedings of the Fifth ACM International Workshop on Vehicular Inter?NET working. New York: ACM, 2008: 58?65.
[2] Anon. Definition of vehicular ad?hoc network [EB/OL]. [2013?01?07]. http://www. en.wikipedia.org/wiki/Vehicular_ad?hoc_network.
[3] IEEE. IEEE P802.11pTM/D1.1. draft amendment to standard for information technology?telecommunications and information exchange between systems?LAN/MAN specific requirements, part11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications: wireless access in vehicular environments [R]. USA: IEEE, 2005.
[4] IEEE. IEEE P802.11pTM/D3.0. draft standard for information technology?telecommunications and information exchange between systems? local and metropolitan area networks?specific requirements, part11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 7: wireless access in vehicular environments [R]. USA: IEEE, 2007.
[5] IEEE. IEEE P802.11pTM/D10.0. draft standard for information technology? telecommunications and information exchange between systems?local and metropolitan area networks?specific requirements, part11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 7: wireless access in vehicular environments [R]. USA: IEEE, 2010.
[6] IEEE. IEEE P802.llpTM/D10.0. IEEE 802.11 working group of the IEEE 802 committee [R]. USA: IEEE, 2010.
[7] IEEE P802.11pTM/D10.0. draft standard for information technology?telecommunications and information exchange between systems?local and metropolitan area networks?specific requirements?part11:wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 7: wireless access in vehicular environments [R]. USA:IEEE, 2010.
[8] BILSTRUP K, UHLEMANN E, STROM E G. Evaluation of the IEEE 802.11p MAC method for vehicle?to?vehicle communication [C]// IEEE 68th Vehicular Technology Conference. [S.l.]: IEEE, 2008: 21?24.
[9] 孫弋.短距離無線通信及組網技術[M].西安:西安電子科技大學出版社,2008.
[10] 原羿,蘇鴻根.基于ZigBee技術的無線網絡應用研究[J].計算機應用與軟件,2004,21(6):11?15.
[11] 常促宇,向勇,史美林.車載自組網的現狀與發展[J].通信學報,2007,28(11):116?126.
[12] TOOR Y, MUHLETHALER P, LAOUITI A. Vehicle Ad hoc networks: applications and related technical issues [J]. IEEE Communications Surveys&Tutorials, 2008, 10(3): 74?88.
[13] 魏李琦,肖曉強,陳穎文,等.基于相對速度的802.11p車載網絡自適應退避算法[J].計算機應用研究,2011,28(10):3878?3880.
2.3 ZigBee技術
ZigBee[10]技術的工作頻率為2.4 GHz,基本速率達到250 Kb/s,采用跳頻技術。ZigBee比藍牙更簡單,速率慢且功率及費用低,可靠性高,應用廣泛。此外,ZigBee技術可實現254個節點聯網,能更好地滿足人們對電子娛樂游戲、家庭自動化應用等需求。
2.4 幾種短距離無線通信技術的特點比較
ZigBee是以監控為明確目標的無線傳感器網絡應用標準,由藍牙發展而來,卻表現出更精簡的功能,速率相對更慢,功率及費用也更低,且大多數時間處于睡眠模式,更適用于工業控制和監控領域這些不需要實時傳輸或連續更新的場合。藍牙的跳頻技術使得無線鏈路自身具備了更高的安全性和抗干擾能力。而Wi?Fi在傳輸速率、可靠性、可移動性上更占優勢。
這3種技術及IEEE 802.11p標準在很大程度上是互補的,其中前3種技術都使用工業、科學和醫用的頻帶。相較而言,從傳輸速度、無線電波覆蓋范圍及行車具體動態變化的環境考慮,IEEE 802.11p的應用更適合室外高速移動的車輛環境,滿足在車載網絡[11]中對無線局域網的要求。
3 結 語
IEEE 802.11p協議在汽車通信[12?13]方面的巨大優勢將推動其發展和應用,在智能交通系統中,存在巨大的商用價值和使用價值。相較其他無線通信技術,應用IEEE 802.11p標準可使得熱點間切換更先進、更支持移動環境、增強了安全性、加強了身份認證等,保證在迅速變化的環境下運行和交換信息。
參考文獻
[1] LOCHERT C, SCHEUERMANN B, WEWETZER C, et a1. Data aggregation and roadside unit placement for a VANET traffic information system [C] // Proceedings of the Fifth ACM International Workshop on Vehicular Inter?NET working. New York: ACM, 2008: 58?65.
[2] Anon. Definition of vehicular ad?hoc network [EB/OL]. [2013?01?07]. http://www. en.wikipedia.org/wiki/Vehicular_ad?hoc_network.
[3] IEEE. IEEE P802.11pTM/D1.1. draft amendment to standard for information technology?telecommunications and information exchange between systems?LAN/MAN specific requirements, part11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications: wireless access in vehicular environments [R]. USA: IEEE, 2005.
[4] IEEE. IEEE P802.11pTM/D3.0. draft standard for information technology?telecommunications and information exchange between systems? local and metropolitan area networks?specific requirements, part11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 7: wireless access in vehicular environments [R]. USA: IEEE, 2007.
[5] IEEE. IEEE P802.11pTM/D10.0. draft standard for information technology? telecommunications and information exchange between systems?local and metropolitan area networks?specific requirements, part11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 7: wireless access in vehicular environments [R]. USA: IEEE, 2010.
[6] IEEE. IEEE P802.llpTM/D10.0. IEEE 802.11 working group of the IEEE 802 committee [R]. USA: IEEE, 2010.
[7] IEEE P802.11pTM/D10.0. draft standard for information technology?telecommunications and information exchange between systems?local and metropolitan area networks?specific requirements?part11:wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 7: wireless access in vehicular environments [R]. USA:IEEE, 2010.
[8] BILSTRUP K, UHLEMANN E, STROM E G. Evaluation of the IEEE 802.11p MAC method for vehicle?to?vehicle communication [C]// IEEE 68th Vehicular Technology Conference. [S.l.]: IEEE, 2008: 21?24.
[9] 孫弋.短距離無線通信及組網技術[M].西安:西安電子科技大學出版社,2008.
[10] 原羿,蘇鴻根.基于ZigBee技術的無線網絡應用研究[J].計算機應用與軟件,2004,21(6):11?15.
[11] 常促宇,向勇,史美林.車載自組網的現狀與發展[J].通信學報,2007,28(11):116?126.
[12] TOOR Y, MUHLETHALER P, LAOUITI A. Vehicle Ad hoc networks: applications and related technical issues [J]. IEEE Communications Surveys&Tutorials, 2008, 10(3): 74?88.
[13] 魏李琦,肖曉強,陳穎文,等.基于相對速度的802.11p車載網絡自適應退避算法[J].計算機應用研究,2011,28(10):3878?3880.
2.3 ZigBee技術
ZigBee[10]技術的工作頻率為2.4 GHz,基本速率達到250 Kb/s,采用跳頻技術。ZigBee比藍牙更簡單,速率慢且功率及費用低,可靠性高,應用廣泛。此外,ZigBee技術可實現254個節點聯網,能更好地滿足人們對電子娛樂游戲、家庭自動化應用等需求。
2.4 幾種短距離無線通信技術的特點比較
ZigBee是以監控為明確目標的無線傳感器網絡應用標準,由藍牙發展而來,卻表現出更精簡的功能,速率相對更慢,功率及費用也更低,且大多數時間處于睡眠模式,更適用于工業控制和監控領域這些不需要實時傳輸或連續更新的場合。藍牙的跳頻技術使得無線鏈路自身具備了更高的安全性和抗干擾能力。而Wi?Fi在傳輸速率、可靠性、可移動性上更占優勢。
這3種技術及IEEE 802.11p標準在很大程度上是互補的,其中前3種技術都使用工業、科學和醫用的頻帶。相較而言,從傳輸速度、無線電波覆蓋范圍及行車具體動態變化的環境考慮,IEEE 802.11p的應用更適合室外高速移動的車輛環境,滿足在車載網絡[11]中對無線局域網的要求。
3 結 語
IEEE 802.11p協議在汽車通信[12?13]方面的巨大優勢將推動其發展和應用,在智能交通系統中,存在巨大的商用價值和使用價值。相較其他無線通信技術,應用IEEE 802.11p標準可使得熱點間切換更先進、更支持移動環境、增強了安全性、加強了身份認證等,保證在迅速變化的環境下運行和交換信息。
參考文獻
[1] LOCHERT C, SCHEUERMANN B, WEWETZER C, et a1. Data aggregation and roadside unit placement for a VANET traffic information system [C] // Proceedings of the Fifth ACM International Workshop on Vehicular Inter?NET working. New York: ACM, 2008: 58?65.
[2] Anon. Definition of vehicular ad?hoc network [EB/OL]. [2013?01?07]. http://www. en.wikipedia.org/wiki/Vehicular_ad?hoc_network.
[3] IEEE. IEEE P802.11pTM/D1.1. draft amendment to standard for information technology?telecommunications and information exchange between systems?LAN/MAN specific requirements, part11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications: wireless access in vehicular environments [R]. USA: IEEE, 2005.
[4] IEEE. IEEE P802.11pTM/D3.0. draft standard for information technology?telecommunications and information exchange between systems? local and metropolitan area networks?specific requirements, part11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 7: wireless access in vehicular environments [R]. USA: IEEE, 2007.
[5] IEEE. IEEE P802.11pTM/D10.0. draft standard for information technology? telecommunications and information exchange between systems?local and metropolitan area networks?specific requirements, part11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 7: wireless access in vehicular environments [R]. USA: IEEE, 2010.
[6] IEEE. IEEE P802.llpTM/D10.0. IEEE 802.11 working group of the IEEE 802 committee [R]. USA: IEEE, 2010.
[7] IEEE P802.11pTM/D10.0. draft standard for information technology?telecommunications and information exchange between systems?local and metropolitan area networks?specific requirements?part11:wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 7: wireless access in vehicular environments [R]. USA:IEEE, 2010.
[8] BILSTRUP K, UHLEMANN E, STROM E G. Evaluation of the IEEE 802.11p MAC method for vehicle?to?vehicle communication [C]// IEEE 68th Vehicular Technology Conference. [S.l.]: IEEE, 2008: 21?24.
[9] 孫弋.短距離無線通信及組網技術[M].西安:西安電子科技大學出版社,2008.
[10] 原羿,蘇鴻根.基于ZigBee技術的無線網絡應用研究[J].計算機應用與軟件,2004,21(6):11?15.
[11] 常促宇,向勇,史美林.車載自組網的現狀與發展[J].通信學報,2007,28(11):116?126.
[12] TOOR Y, MUHLETHALER P, LAOUITI A. Vehicle Ad hoc networks: applications and related technical issues [J]. IEEE Communications Surveys&Tutorials, 2008, 10(3): 74?88.
[13] 魏李琦,肖曉強,陳穎文,等.基于相對速度的802.11p車載網絡自適應退避算法[J].計算機應用研究,2011,28(10):3878?3880.