熊琪+李曉鋒+索效軍+張年+劉洋+陳明新
摘要:骨骼肌纖維的數目由出生前肌源細胞的成肌分化進程所決定,直接影響家畜的生長潛能和肉質。MyoD依賴的肌肉特異性基因的染色質重塑激活是控制成肌分化的重要方式,其作用模式已有一些報道。PI3K/Akt和p38信號也參與了這一過程的調控。對這一研究進展進行了綜述。
關鍵詞:成肌分化;MyoD;染色質重塑;肌纖維數目
中圖分類號:Q952 ? ? ? ? ?文獻標識碼:B ? ? ? ? ?文章編號:0439-8114(2014)20-4780-03
DOI:10.14088/j.cnki.issn0439-8114.2014.20.002
MyoD-mediated Chromatin Remodeling Activation of Muscle Specific Gene and Myogeneis Regulation
XIONG Qi, LI Xiao-feng, SUO Xiao-jun, ZHANG Nian, LIU Yang, CHEN Ming-xin
(Institute of Animal and Veterinary Science/ Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agriculture Sciences,Wuhan 430064,China)
Abstract: In domestic animals, a change in the number of fibers that form during myogenesis can have a profound effect on the total muscle mass of the adult animal, long-term growth potential and meat quality of the animal. The MyoD-mediated chromatin remodeling activation of muscle-specific gene is an important way to control myogenesis. The action models were reported. The PI3K/Akt and p38 signaling pathway involved in the regulation were reviewed.
Key words: ?myogenesis;MyoD;chromatin remodeling;muscle fiber number
骨骼肌纖維是骨骼肌的主要組成部分,肌纖維的數目和大小直接影響家畜的胴體性狀。肌纖維的肥大主要發生在出生之后,而肌纖維數目則早在出生前就已定型,受骨骼肌源細胞的成肌分化所控制[1]。成肌轉錄因子(MRF)家族成員中最重要的成肌決定因子MyoD,不但介導成肌分化的定向,還控制著成肌細胞的融合與肌纖維的形成。其在成肌分化中的重要作用主要是通過控制特定時段基因的有序轉錄。現已有大量關于MyoD與多種轉錄因子、乙酰轉移酶及染色質修飾復合物介導下肌肉特異性基因染色質重塑的報道,及其調控該過程的細胞信號轉導通路。為人們認識成肌分化的控制因素及肌纖維數目的遺傳差異提供了參考。
1 ?成肌分化控制與肌纖維數目
家畜的肌纖維數目不僅影響骨骼肌的生長潛能和耐受性,還與肉質密切相關。肌纖維的形成大致分為兩個成肌階段:①肌源干細胞增殖后,分化融合形成初級肌纖維;②繼發增殖的肌源細胞以初級肌纖維為支架,融合形成更小更多的次級肌纖維[2]。組織切片及基因表達研究表明,綿羊肌纖維的形成在胚胎期的第85天[3];牛初級肌纖維的形成在妊娠的第47天前,次級肌纖維的形成約在胚胎期的第90天[4];豬初級肌纖維和次級肌纖維的形成分別在胚胎的第30~60天及第54~90天[5]。不同物種的肌纖維數目及同一物種的不同品種間肌纖維數目存在差異的原因是,初級纖維和次級纖維的形成過程均受肌源細胞的增殖和分化控制,而多種因素都會影響這些過程。如生肌抑制素Myostatin基因突變后,肌源細胞的增殖和成肌分化不受控制[6],引起初級纖維和次級纖維形成的加速,最終導致肌纖維總數增加[2]。以生長快速著稱的瘦肉型皮特蘭豬與杜洛克豬的比較研究發現,皮特蘭豬初級纖維形成期時成肌分化程度較低,次級纖維形成期時成肌分化程度較高,但最終肌纖維數目多于杜洛克豬,因此具備了出生后肌肉肥大的潛能[7]。以上的研究結果表明,肌纖維數目的多少與成肌分化的控制因素直接有關。
2 ?MyoD依賴的肌肉特異性基因的染色質重塑激活是控制成肌分化的重要方式
肌肉細胞定向分化為終末肌管的過程中,基因組部分區域的染色質需要進行組蛋白修飾及結構重塑,以維持新的基因表達模式。這種表達模式既需要抑制無關基因的表達,也需要選擇性并有序地激活肌肉特異性基因的表達。如肌肉特異性基因調控區的染色質結構在未分化的增殖肌源細胞中呈抑制狀態,在分化的肌細胞中呈開放狀態[8,9]。而增殖相關基因調控區域的染色質結構在未分化的增殖肌源細胞中呈開放狀態,在分化的肌細胞中呈抑制狀態[10]。Strahl等[11]發現組蛋白的不同修飾狀態影響染色質結構及染色質開放程度。
MyoD家族基因屬于堿性螺旋一環一螺旋(bHLH)轉錄因子,是肌肉特異性基因表達的主要調控因子。高通量的CHIP測序研究表明在成肌分化過程中,MyoD可與基因組的約25 000個位點結合,但是其中只有1 953個基因表達改變[12]。說明僅有MyoD的結合不足以激活基因的表達,還需要其他因子的參與。組蛋白乙酰基轉移酶(Histone acetyltransferases,HATs),去乙酰化酶(histone deacetylases,HDACs)和染色質重塑復合物(SWItch/Sucrose NonFermentable,SWI/SNF)等染色質修飾因子協同MyoD調控肌肉特異位點的機制已被廣泛報道[9,13,14]。HDACs通過抑制MyoD的活性,阻止其在未分化的細胞中激活靶基因。而HATs則與募集的SWI/SNF共同正調控MyoD,激活肌肉特異性基因的表達,促進肌肉發育。在未分化肌源細胞中,組蛋白H3的乙酰化位點K9、K14受去乙酰化酶Sir2(一種Ⅲ類HDAC)復合物的抑制(圖1a),K27位點被YY1–Ezh2–HDAC1復合物中的甲基轉移酶Ezh2所甲基化(圖1c),肌肉特異性基因轉錄受抑;分化開始后,[NAD+]/[NADH]比例的下降使Sir2失活, MyoD從Sir2介導的阻抑中釋放出來,被PCAF乙酰化,組蛋白H3的K9、K14位點被乙酰化(圖1b),YY1-Ezh2-HDAC1抑制復合物也被MyoD、HATs及SWI/SNF等激活復合物所取代,使組蛋白H3的K27位點去甲基化(圖1d),肌肉特異性基因轉錄激活。
以上描述的是MyoD介導肌肉特異性基因轉錄激活的一般模式,MyoD介導激活肌肉特異基因表達的形式是可變的。例如,在晚期階段基因的轉錄激活是由MyoD產生的前饋機制所介導,即MyoD作用于晚期基因(如Des、Myl1、Mylpf、Myh3等)的轉錄需要先激活早期基因MEF2D的表達[15]。另有研究報道晚期基因的染色質結構重塑還需要轉錄因子Myogenin的結合[16]。在一些肌肉特異基因的啟動子區,核小體可能會阻礙MyoD與E-box的結合,MyoD可能需要其他因子的輔助才能結合上去,如Pbx在MyoD對Myogenin的轉錄激活中就扮演這樣的角色[13]。因此MyoD作用于肌肉特異性基因的染色質重塑是個復雜的有序的過程。一個模型不完全適用于所有肌肉特異基因的轉錄激活。
3 ?MyoD依賴的肌肉特異位點的染色質重塑受PI3K/Akt和p38信號共同調控
PI3K-Akt和p38信號通路被認為是兩條平行的級聯通路,在肌肉特異位點的染色質重塑過程中交匯,共同介導MyoD依賴的肌肉特異性基因的轉錄。
3.1 ?PI3K/AKT信號
胰島素樣生長因子(IGFs)軸被認為在肌肉細胞的分化和生長過程中具有重要正向調控作用,IGFs在次級纖維的形成過程中分子表達量增加,它的作用是刺激成肌細胞增殖,維持肌纖維的分化。IGF2在成肌分化過程中自分泌,結合于IGF1受體上,激活PI3K/AKT信號,調控肌肉特異基因的表達[17]。其重要機制是級聯激活的AKT1和AKT2通過磷酸化乙酰轉移酶p300的C端區域,促進MyoD與乙酰轉移酶(p300、PCAF)形成復合體,對肌肉特異性基因的染色質進行乙酰化修飾;加入PI3K信號通路抑制劑會阻礙乙酰轉移酶P300和PCAF募集到肌肉特異基因的啟動子/增強子區,導致肌肉特異位點染色質組蛋白乙酰化受阻,甲基轉移酶Ezh2則富集于染色質上甲基化組蛋白H3的K27位點,讓肌衛星細胞處于靜息狀態[18]。
3.2 ?p38信號
p38激酶是調節成肌分化的主要信號蛋白。MKK6和MKK3是p38激酶應答分化信號的激活劑。它們的添加有助于p38激活,使成肌細胞提前分化[19]。p38信號可參與調節成肌分化過程中的細胞周期,外源表達MKK6EE激活的p38信號能使骨骼和心臟成肌細胞退出細胞周期[20]。P38信號與其他細胞信號的交叉對話也決定了p38信號通路在成肌分化的重要作用:p38信號通過抑制JNK信號通路的活性負調控細胞增殖[21]。p38激酶還通過磷酸化MEF2、促進MyoD/E47異源二聚體的形成及募集染色質修飾復合物SWI/SNF到肌肉特異位點,對染色質進行重塑,激活肌肉特異性基因的轉錄。抑制p38信號則肌肉特異位點染色質得不到重塑,細胞也處于增殖狀態而不分化。而重建P38信號時,這種表型又立即轉化為激活狀態,即染色質得到重塑,肌肉特異性基因的表達得以促進。另外,P38還是MyoD靶向分化晚期階段基因表達的限速激酶。這些基因包括肌肉結構基因和收縮蛋白等。Penn等[15]證明p38促進MyoD與MEF2結合在分化晚期階段基因的啟動子區以募集RNA聚合酶-II(Pol II),當P38活性達到一定程度時,MyoD和MEF2D才能結合于分化晚期基因的啟動子。而MEF2D和有活性的p38提前出現時,分化晚期基因也能提前表達。
4 ?展望
MyoD介導的肌肉特異性基因染色質重塑激活是控制骨骼肌細胞成肌分化的關鍵機制。有意思的是,MyoD不僅介導正調控成肌分化相關因子的表達(Myogenin、MCK、MEF2、IGF2等),還介導負調控成肌分化相關因子的表達[22,23]。因此,MyoD除正向誘導成肌分化外,還存在負調控機制,這也是構建MyoD調控網絡所需要進一步研究的方向。更多調控肌肉特異基因染色質重塑的信號通路、MyoD的反饋抑制環路以及MyoD介導染色質重塑的其他模式等都值得深入探討。只有弄清控制肌肉分化進程的關鍵機理,才能進一步揭示家畜重要經濟性狀——肌纖維數量的遺傳差異。
參考文獻:
[1] DAVOLI R, BRAGLIA S, RUSSO V, et al. Expression profiling of functional genes in prenatal skeletal muscle tissue in Duroc and Pietrain pigs[J]. J Anim Breed Genet, 2011, 128(1): 15-27.
[2] MATSAKAS A, OTTO A,ELASHRY M I,et al.Altered primary and secondary myogenesis in the myostatin-null mouse[J].Rejuvenation Res,2010,13(6):717-727.
[3] FAHEY A J, BRAMELD J M, PARR T, et al. Ontogeny of factors associated with proliferation and differentiation of muscle in the ovine fetus[J].J Anim Sci,2005,83(10):2330-2338.
[4] LEHNERT S A,REVERTER A, BYRNE K A,et al. Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds[J].BMC Dev Biol,2007, 7:95.
[5] WIGMORE P M, EVANS D J. Molecular and cellular mechanisms involved in the generation of fiber diversity during myogenesis[J]. Int Rev Cytol, 2002, 216: 175-232.
[6] MANCEAU M, GROS J, SAVAGE K, et al. Myostatin promotes the terminal differentiation of embryonic muscle progenitors[J]. Genes Dev, 2008, 22(5): 668-681.
[7] CAGNAZZO M,TE PAS M F,PRIEM J,et al.Comparison of prenatal muscle tissue expression profiles of two pig breeds differing in muscle characteristics[J].J Anim Sci,2006,84(1):1-10.
[8] PALACIOS D, PURI P L. The epigenetic network regulating muscle development and regeneration[J]. J Cell Physiol, 2006, 207(1):1-11.
[9] SARTORELLI V, CARETTI G. Mechanisms underlying the transcriptional regulation of skeletal myogenesis[J]. Curr Opin Genet Dev, 2005, 15(5): 528-535.
[10] AIT-SI-ALI S, GUASCONI V, FRITSCH L, et al. A Suv39h-dependent mechanism for silencing ?S-phase genes in differentiating but not in cycling cells[J]. EMBO J, 2004, 23(3): 605-615.
[11] STRAHL B D, ALLIS C D. The language of covalent histone modifications[J]. Nature, 2000,403(6765): 41-45.
[12] AZIZ A, LIU Q C, DILWORTH F J. Regulating a master regulator: establishing tissue-specific gene expression in skeletal muscle[J]. Epigenetics, 2010, 5(8): 691-695.
[13] BERKES C A, TAPSCOTT S J. MyoD and the transcriptional control of myogenesis[J]. Semin ?Cell Dev Biol, 2005, 16(4-5): 585-595.
[14] FORCALES S V, PURI P L. Signaling to the chromatin during skeletal myogenesis: Novel targets for pharmacological modulation of gene expression[J]. Semin Cell Dev Biol, 2005, 16(4-5): 596-611.
[15] PENN B H, BERGSTROM D A, DILWORTH F J, et al. A MyoD-generated feed-forward circuit ?temporally patterns gene expression during skeletal muscle differentiation[J].Genes Dev,2004,18(19):2348-2353.
[16] OHKAWA Y, MARFELLA C G, IMBALZANO A N. Skeletal muscle specification by myogenin and Mef2D via the SWI/SNF ATPase Brg1[J]. EMBO J,2006,25(3):490-501.
[17] HRIBAL M L, NAKAE J, KITAMURA T, et al. Regulation of insulin-like growth ?factor-dependent myoblast differentiation by Foxo forkhead transcription factors[J]. J Cell Biol, 2003,162(4):535-541.
[18] SERRA C, PALACIOS D, MOZZETTA C, et al. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation[J]. Mol Cell,2007,28(2):200-213.
[19] WU Z, WOODRING P J, BHAKTA K S, et al. p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps[J]. Mol Cell Biol, 2000, 20(11): 3951-3964.
[20] ENGEL F B,SCHEBESTA M, DUONG M T,et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes[J]. Genes Dev,2005,19(10):1175-1187.
[21] PERDIGUERO E, RUIZ-BONILLA V, GRESH L, et al. Genetic analysis of p38 MAP kinases in myogenesis: Fundamental role of p38alpha in abrogating myoblast proliferation[J]. EMBO J,2007,26(5):1245-1256.
[22] SPILLER M P,KAMBADUR R, JEANPLONG F,et al. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD[J]. Mol Cell Biol,2002, 22(20):7066-7082.
[23] IJUIN T, TAKENAWA T. Role of phosphatidylinositol 3,4,5-trisphosphate(PIP3) 5-phosphatase skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP) in myoblast differentiation[J]. J Biol Chem, 2012, 287(37):31330-31341.
[5] WIGMORE P M, EVANS D J. Molecular and cellular mechanisms involved in the generation of fiber diversity during myogenesis[J]. Int Rev Cytol, 2002, 216: 175-232.
[6] MANCEAU M, GROS J, SAVAGE K, et al. Myostatin promotes the terminal differentiation of embryonic muscle progenitors[J]. Genes Dev, 2008, 22(5): 668-681.
[7] CAGNAZZO M,TE PAS M F,PRIEM J,et al.Comparison of prenatal muscle tissue expression profiles of two pig breeds differing in muscle characteristics[J].J Anim Sci,2006,84(1):1-10.
[8] PALACIOS D, PURI P L. The epigenetic network regulating muscle development and regeneration[J]. J Cell Physiol, 2006, 207(1):1-11.
[9] SARTORELLI V, CARETTI G. Mechanisms underlying the transcriptional regulation of skeletal myogenesis[J]. Curr Opin Genet Dev, 2005, 15(5): 528-535.
[10] AIT-SI-ALI S, GUASCONI V, FRITSCH L, et al. A Suv39h-dependent mechanism for silencing ?S-phase genes in differentiating but not in cycling cells[J]. EMBO J, 2004, 23(3): 605-615.
[11] STRAHL B D, ALLIS C D. The language of covalent histone modifications[J]. Nature, 2000,403(6765): 41-45.
[12] AZIZ A, LIU Q C, DILWORTH F J. Regulating a master regulator: establishing tissue-specific gene expression in skeletal muscle[J]. Epigenetics, 2010, 5(8): 691-695.
[13] BERKES C A, TAPSCOTT S J. MyoD and the transcriptional control of myogenesis[J]. Semin ?Cell Dev Biol, 2005, 16(4-5): 585-595.
[14] FORCALES S V, PURI P L. Signaling to the chromatin during skeletal myogenesis: Novel targets for pharmacological modulation of gene expression[J]. Semin Cell Dev Biol, 2005, 16(4-5): 596-611.
[15] PENN B H, BERGSTROM D A, DILWORTH F J, et al. A MyoD-generated feed-forward circuit ?temporally patterns gene expression during skeletal muscle differentiation[J].Genes Dev,2004,18(19):2348-2353.
[16] OHKAWA Y, MARFELLA C G, IMBALZANO A N. Skeletal muscle specification by myogenin and Mef2D via the SWI/SNF ATPase Brg1[J]. EMBO J,2006,25(3):490-501.
[17] HRIBAL M L, NAKAE J, KITAMURA T, et al. Regulation of insulin-like growth ?factor-dependent myoblast differentiation by Foxo forkhead transcription factors[J]. J Cell Biol, 2003,162(4):535-541.
[18] SERRA C, PALACIOS D, MOZZETTA C, et al. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation[J]. Mol Cell,2007,28(2):200-213.
[19] WU Z, WOODRING P J, BHAKTA K S, et al. p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps[J]. Mol Cell Biol, 2000, 20(11): 3951-3964.
[20] ENGEL F B,SCHEBESTA M, DUONG M T,et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes[J]. Genes Dev,2005,19(10):1175-1187.
[21] PERDIGUERO E, RUIZ-BONILLA V, GRESH L, et al. Genetic analysis of p38 MAP kinases in myogenesis: Fundamental role of p38alpha in abrogating myoblast proliferation[J]. EMBO J,2007,26(5):1245-1256.
[22] SPILLER M P,KAMBADUR R, JEANPLONG F,et al. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD[J]. Mol Cell Biol,2002, 22(20):7066-7082.
[23] IJUIN T, TAKENAWA T. Role of phosphatidylinositol 3,4,5-trisphosphate(PIP3) 5-phosphatase skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP) in myoblast differentiation[J]. J Biol Chem, 2012, 287(37):31330-31341.
[5] WIGMORE P M, EVANS D J. Molecular and cellular mechanisms involved in the generation of fiber diversity during myogenesis[J]. Int Rev Cytol, 2002, 216: 175-232.
[6] MANCEAU M, GROS J, SAVAGE K, et al. Myostatin promotes the terminal differentiation of embryonic muscle progenitors[J]. Genes Dev, 2008, 22(5): 668-681.
[7] CAGNAZZO M,TE PAS M F,PRIEM J,et al.Comparison of prenatal muscle tissue expression profiles of two pig breeds differing in muscle characteristics[J].J Anim Sci,2006,84(1):1-10.
[8] PALACIOS D, PURI P L. The epigenetic network regulating muscle development and regeneration[J]. J Cell Physiol, 2006, 207(1):1-11.
[9] SARTORELLI V, CARETTI G. Mechanisms underlying the transcriptional regulation of skeletal myogenesis[J]. Curr Opin Genet Dev, 2005, 15(5): 528-535.
[10] AIT-SI-ALI S, GUASCONI V, FRITSCH L, et al. A Suv39h-dependent mechanism for silencing ?S-phase genes in differentiating but not in cycling cells[J]. EMBO J, 2004, 23(3): 605-615.
[11] STRAHL B D, ALLIS C D. The language of covalent histone modifications[J]. Nature, 2000,403(6765): 41-45.
[12] AZIZ A, LIU Q C, DILWORTH F J. Regulating a master regulator: establishing tissue-specific gene expression in skeletal muscle[J]. Epigenetics, 2010, 5(8): 691-695.
[13] BERKES C A, TAPSCOTT S J. MyoD and the transcriptional control of myogenesis[J]. Semin ?Cell Dev Biol, 2005, 16(4-5): 585-595.
[14] FORCALES S V, PURI P L. Signaling to the chromatin during skeletal myogenesis: Novel targets for pharmacological modulation of gene expression[J]. Semin Cell Dev Biol, 2005, 16(4-5): 596-611.
[15] PENN B H, BERGSTROM D A, DILWORTH F J, et al. A MyoD-generated feed-forward circuit ?temporally patterns gene expression during skeletal muscle differentiation[J].Genes Dev,2004,18(19):2348-2353.
[16] OHKAWA Y, MARFELLA C G, IMBALZANO A N. Skeletal muscle specification by myogenin and Mef2D via the SWI/SNF ATPase Brg1[J]. EMBO J,2006,25(3):490-501.
[17] HRIBAL M L, NAKAE J, KITAMURA T, et al. Regulation of insulin-like growth ?factor-dependent myoblast differentiation by Foxo forkhead transcription factors[J]. J Cell Biol, 2003,162(4):535-541.
[18] SERRA C, PALACIOS D, MOZZETTA C, et al. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation[J]. Mol Cell,2007,28(2):200-213.
[19] WU Z, WOODRING P J, BHAKTA K S, et al. p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps[J]. Mol Cell Biol, 2000, 20(11): 3951-3964.
[20] ENGEL F B,SCHEBESTA M, DUONG M T,et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes[J]. Genes Dev,2005,19(10):1175-1187.
[21] PERDIGUERO E, RUIZ-BONILLA V, GRESH L, et al. Genetic analysis of p38 MAP kinases in myogenesis: Fundamental role of p38alpha in abrogating myoblast proliferation[J]. EMBO J,2007,26(5):1245-1256.
[22] SPILLER M P,KAMBADUR R, JEANPLONG F,et al. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD[J]. Mol Cell Biol,2002, 22(20):7066-7082.
[23] IJUIN T, TAKENAWA T. Role of phosphatidylinositol 3,4,5-trisphosphate(PIP3) 5-phosphatase skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP) in myoblast differentiation[J]. J Biol Chem, 2012, 287(37):31330-31341.