李驍君等
摘 要:目的:給受試者服用不同濃度的人參提取物達瑪烷苷元(Dammarane Sapogenin,DS),探究其對有氧運動后肌糖原恢復的影響及作用機制。方法:本研究采用雙盲實驗設計,選取9名受試者隨機分為安慰劑組(placebo group)、服用DS 240 mg/day 組(DS240)、服用DS 480 mg/day 組(DS480)進行試驗。受試者持續服用DS 4周后,進行一次性60分鐘、強度為75% VO2max的蹬功率自行車運動,運動后立刻給予高糖飲食。于運動后即刻及運動后3小時,分別進行肌肉活檢,測定AKT、GS 磷酸化及蛋白質表達;同時,運動后3小時內每隔30分鐘取靜脈血測定血糖濃度、胰島素濃度。結果:DS240組較對照組顯著提升運動后肌糖原儲存速率(P<0.05);運動后隨著時間延長,DS240組的血糖濃度顯著低于安慰劑組(P<0.05),但各組胰島素濃度無顯著性差異;運動后DS240組顯著提高運動后AKT磷酸化水平、降低肌糖原合成酶磷酸化、提高肌糖原合成酶的蛋白質表達(P<0.05)。結論:長期補充低劑量達瑪烷苷元可能提高人體運動后肌糖原儲存速率,其可能機制與提升胰島素作用及血糖吸收有關;研究結果推測達瑪烷苷元可以增加胰島素敏感度,因而可以將達瑪烷苷元作為補劑用以運動競賽或訓練后加速肌糖原恢復。
關鍵詞:達瑪烷苷元;肌糖原;肌肉活檢
中圖分類號:G804.7 文獻標識碼:A 文章編號:1006-2076(2014)05-0065-06
counter-balancing study and 9 subjects were divided random into placebo group, DS240(DS240 mg/day), and DS480(DS 480 mg/day). The subjects did an acute 60-mins cycling exercise(75% VO2max) after having taken DS for 4 weeks and subjects would be given high carbohydrate meal immediately after exercise. Muscle biopsy, AKT phosphorylation, GS phosphorylation and protein expression should be performed immediately and 3-h after exercise. At the same time, Blood Glucose and Blood insulin should be tested every 30 mins in 3 hours after exercise.Results:Compared with the placebo group, the muscle glycogen storage rates of DS240 was greater. After aerobic exercise, blood sugar concentration of DS240 was significantly lower than those of placebo group, but the difference of the insulin concentration was not significant. AKT phosphorylation of DS240 group was greater than those of placebo group. After the supplement of DS, phospho-glycogen synthase was decreased and the protein expression of muscle glycogen synthase was increased significantly.Conclusions:Taking lowdose of DS for a long time may improve muscle glycogen storage rates and it shows that DS may increase the sensitivity of insulin, which can make DS be supplements and can be used in sports competitions and the recovery of glycogen after exercise.
Key words: Dammarane Sapogenin; glycogen; muscle biopsy[HK][HT]
[HT5SS][FL(K2]
人參作為名貴食材和傳統中藥材,臨床應用已有幾千年的歷史,其主要活性成分為人參皂苷。目前已從人參屬植物中分離出100多種人參皂苷,每種人參皂苷均由苷元與糖構成,其中主要為達瑪烷型苷元(Dammarane Sapogenin,DS)[1]。許多研究表明人參萃取物具有增強耐力、防止運動損傷以及抗疲勞的作用,但其作用機制主要集中于以抗氧化物酶和脂質過氧化物為指標的抗氧化作用研究[2-3]。
肌肉中所儲存的糖原為人體進行無氧運動及大強度有氧運動時所消耗的主要能源[4],運動后補充高糖飲食可以促使糖原逐漸回補,增加運動后疲勞消除、體能恢復的速率以及提高運動能力。其生理機制主要由血糖上升刺激胰島素分泌并透過血液傳遞至肌肉組織直接促進葡萄糖進入肌肉細胞儲存為糖原[4]。研究顯示胰島素為糖原回補的重要因素[5]。當胰島素與肌肉細胞上的5-胰島素受體結合后經由磷酸化 AKT 并增加活性,以促進肌肉吸收血糖[6]。除此之外 AKT 下游的糖原合成酶(glycogen synthase, GS)也經由去磷酸化而增加活性,以增加運動后糖原儲存速率。若是以運動補充品或其他方法增加運動后肌糖原儲存速率,將會對促進運動員運動后疲勞消除及提高運動能力有著重要階值。有研究表明,給予大鼠口服韓國人參萃取物 50 周可以提升其葡萄糖耐受度[7]。
由此推測,達瑪烷苷元可能可以應用于人體促進肌糖原的合成。由于人參皂苷具有吸收差、生物利用度低的特點,再加上的人參皂苷含量與種類會隨生長年限、種植環境與加工工藝等的不同而存在差異[8-9],這些均會影響其生理活性,故本研究使用含有固定成份達瑪烷苷元的標準化產品對有氧運動后肌糖原恢復進行干預,并探究其效果及作用機制,這對運動訓練實踐有著重要意義。
1 研究對象
研究達瑪烷苷元對人體運動后肌糖原恢復的影響,實驗對象招募自愿參與實驗者18~22 歲,男性,要求有運動習慣并且無心血管疾病史。正式實驗前對受試者進行最大攝氧量(VO2max)測試,實驗中有任何不適感,則隨時暫停實驗,不再接受正式實驗。受試者詳細了解研究計劃說明后,簽署參與研究同意書,并于實驗前一周至實驗結束不得飲用酒精及服用營養補劑或其他藥物。最終確定9名受試者(年齡21.6±0.7歲;體重71.2±2.5 kg;身高174.6±1.2 cm;BMI23.3±0.8 kg/m2;VO2max 44.2±1.5 ml/min/kg),并隨機分為安慰劑組(placebo group)、服用DS 240 mg/day 組(DS240)、服用DS 480 mg/day 組(DS480)。
2 實驗方法和取材
2.1 實驗設計
本研究采用雙盲實驗設計。3組受試者分別于每日下午3點口服達瑪烷苷元膠囊240 mg和480 mg(加拿大天馬藥業公司生產)或安慰劑(淀粉),連續服用4周,于最后一次服用24小時后,進行一次性蹬功率自行車運動。運動要求如下:運動前均需空腹 12 小時,五分鐘熱身,然后進行 60 分鐘的蹬車運動,自行車功率設定為最大攝氧量測試中到達75%最大攝氧量時的輸出功率,功率自行車轉速維持在 60±10 rpm,運動中不限制飲水,運動后即刻根據體重給予高糖飲食,每公斤體重 2 g 食物,飲食內容包含燕麥片、面包、牛奶、糖水與果醬。
2.2 肌肉活檢
分別在運動后即刻和運動后3小時共進行兩次肌肉活檢。肌肉穿刺過程中所有步驟均由正規醫生操作。穿刺前在雙側大腿找到股外側肌,在右側大腿股外側肌肉,膝上20 cm的位置作記號處,再往上2.5~3 cm處, 再做一個記號,為第二次肌肉穿刺點,肌肉注射2% 利多卡因(不含腎上腺激素),注射深度約為 10 mm,使用14號的穿刺針由股四頭肌的股外側肌抽取大約50 mg的肌肉,去除結締組織以及殘留的血液后以液態氮急速冷凍并保存。
2.3 肌糖原含量測定
取運動結束后3小時活檢的肌肉樣本25毫克加入500 μL的 1 N氫氧化鉀于75℃水浴中30分鐘。待肌肉完全溶解后,取出 100 μL 肌肉溶液與250 μL 0.3 M 醋酸鈉和 250 μL 淀粉葡萄糖苷酶溶液(10 mg/ml, pH 4.8)混合均勻并于室溫下放置 12 小時。糖原分解成葡萄醣后,加入 25 μL 的 1N 氫氧化鈉終止反應后,取150 μL 樣本再加入 1.5 ml Trinder Glucose Kit 氧化呈色劑(Sigma, Louis, MO,USA),樣本呈色的時間為 21 分鐘,使用分光光譜儀以 OD505 測定吸光值并換算肌糖原濃度。
2.4 AKT、GS 磷酸化及蛋白質表達測定
本研究采用蛋白質印跡法(Western blot),步驟:肌肉組織與緩沖液(20 nm Hepes, 1 mM EDTA, 250 nM Source)混合經由高速勻漿機勻漿,勻漿液離心15分鐘(10 000 g)后取上清液作為蛋白質樣本,將蛋白質樣本與2X Laemni緩沖液混合后取20 μg。樣本經由SDS-PAGE分離蛋白質,之后使用PVDF膜,經過1小時轉膜后,分別將一級與二級抗體與目標蛋白結合,抗體信息見表1。
2.5 血液生化數值檢測
由上臂靜脈采血,綁上止血帶,置入 20 號留置針,用透明膠布固定,接上抽血導管,用以采取血液樣本,抽血的時間點為運動前安靜時,運動后即刻及每30分鐘采集一次,直至運動結束后3小時共8次,每次采取血液樣本 5 ㏄,放松止血帶,注入生理食鹽水防止凝血,實驗結束當天移除留置針,用酒精棉壓迫止血 10 分鐘防止出血, 貼上紗布保護。血液采集至含有肝素的采血管中。采集的全血經由Sysmex全自動血球分析儀分析基本血球數值。血液經過4℃、3 000 rpm離心10分鐘后抽取上清液(血漿)作為檢測樣本儲存。血糖值以One touch血糖儀進行分析 ,血清胰島素檢測,采用固相夾心法酶聯免疫吸附實驗(ELISA),試劑盒為上??ㄅ锟萍加邢薰旧a,依照說明書將血清樣本于96孔透明盤反應后讀取吸光數值并計算濃度或活性。
2.6 統計學分析
本研究數據通過SPSS18.0統計軟件進行處理,所有數據以[AKX-]±SD表示。采用單因素方差分析處理運動后各組肌糖原儲存率,并用Post Hoc兩兩比較;采用重復測量方差分析處理運動后各組血生化指標及AKT、GS 磷酸化及蛋白質表達,并采用獨立樣t檢驗處理各組同一時間點數據差異性,顯著性差異表示為P<0.05。
3 實驗結果
3.1 口服達瑪烷苷元對運動后肌糖原恢復的影響
運動后3小時各組肌糖原儲存率(glycogen storage rate,GSR)見表2。結果顯示,DS240組于運動后 0 至 3 小時肌糖原GSR速率顯著高于安慰劑組(P<0.05), 但高劑量組的肌糖原GSR與安慰劑組比較無顯著性差異。
4 討論
本研究的主要目的是為了探討口服4周不同劑量的達瑪烷苷元是否可以促進運動后肌糖原恢復速率。研究發現,DS240組(240 mg/day)運動后肌糖原儲存速率比對照組提高了4.75倍,而且與血糖吸收增加及糖原合成酶磷酸化比率降低結果相符,提示達瑪烷苷元促進運動后肌糖原合成的可能機制為增強胰島素的作用。
運動后補充高糖飲食進而促進肌糖原合成速率的主要機制為胰島素作用,且增加胰島素敏感度用以促進肌肉對血糖的吸收能力,是增加肌糖原合成的重要因素之一[8]。本研究發現每天服用 240 mg 達瑪烷苷元組對高糖飲食后的血糖的反應程度較低,但胰島素反應不變,加之在運動后可以加速肌糖原恢復,因此推測達瑪烷苷元可以促進全身胰島素敏感度與血糖的吸收。先前許多有關胰島素抗性的動物實驗和人體研究也得到過與本研究相似的結果:每天注射 200 mg/kg 的人參萃取物可以提升糖尿病小鼠的葡萄糖耐受度與降低空腹血糖濃度[10];以 OLETF 大鼠做為肥胖研究之動物模式,研究顯示經過 8 周腹腔注射 300 或 500 mg/kg亞洲人參萃取物后葡萄糖糖耐受度顯著提升 21%,且胰島素濃度顯著降低[11];每天給予 19 名糖尿病患者每天 6 g 的韓國人參(Korean red ginseng)萃取物,12 周后空腹血糖與空腹胰島素顯著降低,葡萄糖耐受度顯著提升[12]。但是也有研究發現人參無法提升胰島素敏感度[13]或是反而降低葡萄糖耐受度[14],造成這些研究結果差異的原因可能是各個實驗中人參皂苷種類與含量的不同。
本研究口服所用達瑪烷苷元全部為加拿大天馬藥業公司生產的成品膠囊,保證固定的成分,從而保證了研究結果的穩定性。研究表明低劑量達瑪烷苷元,除了可以促進骨骼肌血糖吸收之外,胰島素也可以通過增加糖原合成酶活性而增加肌糖原合成速率。其過程可能為胰島素經AKT磷酸化進而增加GSK3 磷酸化,再通過促進糖原合成酶的去磷酸化而使其活性增加[15]。本研究發現,低劑量達瑪烷苷元組,運動后三小時 AKT 磷酸化顯著高于安慰劑組,且糖原合成酶磷酸化比率顯著降低,顯示活化狀態的去磷酸化糖原合成酶增加,這一結果符合上述血糖降低的結果。AKT磷酸化加強的可能原因是胰島素敏感度的增加而促進較多的AKT 磷酸化,先前許多研究也發現人參萃取物及人參皂苷增加各種組織的 AKT 活性,包括心肌[16-17]、神經細胞[18]及血管平滑肌細胞[19]等;韓國人參萃取物不但可以促進糖尿病模式大鼠的胰島素刺激血糖吸收能力,同時也增加肌肉胰島素路徑中 AKT 磷酸化[20]。所以推測低劑量達瑪烷苷元增加運動后糖原儲存速率的可能機制為通過促進胰島素作用而增加血糖吸收進入肌肉細胞,進而合成糖原以及增加糖原合成酶活性。本研究的另一個發現為低至高劑量達瑪烷苷元都能增加糖原合成酶蛋白質表達,這方面的研究鮮有報導,只有一項研究探討肌糖原合成酶基因表達經由增加轉錄作為調控方式[21],推測達瑪烷苷元調控糖原合成酶蛋白質合成主要是通過后轉錄實現調控。
由于擔心肌肉活檢容易造成受試者運動肌肉不適而影響蹬車,同時也存在肌肉發炎的風險從而影響最終研究結果,所以沒有在運動前實施肌肉活檢。但運動前的肌肉組織可以幫助研究四周的達瑪烷苷元服用后對于安靜狀態下的肌糖原濃度以及蛋白質表達,所以在后續研究中可以考慮運動后休息一周再進行安靜狀態下肌肉活檢。
5 小結
5.1 本研究結果證明,長期補充低劑量達瑪烷苷元可能提高人體運動后肌糖原儲存速率,其可能機制與提升胰島素作用及血糖吸收有關。
5.2 研究結果推測達瑪烷苷元可以增加胰島素敏感度,因而可以將達瑪烷苷元作為補劑用以運動競賽或訓練后加速肌糖原恢復。
參考文獻:
[1]徐靜,賈力,趙余慶.人參的化學成分與人參產品的質量評價[J].藥物評價研究,2011,34(3):199-200.
[2]馮毅翀,潘華山,趙自明,等.人參皂甙Rb1和人參總皂甙對運動性疲勞大鼠骨骼肌生化指標的影響[J].南京體育學院學報,2010,9(1):24-25.
[3]談善軍,余震,董千銅,等.人參皂苷 Rb1對術后疲勞綜合征大鼠骨骼肌氧化應激的影響[J].中國中西醫結合雜志,2012,32 (11):1535-1538.
[4]Ivy J L, Goforth Jr H W, Damon B M,et al.Early postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement[J]. Journal of Applied Physiology,2002,93(4):1337-1344.
[5]Kuo C H, Hwang H, Lee M C,et al.Role of insulin on exercise-induced GLUT-4 protein expression and glycogen supercompensation in rat skeletal muscle[J]. Journal of Applied Physiology, 2004,96(2):621-627.
[6]Srivastava A K, Pandey S K. Potential mechanism (s) involved in the regulation of glycogen synthesis by insulin[J]. Molecular and Cellular Biochemistry,1998,182(1):135-141.
[7]Lee H J, Lee Y, Park S K,et al. Korean red ginseng (Panax ginseng) improves insulin sensitivity and attenuates the development of diabetes in Otsuka Long-Evans Tokushima fatty rats[J]. Metabolism, 2009,58(8):1170-1177.
[8]林力,劉建勛,張 穎.C- MS/MS 法同時測定犬血漿中7種人參皂苷類成分及其在人參提取物藥代動力學研究中的應用[J].世界科學技術-中醫藥現代化,2012,14(3):1572.
[9]吳雪松,葉正良,郭巧生.東北不同產地人參及其加工品人參皂苷類成分的比較分析[J].中草藥,2013,44(24):3551-3556.
[10]Yang C Y, Wang J, Zhao Y,et al.Anti-diabetic effects of Panax notoginseng saponins and its major anti-hyperglycemic components[J]. Journal of Ethnopharmacology,2010,130(2):231-236.
[11]Lim S, Yoon J W, Choi S H,et al.Effect of ginsam, a vinegar extract from Panax ginseng,on body weight and glucose homeostasis in an obese insulin-resistant rat model[J]. Metabolism, 2009,58(1):8-15.
[12]Vuksan V, Sung M K, Sievenpiper J L,et al.Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: Results of a randomized, double-blind, placebo-controlled study of efficacy and safety[J]. Nutrition, Metabolism and Cardiovascular Diseases,2008,18(1):46-56.
[13]Reay J L, Scholey A B, Milne A,et al.Panax ginseng has no effect on indices of glucose regulation following acute or chronic ingestion in healthy volunteers[J]. British Journal of Nutrition, 2010,101(11):1673-1678.
[14]Sievenpiper J L, Arnason J T,Leiter L A,et al.Decreasing, null and increasing effects of eight popular types of ginseng on acute postprandial glycemic indices in healthy humans: The role of ginsenosides[J]. Journal of the American College of Nutrition,2004,23(3):248-258.
[15]Srivastava A K, Pandey S K. Potential mechanism (s) involved in the regulation of glycogen synthesis by insulin[J]. Molecular and Cellular Biochemistry, 1998,182(1):135-141.
[16]Tsutsumi Y M, Tsutsumi R, Mawatari K,et al.Compound K, a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/PI3K pathway[J]. Life Sciences, 2011,88(15-16):725-729.
[17]Chen S, Liu J, Liu X,et al.Panax notoginseng saponins inhibit ischemia-induced apoptosis by activating PI3K/Akt pathway in cardiomyocytes[J]. Journal of Ethnopharmacology,2011,137(1):263-270.
[18]Zhao R, Zhang Z, Song Y,et al.Implication of phosphatidylinositol-3 kinase/Akt/glycogen synthase kinase-3β pathway in ginsenoside Rb1's attenuation of beta-amyloid-induced neurotoxicity and tau phosphorylation[J]. J Ethnopharmacol, 2012,141(3):1080.
[19]Zhang H S, Wang S Q. Notoginsenoside R1 inhibits TNF-alpha-induced fibronectin production in smooth muscle cells via the ROS/ERK pathway[J]. Free Radical Biology & Medicine, 2006,40(9):224-230.
[20]Lee S H, Lee H J, Lee Y,et al.Korean red ginseng (Panax ginseng) improves insulin sensitivity in high fat fed Sprague‐Dawley rats[J]. Phytotherapy Research, 2012,26(1):142-147.
[21]Pescador N, Villar D, Cifuentes D,et al.Hypoxia promotes glycogen accumulation through hypoxia inducible factor (HIF)-mediated induction of glycogen synthase 1[J]. PLoS ONE,2010,5(3):9644.
[8]林力,劉建勛,張 穎.C- MS/MS 法同時測定犬血漿中7種人參皂苷類成分及其在人參提取物藥代動力學研究中的應用[J].世界科學技術-中醫藥現代化,2012,14(3):1572.
[9]吳雪松,葉正良,郭巧生.東北不同產地人參及其加工品人參皂苷類成分的比較分析[J].中草藥,2013,44(24):3551-3556.
[10]Yang C Y, Wang J, Zhao Y,et al.Anti-diabetic effects of Panax notoginseng saponins and its major anti-hyperglycemic components[J]. Journal of Ethnopharmacology,2010,130(2):231-236.
[11]Lim S, Yoon J W, Choi S H,et al.Effect of ginsam, a vinegar extract from Panax ginseng,on body weight and glucose homeostasis in an obese insulin-resistant rat model[J]. Metabolism, 2009,58(1):8-15.
[12]Vuksan V, Sung M K, Sievenpiper J L,et al.Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: Results of a randomized, double-blind, placebo-controlled study of efficacy and safety[J]. Nutrition, Metabolism and Cardiovascular Diseases,2008,18(1):46-56.
[13]Reay J L, Scholey A B, Milne A,et al.Panax ginseng has no effect on indices of glucose regulation following acute or chronic ingestion in healthy volunteers[J]. British Journal of Nutrition, 2010,101(11):1673-1678.
[14]Sievenpiper J L, Arnason J T,Leiter L A,et al.Decreasing, null and increasing effects of eight popular types of ginseng on acute postprandial glycemic indices in healthy humans: The role of ginsenosides[J]. Journal of the American College of Nutrition,2004,23(3):248-258.
[15]Srivastava A K, Pandey S K. Potential mechanism (s) involved in the regulation of glycogen synthesis by insulin[J]. Molecular and Cellular Biochemistry, 1998,182(1):135-141.
[16]Tsutsumi Y M, Tsutsumi R, Mawatari K,et al.Compound K, a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/PI3K pathway[J]. Life Sciences, 2011,88(15-16):725-729.
[17]Chen S, Liu J, Liu X,et al.Panax notoginseng saponins inhibit ischemia-induced apoptosis by activating PI3K/Akt pathway in cardiomyocytes[J]. Journal of Ethnopharmacology,2011,137(1):263-270.
[18]Zhao R, Zhang Z, Song Y,et al.Implication of phosphatidylinositol-3 kinase/Akt/glycogen synthase kinase-3β pathway in ginsenoside Rb1's attenuation of beta-amyloid-induced neurotoxicity and tau phosphorylation[J]. J Ethnopharmacol, 2012,141(3):1080.
[19]Zhang H S, Wang S Q. Notoginsenoside R1 inhibits TNF-alpha-induced fibronectin production in smooth muscle cells via the ROS/ERK pathway[J]. Free Radical Biology & Medicine, 2006,40(9):224-230.
[20]Lee S H, Lee H J, Lee Y,et al.Korean red ginseng (Panax ginseng) improves insulin sensitivity in high fat fed Sprague‐Dawley rats[J]. Phytotherapy Research, 2012,26(1):142-147.
[21]Pescador N, Villar D, Cifuentes D,et al.Hypoxia promotes glycogen accumulation through hypoxia inducible factor (HIF)-mediated induction of glycogen synthase 1[J]. PLoS ONE,2010,5(3):9644.
[8]林力,劉建勛,張 穎.C- MS/MS 法同時測定犬血漿中7種人參皂苷類成分及其在人參提取物藥代動力學研究中的應用[J].世界科學技術-中醫藥現代化,2012,14(3):1572.
[9]吳雪松,葉正良,郭巧生.東北不同產地人參及其加工品人參皂苷類成分的比較分析[J].中草藥,2013,44(24):3551-3556.
[10]Yang C Y, Wang J, Zhao Y,et al.Anti-diabetic effects of Panax notoginseng saponins and its major anti-hyperglycemic components[J]. Journal of Ethnopharmacology,2010,130(2):231-236.
[11]Lim S, Yoon J W, Choi S H,et al.Effect of ginsam, a vinegar extract from Panax ginseng,on body weight and glucose homeostasis in an obese insulin-resistant rat model[J]. Metabolism, 2009,58(1):8-15.
[12]Vuksan V, Sung M K, Sievenpiper J L,et al.Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: Results of a randomized, double-blind, placebo-controlled study of efficacy and safety[J]. Nutrition, Metabolism and Cardiovascular Diseases,2008,18(1):46-56.
[13]Reay J L, Scholey A B, Milne A,et al.Panax ginseng has no effect on indices of glucose regulation following acute or chronic ingestion in healthy volunteers[J]. British Journal of Nutrition, 2010,101(11):1673-1678.
[14]Sievenpiper J L, Arnason J T,Leiter L A,et al.Decreasing, null and increasing effects of eight popular types of ginseng on acute postprandial glycemic indices in healthy humans: The role of ginsenosides[J]. Journal of the American College of Nutrition,2004,23(3):248-258.
[15]Srivastava A K, Pandey S K. Potential mechanism (s) involved in the regulation of glycogen synthesis by insulin[J]. Molecular and Cellular Biochemistry, 1998,182(1):135-141.
[16]Tsutsumi Y M, Tsutsumi R, Mawatari K,et al.Compound K, a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/PI3K pathway[J]. Life Sciences, 2011,88(15-16):725-729.
[17]Chen S, Liu J, Liu X,et al.Panax notoginseng saponins inhibit ischemia-induced apoptosis by activating PI3K/Akt pathway in cardiomyocytes[J]. Journal of Ethnopharmacology,2011,137(1):263-270.
[18]Zhao R, Zhang Z, Song Y,et al.Implication of phosphatidylinositol-3 kinase/Akt/glycogen synthase kinase-3β pathway in ginsenoside Rb1's attenuation of beta-amyloid-induced neurotoxicity and tau phosphorylation[J]. J Ethnopharmacol, 2012,141(3):1080.
[19]Zhang H S, Wang S Q. Notoginsenoside R1 inhibits TNF-alpha-induced fibronectin production in smooth muscle cells via the ROS/ERK pathway[J]. Free Radical Biology & Medicine, 2006,40(9):224-230.
[20]Lee S H, Lee H J, Lee Y,et al.Korean red ginseng (Panax ginseng) improves insulin sensitivity in high fat fed Sprague‐Dawley rats[J]. Phytotherapy Research, 2012,26(1):142-147.
[21]Pescador N, Villar D, Cifuentes D,et al.Hypoxia promotes glycogen accumulation through hypoxia inducible factor (HIF)-mediated induction of glycogen synthase 1[J]. PLoS ONE,2010,5(3):9644.