999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

閩中裂谷帶梅仙鉛鋅礦區花崗斑巖的LA-ICP-MS鋯石U-Pb年齡、成因及成礦效應

2014-08-02 03:53:29孫洪濤王秋玲雷如雄陳世忠吳昌志
吉林大學學報(地球科學版) 2014年2期

孫洪濤,王秋玲,雷如雄,陳世忠,陳 剛,吳昌志

1.南京大學地球科學與工程學院,南京 210093 2.江蘇省有色金屬華東地質勘查局,南京 210007 3.長安大學地球科學與資源學院,西安 710054 4.中國地質調查局南京地質調查中心,南京 210016

閩中裂谷帶梅仙鉛鋅礦區花崗斑巖的LA-ICP-MS鋯石U-Pb年齡、成因及成礦效應

孫洪濤1, 2,王秋玲1,2,雷如雄3,陳世忠4,陳 剛4,吳昌志1

1.南京大學地球科學與工程學院,南京 210093 2.江蘇省有色金屬華東地質勘查局,南京 210007 3.長安大學地球科學與資源學院,西安 710054 4.中國地質調查局南京地質調查中心,南京 210016

福建梅仙鉛鋅(銀)礦床位于閩中裂谷帶,是一大型多金屬VMS型塊狀硫化物礦床。在詳細野外地質考察基礎上,通過對梅仙鉛鋅(銀)礦區花崗斑巖2個樣品的LA-ICP-MS鋯石U-Pb年代學研究,確定其為燕山期花崗斑巖((148.9±1.4)Ma,(152.0±2.1) Ma)。全巖地球化學分析結果表明:所研究花崗斑巖具有高硅、富鉀、中等含量的鋁和全堿以及弱過鋁質等特征。其稀土元素配分曲線普遍向右緩傾,且重稀土元素分配曲線比較平坦,富集大離子親石元素和高強場元素,不具明顯的Nb、Ta虧損,是產于碰撞后構造背景之下的高鉀鈣堿性I型花崗巖,其母巖漿形成后發生了角閃石、黑云母和斜長石等礦物高程度的的結晶分異作用。梅仙礦區花崗斑巖在空間上與鉛鋅硫化物礦體和賦礦層位關系密切,巖漿富含揮發分和大離子親石元素,分異程度高,表明該燕山中期巖漿活動有利于礦區矽卡巖化成礦作用,并可對早期層控塊狀硫化物礦體進行強烈的疊加改造。

鋯石U-Pb年代學;地球化學;燕山期花崗斑巖;梅仙鉛鋅礦;成礦效應

0 前言

福建梅仙鉛鋅(銀)礦床位于閩中裂谷帶南段,是一大型多金屬火山巖容礦的塊狀硫化物礦床(volcanogenic massive sulfide deposit,VMS型)。該礦床發現于20世紀50年代,并于近年來取得找礦工作的重大進展和突破,陸續在礦區附近發現諸多重要的鉛鋅(銀)產地,使閩中裂谷帶成為具有很大找礦前景的鉛鋅(銀)多金屬成礦帶[1-4]。因此,對于梅仙鉛鋅(銀)礦床的研究不僅具有理論意義,更能帶來重要的經濟價值。該礦床自發現以來,一直備受地質學界的關注,許多學者對其進行了包括礦床地質、礦物學、賦礦變質巖巖石學、成礦物質來源以及礦床成因等方面的研究和探討,并取得了可觀的研究進展[1-2, 4-11]。前人的研究發現,梅仙鉛鋅礦床產于元古宇變質雙峰式火山巖系內,是與裂谷火山活動有關的塊狀硫化物礦床,并經后期熱液疊加改造[2]。但是由于缺乏高精度同位素年齡和地球化學等數據,目前對于礦區內花崗質巖石的形成時代、成巖作用以及與成礦作用的關系還缺乏有效約束,更沒有關于后期熱液疊加改造時間和過程的詳細研究。

筆者在對梅仙鉛鋅(銀)礦區詳細野外地質考察基礎上,通過對梅仙鉛鋅(銀)礦區與成礦關系密切的花崗斑巖的LA-ICP-MS鋯石U-Pb年代學、巖相學、地球化學等多方面研究,試圖探討該礦區花崗質巖石的成巖作用及其與鉛鋅(銀)多金屬成礦作用的相關性,同時為闡明研究區的大地構造背景、構造演化提供新的資料。

1 區域及礦區和礦床地質

閩中裂谷帶地處歐亞大陸東南緣的華南大陸東部福建省中部,大地構造分區屬古華夏構造域,經歷了華夏古陸的形成與裂解、揚子與華夏板塊的碰撞拼合、太平洋板塊與歐亞大陸板塊的相互作用(圖1)。閩中地區分為3個不同時代的構造單元,即政和-南平晉寧期裂陷槽、尤溪-大田一帶晚古生代坳陷區(又稱永梅坳陷帶)、屏南-德化中生代火山斷坳帶。區內地層出露較廣,以元古宇最為廣泛。古元古代麻源群為一套陸源碎屑沉積巖夾少量碳酸鹽巖及中-基性火山巖的深變質(角閃巖相)巖系。中-新元古代馬面山群為一套高綠片巖相-低角閃巖相的火山-沉積巖系,呈“天窗”出露于大范圍分布的侏羅系長林組中,是梅仙式鉛鋅多金屬礦床的重要容礦地層,巖性以變粒巖、片巖為主,夾條帶狀透輝石石英巖、薄層大理巖等。前人研究表明:馬面山群變質火山巖主要形成于大陸裂谷環境拉斑系列為主的雙峰式火山巖;大嶺組原巖夾有基性、酸性“雙峰式”火山巖[4, 12-13]。晚古生代地層零星出露于裂谷帶的南部,中、新生界局限于零星散布并呈帶狀分布。區內燕山期花崗質巖漿侵入活動強烈。

1.江南古陸; 2.閩中裂谷帶; 3.永梅坳陷帶; 4.斷裂; 5.推測斷裂。圖1 閩中裂谷區及鄰區大地構造位置圖(據文獻[1]修編)Fig. 1 Sketch tectonic map of the central Fujian rift and its adjacent area (modified after reference[1])

梅仙鉛鋅礦區位于福建省尤溪縣城北約13 km處,行政區劃屬尤溪縣梅仙鎮管轄。礦區內有丁家山、關兜、謝坑等鉛鋅礦床,地理坐標為東經118°12′02″-118°17′40″,北緯26°12′12″-26°17′07″,面積約35 km2。礦區出露地層主要為中-新元古代馬面山群變質巖和中生代火山-碎屑沉積蓋層。梅仙式鉛鋅銀礦床主要賦存于中-新元古代馬面山群火山-沉積巖系中,層位控制顯著(圖2)。礦區褶皺和斷裂構造十分發育,斷裂構造主要有NE、近EW和近SN向3組,以NE向為主[2]。礦區內燕山期中酸性巖漿侵入活動比較強烈,以呈NE向延伸的巖兜-關兜鉛鋅硫化物礦化帶為邊界,在其南東側和北西側分別出露,總體呈NE向延伸的帶狀或串珠狀產出。

根據礦體的產狀和分布特征,可將礦體分為兩類:一類為嚴格受層位控制的層狀礦體,另一類為接觸交代型礦體。

層狀礦體主要賦存于龍北溪組上段石榴子石綠簾石透輝石巖夾大理巖地層中。該類礦體數量多,規模大,為主要的礦體類型。礦體主要呈似層狀,但礦化富集程度較高的礦體則主要呈透鏡狀、豆莢狀(如Ⅲ-1號礦體)、部分小礦體呈囊狀或巢狀(圖3)。該類型礦體均屬中到大型規模。進一步按走向和傾向分別考察,則單個主礦體走向延伸規模均明顯大于其傾向延伸規模,如Ⅲ-1、Ⅲ-2號礦體,其走向可達大型規模(>800 m),但傾向只達中型規模(200~500 m)。不同礦床的礦體產狀不一,即使是同一礦床,礦體的產狀變化也較大。一般礦層多且穩定,礦體規模大、延伸長、礦石品位較高。丁家山礦床的主礦體長450~1 800 m,延深210~420 m,厚度1.29~25.77 m(圖3), Pb、Zn、Ag平均品位分別為0. 96%、4.21%和40.88×10-6,富礦品位Pb+Zn可大于20%,Ag品位變化大,部分可構成工業礦體。

接觸交代型礦體規模為僅次于層狀礦體的礦化類型,規模相對較小,主要呈似層狀集中產出在震旦系龍北溪組上段中, “含礦層”頂、底板明顯可見穿層現象,單個礦體也具有明顯切層分布的特征(圖4a-d)。

主要的礦石礦物有磁黃鐵礦、閃鋅礦、方鉛礦、黃鐵礦、黃銅礦、磁鐵礦、黝銅礦及銀礦物等;脈石礦物主要為透輝石、綠簾石、陽起石、綠泥石、石英、長石、方解石、磷灰石、石榴子石等。礦石呈塊狀、條帶狀,亦見細脈狀、斑點-斑雜狀構造、浸染狀和團塊狀構造。主要礦石結構為半自形-他形微細粒結構、交代結構、交代包裹結構、固溶體分離乳濁結構、包含結構等。礦床圍巖蝕變普遍,主要為綠簾石化、透輝石化、陽起石化、綠泥石化、絹云母化、硅化、碳酸鹽化等。其中,透輝石化、綠簾石化、硅化和碳酸鹽化與成礦關系最密切。

1.第四系; 2.侏羅系火山巖; 3.石英斑巖; 4.花崗斑巖; 5.大嶺組; 6.龍北溪組中段; 7.龍北溪組上段; 8.礦段范圍; 9.礦體; 10.斷層。圖2 梅仙礦區地質平面圖[2]Fig. 2 Simplified geological map of the Meixian ore deposit[2]

1.上侏羅統長林組;2.龍北溪組上段;3.龍北溪組中段;4.第四紀堆積物;5.礦體及編號;6.勘探線;7.不整合面;8鉆孔位置及編號。圖3 梅仙鉛鋅礦丁家山礦段勘探線縱剖面圖(據文獻[2]修編)Fig. 3 Cross-section map of the Dingjiashan section in the Meixian ore deposit (modified after reference[2])

2 巖體地質和巖相學

研究區內的花崗巖體在西側侏羅系中呈北東向串珠狀產出,規模較大,風化程度低。野外調查可見巖體與圍巖接觸界面上見有硫化物礦化和蝕變現象。本次研究以研究區西側丁家山礦段地表出露的侵入于層狀礦體的花崗斑巖巖株(圖4e)和東側寨頭礦段與矽卡巖有關的花崗斑巖(圖4f)為主要研究對象,對其進行較系統的年代學和地質地球化學研究。西側丁家山礦段地表花崗斑巖巖株受較強的地表風化作用而呈黃褐色(圖4e),而東側寨頭礦段花崗斑巖為坑道所揭露,樣品相對新鮮,局部可見閃長質包體(圖4f)。

花崗斑巖呈淺灰色,塊狀構造,斑狀結構,斑晶主要為石英(30%)、斜長石(20%)、鉀長石(40%)、黑云母(6%)和少量角閃石(3%),基質主要為鉀長石(45%)、石英(35%)和斜長石(15%),副礦物為榍石、磷石、鐵氧化物和少量鋯石。

3 分析測試方法

鋯石分離在河北省區域地質礦產調查研究所實驗室完成。首先將樣品粉碎后經常規的電磁分選和重力分選;然后在雙目鏡下仔細挑選透明、無裂隙和無包裹體之鋯石粘在雙面膠上;再將其用環氧樹脂膠住,待環氧樹脂充分固化后拋光至鋯石露出核部。對拋光后的鋯石進行透射光和反射光顯微照相以及陰極發光圖像分析,以觀察研究鋯石的內部結構和選定最佳的鋯石顆粒進行LA-ICP-MS測年。

陰極發光圖像在西北大學大陸動力學教育部重點實驗室完成,采用安裝有Mono CL3+型(Gatan,U.S.A.)陰極熒光探頭的掃描電鏡(Quanta 400FEG)進行。單顆粒鋯石LA-ICP-MS定年在南京大學內生金屬礦床成礦機制研究國家重點實驗室完成。實驗用Agilent 7500a型ICP-MS,激光剝蝕系統為New Wave UP213。工作參數為:等離子氣體Ar16 L/min,輔助氣體Ar 1 L/min,剝蝕物質載氣He 0.9~1.2 L/min。激光脈沖頻率5 Hz,寬度5 ns,剝蝕孔徑35 μm,剝蝕時間80 s,背景測量時間40 s,脈沖能量為10~20 J/cm。實驗原理和詳細測試方法參見文獻[14]。樣品的同位素比值及元素含量計算采用 GLITTER(ver 4.0,Macquarie University)程序,普通鉛校正采用Andersen[15]的方法進行,年齡及諧和圖的的繪制采用Isoplot3.0[16]軟件完成。

全巖地球化學樣品先經詳細的巖相學觀察,挑選未蝕變的新鮮樣品,將其細碎至200目以上后進行主量和微量元素分析。全巖的氧化物和燒失量(LIO)由南京大學現代分析中心用螢光光譜儀(XRF)分析,分析精度優于5%。微量元素由內生金屬礦床成礦機制研究國家重點實驗室(南京大學)采用Finnigan Element II型高分辨等離子質譜(ICP-MS)完成,測試精度大部分優于5%,總體優于10%。詳細的分析流程參見文獻[17]。

4 分析結果

4.1 鋯石U-Pb年代學

圖5 梅仙礦區花崗斑巖鋯石代表性CL圖像Fig. 5 Cathodoluminescence (CL) images of repre-sentative zircon grains from the porphyry granite in the Meixian deposit

2個鋯石樣品(mx20和mx24)均采自梅仙礦區花崗斑巖(26°14′20″N,118°13′16″E),分選出的鋯石主要呈無色、淺褐色,透明-半透明,自形-半自形,棱柱狀,長度為50~150 μm,長寬比為1∶2~1∶4。陰極發光圖像具有清晰的振蕩環帶結構(圖5),結合其具有高的Th/U值(>0.4),與變質成因鋯石Th/U值(通常小于0.1)明顯不同,而與典型巖漿鋯石具高Th/U 值的特征一致[18-21],表明研究鋯石均為巖漿成因。本文總共對花崗斑巖2個樣品中分選出的40顆鋯石進行了LA-ICP-MS U-Pb年齡測定。測試結果如表 1所示。所得年齡均具有較高的諧和度,位于諧和線上或附近。樣品mx20共23個測點,其中測點mx20-23的諧和度不好,數據沒有使用,其余22個測點諧和年齡給出的206Pb/238U加權平均年齡為(148.9±1.4)Ma (95%的可信度,MSWD=2.2,圖6a);樣品mx24的18個測點諧和年齡給出的206Pb/238U加權平均年齡為(152.0 ±2.1) Ma(95%的可信度,MSWD=3.8,圖6b)。2個年齡在誤差范圍內一致, 可以解釋為巖體形成的年齡, 表明梅仙礦區花崗斑巖形成于約150 Ma,為燕山中期花崗巖。

圖6 梅仙礦區花崗斑巖鋯石U-Pb年齡諧和圖Fig. 6 U-Pb concordia diagram for zircon grains from the porphyry granite in the Meixian deposit

表1 梅仙礦區花崗斑巖鋯石U-Pb測年數據

Table 1 U-Pb dating results for zircons from the porphyry granite in the Meixian deposit

測點Th/U207Pb/206Pb比值1σ207Pb/235U比值1σ206Pb/238U比值1σ207Pb/206Pb年齡/Ma1σ207Pb/235U年齡/Ma1σ206Pb/238U年齡/Ma1σmx20-10.800.059060.001650.184590.004950.022670.000365693217241452mx20-20.740.051110.001270.160630.003870.022790.000342462915131452mx20-30.570.054950.001190.171390.003590.022620.000334102316131442mx20-40.480.052720.000890.165450.002770.022760.000323171715521452mx20-50.660.049490.004510.156910.013790.023020.00069171142148121474mx20-60.730.050070.001180.158860.003630.023010.000341982715031472mx20-70.660.048640.001370.161890.004400.024140.000371313615241542mx20-81.700.052900.001980.174900.006260.023980.000413255016451533mx20-90.720.064380.001550.209600.004850.023610.000367542519341502mx20-100.810.050140.000870.164260.002810.023760.000332011815421512mx20-110.890.058250.002730.187100.008370.023300.000455396417471483mx20-120.790.058460.001270.187620.003960.023280.000355472217531482mx20-131.270.065680.002290.219710.007430.024270.000417964320261553mx20-140.880.052530.000950.168580.003230.023280.000323092115831482mx20-150.940.052170.001060.171610.003680.023860.000352932416131522mx20-160.960.051360.000910.167460.003240.023650.000342572115731512mx20-171.800.067790.002160.213880.006790.022890.000398623819761462mx20-181.130.051490.001170.167230.003880.023560.000332632915731502mx20-190.880.050770.000940.165140.003270.023600.000332302215531502mx20-201.100.050320.002680.160900.008300.023200.000472108215171483mx20-210.770.051390.001780.163980.005570.023150.000372584915451482mx20-220.500.049190.001650.164320.005430.024240.000391574815451542mx20-231.210.071530.001490.246120.005370.024960.000379732222341592mx24-010.630.049240.000820.159580.003070.023510.000361592115031502mx24-020.770.050320.001530.179930.005550.025930.000442104116851653mx24-030.620.049230.001190.164850.004170.024290.000381593115541552mx24-040.820.055210.001100.178990.003920.023510.000374212416731502mx24-050.730.050300.001250.172540.004420.024880.000392093216241582mx24-060.690.049500.001180.166730.004160.024420.000391723015741562mx24-070.870.052800.001660.168350.005300.023130.000393204215851472mx24-080.730.051650.001620.173430.005490.024350.000412704216251553mx24-090.710.052920.001230.166570.004090.022830.000363252915641462mx24-100.650.049810.000860.174060.003350.025340.000371862116331612mx24-110.600.049970.002230.167080.007290.024240.000461946615761543mx24-120.790.052880.000870.173230.003290.023760.000353242016231512mx24-130.970.061140.001540.200700.005120.023810.000366443018641522mx24-140.620.050140.000980.162640.003460.023530.000352012415331502mx24-151.020.051430.001130.164810.003820.023240.000352602715531482mx24-160.880.050830.001140.166710.003980.023790.000372332815731522mx24-170.510.050100.000970.164410.003510.023810.000362002415531522mx24-180.820.051560.001170.167780.003950.023610.000352662815731502

注:mx20為采自丁家山礦段的樣品;mx24為采自寨頭礦段的樣品。

4.2 全巖地球化學特征

梅仙礦區花崗斑巖的主量元素和微量元素數據分析結果列于表2。由分析數據可見,梅仙礦區花崗斑巖具有高的硅含量(w(SiO2)為72.28%~74.27%)和鉀含量(w(K2O)為4.63%~5.02%),中等的鋁含量(w(Al2O3)為12.57%~13.66%)和全堿含量(7.82%~8.11%),而有較低含量的鈦、鐵、錳、鎂等。巖石的分異指數DI為87.20~90.90,說明巖體經歷了較高程度的分異演化。巖石的K2O/Na2O為1.33~1.65,鋁飽和指數ASI為1.02~1.10。主量元素特征指示巖石為弱過鋁質高鉀鈣堿性花崗巖,在w(SiO2)-w(K2O)圖解中,所有的樣品也均落入高鉀鈣堿性巖石區域(圖7)。

圖7 梅仙礦區花崗斑巖w(SiO2)-w(K2O)圖解Fig. 7 w(SiO2)-w(K2O) gram of the porphyry granite in the Meixian deposit

梅仙礦區花崗斑巖的稀土總量(w(∑REE))為(126.8~186.3)×10-6,(La/Yb)N值為1.64~6.84,(La/Sm)N值為3.48~4.04,表明輕稀土相對富集,輕重稀土分異明顯,而重稀土分異不明顯。Eu負異常明顯(Eu/Eu*=0.38~0.74),表明巖石可能經歷了斜長石的分離結晶或源區存在斜長石殘留。在稀土元素球粒隕石標準化配分圖(圖8a)上,樣品總體呈現較明顯的右傾型分配型式(除了樣品mx22),明顯不同于典型S型花崗巖常表現出的“海鷗型”稀土配分型式[22]。微量元素原始地幔標準化蛛網圖示于圖8b。由表2和圖8b 可知,梅仙礦區花崗斑巖總體上富集大離子親石元素(Rb、Th等)、輕稀土元素(La、Ce、Nd等)以及高場強元素(Zr、Hf等),而虧損Ba、Sr、Ti等,明顯不同于典型島弧巖漿巖大離子親石元素富集、高場強元素Nb、Ta等強烈虧損的特征[25]。

表2 梅仙礦區花崗斑巖主量元素和微量元素分析數據

Table 2 Major elements and trace elements analysis results of the porphyry granite in the Meixian deposit

mx17mx18mx19mx21mx22mx23SiO274.1974.2773.7572.9672.2873.15Al2O312.6612.5712.7813.1813.6613.35Fe2O31.391.301.511.741.901.68CaO0.760.580.731.281.381.32MgO0.370.380.380.480.500.51Na2O3.133.073.093.223.053.48K2O4.694.944.804.735.024.63TiO20.180.180.220.200.210.22MnO0.030.030.030.070.080.08P2O50.020.020.030.030.040.04燒失量1.161.091.221.571.921.24合計98.6298.4798.5899.52100.199.77ASI1.091.101.101.031.051.02Ba333.00350.00332.00466.00455.00499.00Ce54.4055.7056.1052.6055.7059.20Cr10.0010.0010.0010.0020.0020.00Cs2.822.862.994.505.113.15Dy4.793.603.674.0114.954.21Er3.072.322.272.559.942.67Eu0.570.540.580.632.750.67Ga14.7014.1015.0015.2016.6016.00Gd4.223.413.633.8220.103.96Hf4.503.603.903.704.004.00Ho1.040.770.770.873.240.90La26.9028.2027.6026.1028.4030.30Lu0.570.440.420.461.860.49Nb22.7020.0021.6018.6020.1018.90Nd21.9021.7022.0020.9022.2023.10Pr6.496.556.526.186.516.79Rb258.00277.00267.00211.00225.00225.00Sm4.864.394.414.574.564.77Sn3.002.004.003.004.003.00Sr89.0074.8084.9089.7095.70120.50Ta3.502.104.202.003.401.90Tb0.740.590.600.642.690.67Th26.9030.8032.9025.0099.2027.80Tl1.101.101.201.204.701.30Tm0.520.390.370.431.700.44

表2(續)

注:mx17-mx19為采自丁家山礦段的樣品;mx21-mx23為采自寨頭礦段的樣品。主量元素質量分數單位為%;微量元素質量分數單位為10-6。

球粒隕石標準值據文獻[23];原始地幔標準值據文獻[24]。圖8 梅仙礦區花崗斑巖稀土球粒隕石配分曲線(a)和微量元素蛛網圖(b)Fig. 8 Chondrite-normalised REE distribution pattern and the primitive mantle normalized spidergram of the porphyry granite in the Meixian deposit

5 討論

5.1 巖體成因和構造背景

研究的巖石具有高硅、高鉀、相對中等含量的鋁和全堿以及弱過鋁質等主量元素特征,結合其發育角閃石等礦物學證據,表明梅仙礦區花崗斑巖為高鉀鈣堿性I型花崗巖。巖體的球粒隕石標準化稀土元素配分曲線普遍向右緩傾,且重稀土元素分配曲線比較平坦,不同于典型S型花崗巖的稀土配分特征。微量元素方面,梅仙礦區花崗斑巖總體上富集大離子親石元素(Rb、Th等)、輕稀土元素(La、Ce、Nd等)以及高場強元素(Zr、Hf等),而虧損Ba、Sr、Ti等,明顯不同于典型的島弧巖漿巖大離子親石元素富集、高場強元素(Nb、Ta等)強烈虧損的特征。同時其10 000Ga/Al值以及Zr、Nb、Ce、Y 等高場強元素含量均低于典型的A 型花崗巖,在(Zr+Nb+Ce+Y)-10 000Ga/Al關系圖(圖略)上,樣品點均未落入A型花崗巖區域,而是主要落在分異的I 型花崗巖區,表明梅仙礦區花崗斑巖為分異的I型花崗巖[26]。

圖9 梅仙礦區花崗斑巖Harker圖解Fig. 9 Harker plots of the porphyry granite in the Meixian deposit

研究的巖石Rb/Sr值(1.87~3.70)均高于中國東部地殼的平均值(0.2[27]),巖石的Nd/Th值(0.2~0.7)和Nb/Ta值(5.9~9.9)與殼源巖石相當(Nd/Th≈3;Nb/Ta≈12[28]),而明顯低于幔源巖石(Nd/Th>15; Nb/Ta≈22[28]);巖石的Ti/Zr值(7.9~11.4)和Ti/Y值(34.6~57.8)也都分別落入陸殼源巖石的Ti/Zr值范圍(Ti/Zr<30[29])和Ti/Y值范圍(Ti/Y<200[29]),指示梅仙礦區花崗斑巖為殼源巖石。在Harker圖解(圖9)上,隨著硅含量的增高,主量元素Fe、Al、P等以及微量元素Sr、Ga、Eu等明顯呈降低趨勢,暗示成巖過程中經歷了這些元素主要載體礦物(如斜長石等)的結晶分離。斜長石的分離也一致于稀土元素特征及Eu的負異常。在微量元素Rb,Hf和Ta的構造判別圖(圖 10)上,研究樣品均落入同碰撞/碰撞后構造區域內。

綜合上述討論,筆者認為梅仙礦區花崗斑巖的母巖漿為形成于碰撞后背景之下的高鉀鈣堿性I型花崗巖漿,其母巖漿形成后發生了角閃石、黑云母和斜長石等礦物高程度的結晶分異作用,并形成高分異I型花崗巖[31]。

圖10 梅仙礦區花崗斑巖構造判別圖解(底圖據文獻[30])Fig. 10 Rb/30-Hf-3Ta discrimination diagram of the porphyry granite in the Meixian deposit (base map modified after reference[30])

5.2 梅仙礦區花崗斑巖與成礦的關系

梅仙礦區花崗斑巖具有很高的分異程度,揮發分含量豐富,有利于對富含Pb-Zn的礦源層或賦礦地層進行熱液交代和改造,促進成礦元素的活化轉移和再富集[32]。礦區礦體與圍巖接觸帶上廣泛發育的矽卡巖化(圖4a,b)便是花崗斑巖對已有層控礦體熱液疊加改造的直接證據。此外,巖體邊部廣泛發育綠簾石化、綠泥石化、絹云母化及黏土化等蝕變,局部巖體中具有輝鉬礦化,并可出現結晶粗大的鉛鋅硫化物富礦體(圖4c, d),更加確定了花崗巖體的含礦性及巖體與梅仙鉛鋅礦成礦的緊密聯系。

野外調查發現,梅仙礦田中巖漿侵入活動強烈,常出現石英斑巖、花崗斑巖等巖脈或巖體,局部地段在花崗斑巖脈附近的層狀鉛鋅礦體中見及疊加矽卡巖化和相關的銅礦化、沿斷裂和裂隙充填脈狀鉛鋅礦化以及鉛鋅礦脈交代大理巖等現象。同時,本文研究的礦區燕山中期花崗斑巖空間上與鉛鋅礦體伴生,局部亦見礦化的花崗斑巖脈,且花崗斑巖脈出現地段一般后期斷裂活動強烈,礦石礦物粒度顯著變粗,礦石品位變富。這也表明燕山期巖漿侵入活動對早期海底火山噴發沉積的礦源層產生強烈的巖漿-熱液疊加和改造作用,造成礦質再富集。

6 結論

通過對梅仙鉛鋅礦區與層控鉛鋅礦體和矽卡巖型鉛鋅礦體空間關系密切的花崗斑巖的鋯石U-Pb定年和全巖主量元素和微量元素的分析,得出以下結論:

1)梅仙鉛鋅礦區存在與花崗斑巖侵入有關的矽卡巖成礦作用及對早期層控塊狀硫化物礦體的疊加改造作用。

2)礦區花崗斑巖屬產于碰撞后背景下的高鉀鈣堿性I型花崗巖,并經歷了高程度的分異演化過程。

3)花崗斑巖的矽卡巖化和對早期礦層的疊加改造作用發生于燕山中期,約150 Ma。

[1] 葉水泉, 倪大平, 吳志強. 福建省梅仙式塊狀硫化物礦床[J]. 火山地質與礦產, 1999, 20(3): 172-179. Ye Shuiquan, Ni Daping, Wu Zhiqiang. Meixiantype Massive Sulfide Deposits in Fujian Province[J]. Volcanology and Mineral Resources, 1999, 20(3): 172-180.

[2] 周兵, 顧連興. 論梅仙塊狀硫化物礦床的特征及成礦地質環境[J]. 礦床地質, 1999, 18(2): 99-109. Zhou Bing , Gu Lianxing. Geological Characteristics and Formation Environment of the Meixian Massive Sulfide Deposit[J]. Mineral Deposits, 1999, 18(2): 99-109.

[3] 林仟同. 福建建甌八外洋鉛鋅礦床地質特征及其成因分析[J]. 福建地質, 2004, 23(4): 178-185. Lin Qiantong. Geologic Characteristics and Genesis of the Bawaiyang Lead-Zinc Deposit in Jian’ou County, Fujian Province[J]. Geology of Fujian, 2004, 23(4): 178-185.

[4] 豐成友, 豐耀東, 張德全, 等. 閩中梅仙式鉛鋅銀礦床礦質來源的硫、鉛同位素示蹤及成礦時代[J]. 地質學報, 2007, 81(7): 906-917. Feng Chengyou, Feng Yaodong, Zhang Dequan, et al. Sulfur and Lead Isotope Tracing for Sources of Ore-Forming Material and Ore-Forming Age of the Meixian-Style Pb-Zn(-Ag)Deposits in the Central Fujian Rift, South East China[J]. Acta Geologica Sinica,2007, 81(7): 906-917.

[5] 陳小華. 福建省丁家山鉛鋅礦床地質特征及成因[J]. 福建地質, 2000, 19(2): 57-65. Chen Xiaohua. Geological Features and Genesis of Dingjiashan Pb-Zn Deposit in Fujian Province[J]. Geology of Fujian, 2000, 19(2): 57-65.

[6] 馬春.福建屏南黛溪鉛鋅礦床地質特征與成因[J].福建地質, 2002, 21(1): 21-26. Ma Chun. On Geological Characteristics and Genesis of the Daixi Lead-Zinc Deposit in Pingnan County, Fujian Province[J]. Geology of Fujian, 2002, 21(1):21-26.

[7] 吳志強. 福建省梅仙鉛鋅銀礦田成礦地質特征和成因模式[J]. 礦產與地質, 2003, 17(5): 606-609. Wu Zhiqiang. The Geological Characteristics and Genetic Model of Meixian Lead-Zinc-Silver ore Field in Fujian Province[J]. Mineral Resources and Geology, 2003, 22(5):606-609.

[8] 單業勇. 福建寧化溪源鋅礦床的地質特征及其成因探討[J]. 福建地質, 2004, 23(4): 169-177. Shan Yeyong. On the Geologic Characteristics and Genesis of the Xiyuan Zinc Deposit in Ninghua County, Fujian Province[J]. Geology of Fujian, 2004, 23(4): 169-177.

[9] 張生輝, 石建基, 狄永軍,等. 閩中裂谷塊狀硫化物型鉛鋅礦床的地質特征及找礦意義[J]. 現代地質, 2005, 19(3): 375-384. Zhang Shenghui, Shi Jianji, Di Yongjun,et al. The Geological Characteristics of the Massive Sulfide Pb-Zn Mineral Deposits in the Central Fujian Rift and Its Implications for Deposit Exploration[J]. Geoscience, 2005, 19(3): 375-384.

[10] 張術根, 石得鳳, 韓世禮, 等. 福建丁家山鉛鋅礦區磁黃鐵礦成因礦物學特征研究[J]. 礦物巖石, 2011, 31(3): 11-17. Zhang Shugen, Shi Defeng, Han Shili, et al. Agenetic Mineralogical Study of Pyrrhotite in Dingjiashan Pn-Zn Ore District, Fujian Province[J]. Journal of Mineralogy and Petrology, 2011, 31(3): 11-17.

[11] 石得鳳. 福建尤溪丁家山鉛鋅礦礦床成因、成礦機理及成礦規律研究[D]. 長沙:中南大學, 2012:1-141. Shi Defeng. Study on Metallogenesis, Metallogenic Mechanism and Regularities of Dingjiashan Pb-Zn Ore District[D]. Changsha:Central South University, 2012: 1-141.

[12] 王鶴年, 孫承轅. 閩中地區綠片巖的微量元素地球化學及其形成的構造背景[J]. 高校地質學報, 1998, 4(4): 383-392. Wang Henian, Sun Chengyuan. Trace Element Geochemistry and Tectonic Setting of Greenschists in the Central Part of Fujian Province[J].Geological Journal of China Universities,1998,4(4): 383-392.

[13] 張達, 吳淦國, 彭潤民, 等. 閩中地區馬面山群東巖組變質巖形成的古構造環境研究[J]. 地學前緣, 2005, 12(1): 310-320. Zhang Da, Wu Ganguo, Peng Runmin, et al. Paleotectonic Setting of the Dongyan Formation of the Mamianshan Group in Central Fujian Province, South-East China[J]. Earth Science Frontiers, 2005, 12(1): 310-320.

[14] Jackson S E, Pearson N J, Griffin W L, et al. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In-Situ U-Pb Zircon Geochronology[J]. Chemical Geology, 2004, 211: 47-69.

[15] Andersen T. Correction of Common Pb in U-Pb Analyses that do not Report204Pb[J]. Chemical Geology, 2002, 192: 59-79.

[16] Ludwig R K. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003(4): 70.

[17] 高劍鋒, 陸建軍, 賴鳴遠, 等.巖石樣品中微量元素的高分辨率等離子質譜分析[J]. 南京大學學報:自然科學, 2003, 39(6): 844-850. Gao Jianfeng, Lu Jianjun, Lai Mingyuan, et al.Analysis of Trace Elements in Rock Samples Using HR-ICMPS[J]. Journal of Nanjing University: Natural Sciences, 2003, 39(6): 844-850.

[18] Vavra G,Schmid R,Gebauer D.Interanal Mor-phology,Habit and U-Th-P Microanalysis of Mmphibolite-to-Granulite Facies Zircons: Geochronology of the Ivrea Zone (Southern Alps)[J]. Contrib Mineral Petrol, 1999,134: 380-404.

[19] Rubatto D. Zircon Trace Element Geochemistry,Partitioning with Garnet and the Link Between U-Pb Ages and Metamorphism[J]. Chemical Geology, 2002, 184(1/2): 123-138.

[20] 江思宏, 聶鳳軍, 劉翼飛, 等. 內蒙古孟恩陶勒蓋銀多金屬礦床及其附近侵入巖的年代學[J]. 吉林大學學報:地球科學版, 2011,41(6): 1755-1769. Jiang Sihong,Nie Fengjun,Liu Yifei, et al. Geochronology of Intrusive Rocks Occurring in and Around the Mengentaolegai Silver-Polymetallic Deposit, Inner Mongolia[J]. Journal of Jilin University:Earth Science Edition, 2011,41(6): 1755-1769.

[21] 段志明,李光明,張暉,等.色那金礦石英二長閃長巖鋯石U-Pb年齡與地球化學特征及其對成礦背景的約束[J].吉林大學學報:地球科學版,2014,43(6):1864-1877. Duan Zhiming, Li Guangming, Zhang Hui,et al.Zircon U-Pb Age & Geochemical Characteristics of the Quartz Monzobiorite and Metallogenic BackGround of the Sena Gold Deposit in Duolong Metallogenic Concentrated Area, Tibet[J].Journal of Jilin University:Earth Science Edition,2014,43(6):1864-1877.

[22] 徐克勤, 朱金初, 劉昌實,等. 華南花崗巖的成因系列和物質來源[J]. 南京大學學報:地球科學,1989, 28(3): 1-18. Xu Keqin, Zhu Jinchu,Liu Changshi, et al. Genesis Series for Granite of Southern China and Its Material Origin[J]. Journal of Nanjing University:Earth Science,1989, 28(3): 1-18.

[23] Boynton W V. Geochemistry of the Rare Earth Elements: Meteorite Studies[C]//Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elservier, 1984:63-114.

[24] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalt: Implication for Mantle Composition and Processes[J]. Geological Society of London Special Publication,1989,42:528-548.

[25] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25: 956-983.

[26] Chappell B W, Bryant C J, Wyborn D. Peraluminous I-Type Granites[J]. Lithos, 2012,153: 142-153.

[27] Gao Shan, Ling Wenli, Qiu Yumin, et al. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE During Crustal Anatexis[J]. Geochimica et Cosmochimica Acta, 1999, 63(13): 2071-2088.

[28] Bea F, Arzamastsev A, Montero P, et al. Anomalous Alkaline Rocks of Soustov, Kola: Evidence of Mantle-Derived Metasomatic Fluids Affecting Crustal Materials[J]. Contrib Mineral Petrol, 2001, 140(5): 554-566.

[29] Wedepohl K H. The Composition of the Continental Crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(7): 1217-1232.

[30] Harris N W B, Pearce J A, Tindle A G. Geochemical Characteristics of Collision-Zone Magmatism[J].Special Publications,1986, 19:67-81.

[31] Chappell B. Aluminium Gaturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites[J]. Lithos, 1999, 46(3): 535-551.

[32] 曾慶棟, 劉建明, 賈長順, 等. 內蒙古赤峰市白音諾爾鉛鋅礦沉積噴流成因: 地質和硫同位素證據[J]. 吉林大學學報:地球科學版, 2007, 37(4): 659-667. Zeng Qingdong,Liu Jianming,Jia Changshun, et al. Sedimentary Exhalative Origin of the Baiyinnuoer Zinc-Lead Deposit, Chifeng, Inner Mongolia: Geological and Sulfur Isotope Evidence[J]. Journal of Jilin University:Earth Science Edition, 2007, 37(4): 659-667.

歡迎作者利用本刊“中國知網”學術期刊優先數字出版平臺

為縮短學術論文發表周期,提高學術成果的認可、傳播和利用價值,進一步提升期刊的學術影響力,本刊有“中國知網”學術期刊優先數字出版平臺為作者服務。

優先數字出版期刊是以印刷版期刊錄用的論文為出版內容,在印刷期刊出版日期之前,在網絡上出版的數字期刊,一般以單篇文章的pdf形式出版。優先數字出版解決了學術論文發表時滯過長的問題,能快速實現期刊論文按篇即時在線出版,爭取科研成果的首發權。自數字出版之日起,在中國知網(CNKI) 全文數據庫可全文檢索和下載優先出版的論文。

即日起,凡在《吉林大學學報(地球科學版)》投稿且稿件已通過終審的作者,若有優先出版的意向,均可與編輯部聯系相關事宜。

本刊編輯部

2014年3月

LA-ICP-MS Zircon U-Pb Age, Petrogenesis and Metallogenic Effect for Porphyry Granites from the Meixian Pb-Zn Deposit in the Central Fujian Rift, Southeast China

Sun Hongtao1,2, Wang Qiuling1,2, Lei Ruxiong3, Chen Shizhong4, Chen Gang4, Wu Changzhi1

1.SchoolofEarthSciencesandEngineering,NanjingUniversity,Nanjing210093,China2.EastChinaMineralExplorationandDevelopmentBureau,Nanjing210007,China3.SchoolofEarthScience&Resources,Chang’anUniversity,Xi’an710054,China4.NanjingInstituteofGeologyandMineralResources,ChinaGeologicalSurvey,Nanjing210016,China

Located in the Central Fujian Rift, the Meixian Pb-Zn deposit is a large volcanogenic massive sulfide Pb-Zn (-Ag) deposit. Based on a detailed field study, the authors identify Yanshanian porphyry granite (148.9±1.4 Ma, 152.0±2.1 Ma) in the Meixian deposit by LA-ICP-MS zircon U-Pb dating. Geochemical analyses show the porphyry granites have high SiO2and potassium abundances, moderate Al2O3, alkaline contents, and weak peraluminous. Chondrite-normalized REE distribution pattern display right skewed shapes showing fractionation between LREE and HREE with flat HREE pattern. These granites are enriched in large ion lithophile elements (LILEs) and high field strength elements(HFSEs) without obvious depletion in Nb-Ta, indicating that they were high-potassium calc-alkaline I-type granite formed in post-collision environment. Their parental magma were experienced strongly fractional crystallization of amphibole, biotite, plagioclase and some other accessory minerals. These porphyry granites are spatially associated with lead-zinc bodies, their magma are enriched in volatile component, large ion lithophile elements and have underwent high degree differentiation by fractional crystallization, indicating the Later Jurassic magmatism in the study area is very favorable for the skarn mineralization and extensively superimposed and reformed the earlier stage massive sulfur lead-zinc ore bodies.

zircon U-Pb dating; geochemistry; Yanshanian porphyry granite; Meixian Pb-Zn deposit; metallogenic effect

10.13278/j.cnki.jjuese.201402111.

2013-08-21

國家自然科學基金項目(41272098)

孫洪濤(1974-),男,工程師,主要從事礦床學方面研究,E-mail:sun197405@sina.cn。

10.13278/j.cnki.jjuese.201402111

P618.51

A

孫洪濤,王秋玲,雷如雄,等.閩中裂谷帶梅仙鉛鋅礦區花崗斑巖的LA-ICP-MS鋯石U-Pb年齡、成因及成礦效應.吉林大學學報:地球科學版,2014,44(2):527-539.

Sun Hongtao, Wang Qiuling, Lei Ruxiong,et al.LA-ICP-MS Zircon U-Pb Age, Petrogenesis and Metallogenic Effect for Porphyry Granites from the Meixian Pb-Zn Deposit in the Central Fujian Rift, Southeast China.Journal of Jilin University:Earth Science Edition,2014,44(2):527-539.doi:10.13278/j.cnki.jjuese.201402111.

主站蜘蛛池模板: 波多野结衣一二三| 天堂亚洲网| 日本不卡免费高清视频| 国产欧美日韩18| 91在线无码精品秘九色APP| 国外欧美一区另类中文字幕| 综1合AV在线播放| 青青草久久伊人| 不卡午夜视频| 国产91高跟丝袜| 搞黄网站免费观看| 精品国产中文一级毛片在线看 | 亚洲女同欧美在线| 无码国产伊人| 99在线视频网站| 日韩精品亚洲一区中文字幕| 国产精品极品美女自在线| 精品国产香蕉在线播出| 亚洲天堂视频网站| 91精品国产丝袜| 114级毛片免费观看| a级毛片视频免费观看| 欧美翘臀一区二区三区| 欧美在线国产| 岛国精品一区免费视频在线观看| 国产精品偷伦视频免费观看国产| 欧美日韩导航| 久久国产精品波多野结衣| 黄色网址免费在线| 青青久视频| 国产一级α片| 欧美亚洲国产精品久久蜜芽| 18黑白丝水手服自慰喷水网站| 久久性妇女精品免费| 欧美日韩午夜| 日本久久免费| 国产福利一区视频| 毛片久久久| 欧美第九页| 国产欧美专区在线观看| 五月天丁香婷婷综合久久| 亚洲精品成人福利在线电影| 欧美午夜视频在线| 国产网站免费看| 久久美女精品国产精品亚洲| 91国内外精品自在线播放| 九色免费视频| 久久精品亚洲热综合一区二区| 爱色欧美亚洲综合图区| 久久国产精品国产自线拍| 欧美日韩中文字幕在线| 国产在线八区| 亚洲色图在线观看| 91视频99| 91人人妻人人做人人爽男同 | 亚洲精品在线观看91| 国产福利小视频在线播放观看| 一本大道视频精品人妻| 国产一区二区三区在线精品专区| 亚洲色无码专线精品观看| 色九九视频| 亚洲最大综合网| 久久久久亚洲AV成人网站软件| 毛片网站在线看| 婷婷午夜天| 国产性爱网站| 色吊丝av中文字幕| 久久综合色88| 手机成人午夜在线视频| 超碰aⅴ人人做人人爽欧美| 成人综合网址| 亚洲综合在线网| 精品国产黑色丝袜高跟鞋| 免费国产福利| 国产交换配偶在线视频| 97在线观看视频免费| 99热这里只有精品久久免费| 国产爽妇精品| 亚洲av无码成人专区| 欧洲成人在线观看| 97国产精品视频自在拍| 日本www在线视频|