汪秋安,王盛淳,李 悅,單 楊
(1. 湖南大學 化學化工學院,湖南 長沙 410082; 2. 湖南省農業科學院 農產品加工研究所,湖南 長沙 410125)
生物活性多甲氧基黃酮糖苷的合成及其結構表征*
汪秋安1?,王盛淳1,李 悅1,單 楊2
(1. 湖南大學 化學化工學院,湖南 長沙 410082; 2. 湖南省農業科學院 農產品加工研究所,湖南 長沙 410125)
為了提高多甲氧基黃酮類化合物的水溶性和藥用價值,以2 種來源豐富且抗癌活性高的多甲氧基黃酮橘皮素和川陳皮素為底物,分別經過氧丙酮(DMDO)氧化得到多甲氧基黃酮醇9和10,然后,9和10分別與糖基供體α-溴代乙酰葡萄糖、半乳糖和鼠李糖在NaOH水溶液和氯仿體系中,進行相轉移催化下的糖苷化反應及隨后的脫乙酰化反應,首次合成了4種新的多甲氧基黃酮糖苷化合物1~4. 對所合成的化合物用1HNMR,13CNMR和MS等波譜法進行了結構表征. 合成方法原料易得、工藝簡便、收率較高.
合成;多甲氧基黃酮;糖苷化反應;結構表征
多甲氧基黃酮(polymethoxyflavonoids, PMFs)是一類含有多個甲氧基、低極性、具有平面結構且生物活性顯著的黃酮類天然產物[1]. 它們幾乎專門來源于蕓香科柑橘屬,主要存在于陳皮、青皮、橘紅、佛手和枳實等藥材中. 目前已從該屬植物中分離出40多種PMFs,以中國甜橙和柑橘果皮中的含量較高[2]. 橘皮素(tangeretin)和川陳皮素( nobiletin )是在柑橘(CitrusreticulateBlanaco)和甜橙(Citrussinensis)果皮中含量很高的多甲氧基黃酮[3-4],它們對HL-60白血病細胞、人乳腺癌細胞、小鼠皮膚癌和神經纖維瘤細胞等多種癌細胞具有非同尋常的抗癌活性[5-7]. 此外,這類化合物還具有良好的抗炎、抗病毒、抗誘變和抗高血壓的作用[8-10]. 但橘皮素和川陳皮素等多甲氧基黃酮的水溶性差、對生物受體的親和能力不強,限制了它們的進一步開發利用.
糖類化合物作為自然界中廣泛存在的一大類典型的親水性物質,在細胞識別、信號傳導等諸多生命活動中扮演著重要角色[11]. 分子通過糖苷化修飾可以改變整個分子的構像,進一步改變其溶解性和導向性,增加對受體的親和能力[12]. 例如半乳糖具有與肝細胞表面受體蛋白( ASGP-R )結合的特性,通過其抗腫瘤作用的靶向性而提高藥效[13]. 為了提高多甲氧基黃酮類化合物的水溶性和藥用價值,以橘皮素和川陳皮素為底物,分別經過氧丙酮(DMDO)氧化得到多甲氧基黃酮醇9和10. 然后9和10分別與糖基供體α-溴代乙酰葡萄糖、半乳糖和鼠李糖在NaOH水溶液和氯仿體系中,進行相轉移催化下的糖苷化反應得化合物5~8, 隨后經脫乙酰化反應, 首次合成了4種未見文獻報道的多甲氧基黃酮糖苷1~4. 其合成路線如圖1所示.

圖1 多甲氧基黃酮糖苷1~4的合成路線
1.1 儀器和試劑
熔點在 XRC-1 型顯微熔點儀上測定(溫度計未校正);NMR 用 Bruker AV-400 型核磁共振儀測定(溶劑 CDCl3或 DMSO-d6, TMS 為內標);MS 用 Agilent 1100 液-質聯用儀或 ZAB-HS 型儀測定記錄(ESI模式);薄層色譜和柱層析用硅膠均為青島海洋化工廠產品;所用試劑和溶劑為化學純和分析純, 要求無水的溶劑均經去水和重蒸處理.
溴代-2,3,4,6-四-O-乙酰基-α-D-吡喃葡萄糖、溴代-2,3,4,6-四-O-乙酰基-α-D-吡喃半乳糖和溴代-2,3,4-三-O-乙酰基-α-D-吡喃鼠李糖按文獻方法合成[14-16]. 3-羥基橘皮素(5,6,7,8,4′-五甲氧基黃酮醇,9)和柚皮黃素(5,6,7,8,3′,4′-六甲氧基黃酮醇,10)按我們最近報道的方法合成[17].
1.2 5,6,7,8,4′-五甲氧基黃酮-3-O-β-乙酰基葡萄 糖苷5的合成
在裝有磁子的100 mL 單口燒瓶中加入9 (100 mg, 0.26 mmol) 和15 mL 1.25 mol/L的NaOH溶液充分溶解攪拌10 min. 稱取四丁基溴化銨 (TBAB, Bu4N+Br-) (20 mg,0.05 mmol) 和新制的溴代乙酰基葡萄糖 (123 mg,0.3 mmol) 溶于15 mL CHCl3中, 將該CHCl3溶液滴加到反應物溶液中, 60 ℃攪拌反應回流5 h左右. 薄層色譜(TLC)監測原料點消失, 反應結束. 加入20 mL CH2Cl2, 再加入20 mL 水, 靜置分液, 水相再用CH2Cl2萃取 (20 mL×2), 合并有機相, 用水洗滌2次. 無水MgSO4干燥, 過濾, 濃縮, 經硅膠柱層析[洗脫劑:V石油醚/V乙酸乙酯=3∶1], 得到白色固體107 mg, 產率65%;1H NMR (400 MHz, CDCl3)δ7.79 (d,J= 8.9 Hz, 2H, H-2′ and H-6′) , 6.94 (d,J= 8.8 Hz, 2H, H-3′ and H-5′), 5.33 (d,J=7.0 Hz, 1H, H-1″), 5.28(m, 1H, 4″-H), 5.14~5.19 (m, 2H, 2″-H, 3″-H), 4.27~4.30 (m, 2H, 6″-H), 4.03 (s, 3H, OCH3), 3.97 (s, 3H, OCH3), 3.86 (s, 3H, OCH3), 3.81~3.84 (m, 1H, 5″-H), 3.78 (s, 3H, OCH3), 2.12(s, 3H,COCH3), 2.07(s, 3H, COCH3), 2.06 (s, 3H, COCH3), 2.04 (s, 3H, COCH3). MS (ESI),m/z: 741.2 [M+Na]+.
1.3 5,6,7,8,4′-五甲氧基黃酮-3-O-β-乙酰基半乳 糖苷6的合成
6的合成方法同5, 以9和新制的溴代乙酰基半乳糖為原料, 得白色固體6, 產率 72%.1H NMR (400 MHz, CDCl3)δ8.19 (d,J= 9.1 Hz, 2H, H-2′ and H-6′), 7.02 (d,J= 9.1 Hz, 2H, H-3′ and H-5′), 5.49 (d,J=6.8 Hz, 1H, 1″-H), 5.46~5.49(m, 1H, 4″-H), 5.11~5.16 (m, 2H, 2″, 3″-H), 4.20~4.21 (m, 2H, 6″-CH2), 3.97~4.11 (m, 1H, 5″-H), 4.10 (s, 3H, OCH3), 4.00 (s, 3H, OCH3), 3.97 (s, 3H, OCH3), 3.95 (s, 3H, OCH3), 3.90 (s, 3H, OCH3), 2.19 (s, 3H,COCH3), 2.11 (s, 3H, COCH3), 2.08 (s, 3H, COCH3), 2.02 (s, 3H, COCH3). MS (ESI),m/z: 741.2 [M+Na]+.
1.4 5,6,7,8,4′-五甲氧基黃酮-3-O-α-乙酰基鼠李 糖苷7的合成
7的合成方法同5, 以9和新制的溴代乙酰基鼠李糖為原料, 得白色固體7, 產率 69%.1H NMR (400 MHz, CDCl3)δ8.16 (d,J= 8.8 Hz, 2H,H-2′ and H-6′), 7.04 (d,J= 8.8 Hz, 2H,H-3′ and H-5′), 5.32 (d,J= 2.3 Hz, 1H, 1″-H), 5.19 (s, 1H, sugar -H), 5.09 (s, 1H, sugar -H), 4.96~5.03 (m, 1H, sugar -H), 4.10 (s, 3H, OCH3), 4.05~4.09 (m, 1H, sugar -H), 4.01 (s, 3H, OCH3), 3.98 (s, 3H, OCH3), 3.95 (s, 3H, OCH3), 3.90 (s, 3H, OCH3), 3.88 (s, 3H, OCH3), 2.09 (s, 3H, COCH3), 2.00 (s, 3H, COCH3), 1.93 (s, 3H, COCH3), 1.17 (d,J=5.5Hz, 3H, Rha-CH3). MS (ESI),m/z: 683.2 [M+Na]+.
1.5 5,6,7,8,3′,4′-六甲氧基-3-O-β-乙酰基半乳糖 苷8的合成
8的合成方法同5, 以10和新制的溴代乙酰基半乳糖為原料, 得白色固體8, 產率 70%.1H NMR (400 MHz, CDCl3)δ7.94 (d,J= 1.7 Hz, 1H, H-6′), 7.71 (dd,J= 8.6, 1.6 Hz, 1H, H-2′), 6.94 (d,J= 8.7 Hz, 1H, H-5′), 5.64 (d,J= 8.0 Hz, 1H,H-1″), 5.32~5.35 (m, 2H,sugar-H), 5.06 (dd,J=8.0, 3.4 Hz, 1H, sugar-H), 4.04 (s, 3H, OCH3), 4.00 (s, 3H, OCH3), 3.94 (s, 3H, OCH3), 3.91 (s, 3H, OCH3), 3.91 (s, 3H, OCH3), 3.87 (s, 3H,OCH3,), 3.83 (dd,J= 6.2, 3.0 Hz, 2H, sugar-H), 3.79 (d,J= 5.8 Hz, 1H, sugar-H), 2.10 (s, 3H, COCH3), 2.06 (s, 3H, COCH3), 1.94 (s, 3H, COCH3), 1.85 (s, 3H, COCH3);13C NMR (100 MHz, CDCl3)δ172.60, 170.21, 170.06, 169.87, 169.80, 154.47, 151.30, 150.94, 147.98, 146.49, 143.75, 137.63, 135.21, 123.02, 121.62, 114.65, 112.36, 110.37, 99.18, 70.51, 68.86, 66.79, 62.09, 61.89, 61.66, 61.53, 60.30, 55.84, 55.79, 20.90, 20.44, 20.37. MS (ESI),m/z: 771.2 [M+Na]+.1.6 5,6,7,8,4′-五甲氧基黃酮-3-O-β-葡萄糖苷1 的合成
在100 mL單口圓底燒瓶中,用15 mL甲醇加熱攪拌至溶解5,6,7,8,4′-五甲氧基黃酮-3-O-β-乙酰基葡萄糖苷5 (80 mg, 0.11 mmol),再加入5 mL甲醇鈉溶液 (4.3 mg 鈉和5 mL甲醇配置而成),回流攪拌反應3 h后,TLC跟蹤反應,原料點消失,反應完成,將反應液冷卻至室溫,減壓蒸餾除去溶劑,經硅膠柱層析[洗脫劑:乙酸乙酯及乙酸乙酯/乙醇的混合溶劑進行梯度洗脫],得51 mg化合物1, 白色固體,產率85%.1H NMR (400 MHz, DMSO-d6)δ8.01 (d,J= 8.9 Hz, 2H, H-2′ and H-6′), 7.15 (d,J= 9.0 Hz, 2H, H-3′ and H-5′), 5.19 (s, 1H, OH), 5.44 (d, 1H,J= 4.4 Hz, sugar-OH), 5.11 (d,J= 4.8Hz, sugar-OH), 5.41 (d,J=4.8 Hz, 1H, 2″-OH), 5.15 (d,J= 4.8 Hz, 1H, 3″-OH), 5.07 (d,J= 5.2 Hz, 1H, 4″-OH), 5.03 (d,J=7.6 Hz, 1H, 1″-H), 4.60 (t,J= 5.2 Hz, 1H, 6″-OH), 4.03 (s, 3H, OCH3), 3.97 (s, 3H, OCH3), 3.86 (s, 6H, 2OCH3), 3.78 (s, 3H, OCH3), 3.70~3.74 (1H, m, 3″-H), 3.42-3.48 (2H, m, 6″-CH2), 3.15~3.30 (3H, m, 2″, 4″, 5″-H );13C NMR (100 MHz, DMSO-d6)δ176.32, 161.25, 160.14, 150.34, 147.34, 146.70, 143.03, 137.05, 126.67,122.77, 113.85, 113.48, 105.65, 75.84, 74.74, 73.01, 69.84, 61.23, 61.01, 60.80, 60.63, 54.47. MS (ESI),m/z:573.2 [M+Na]+.
1.7 5,6,7,8,4′-五甲氧基-3-O-β-半乳糖苷2的合成
2的合成方法同1, 以6為原料得白色固體2, 產率80%;1H NMR (400 MHz, DMSO-d6)δ7.94 (d,J= 8.8 Hz, 2H, H-2′ and H-6′), 7.02 (d,J= 8.9 Hz, 2H, H-3′ and H-5′), 5.30 (d,J= 4.8 Hz, 1H, 2″-OH), 4.99 (d,J= 8.0 Hz, 1H, 1″-H), 4.73 (d, 1H,J= 5.5 Hz, 4″-OH), 4.61 (t,J= 7.2 Hz, 1H, 6″-OH ), 4.02 (s, 3H, OCH3), 3.89 (s, 3H, OCH3), 3.71 (s, 3H, OCH3), 3.42~3.71 (m, 6H, sugar-H);13C NMR (100 MHz, DMSO-d6)δ174.57, 159.51, 158.40, 148.60, 145.60, 144.96, 141.29, 135.31, 124.93, 121.03, 112.11, 111.74, 103.90, 75.84, 74.74, 73.01, 69.84, 59.49, 59.27, 59.06, 58.89, 52.73. MS (ESI),m/z: 573.2 [M+Na]+.1.8 5,6,7,8,4′-五甲氧基黃酮-3-O-α-鼠李糖苷3 的合成
3的合成方法同1, 以7為原料得白色固體3, 產率83%;1H NMR (400 MHz, CDCl3)δ7.94 (d,J= 8.8 Hz, 2H, H-2′ and 6′), 7.04 (d,J= 8.8 Hz, 2H, H-3′ and 5′), 6.34 (d,J= 2.3 Hz, 1H, H-1″), 4.27 (dd,J= 6.1, 2.3 Hz, 1H, H-2″), 3.89 (s, 3H, OCH3), 3.79 (s, 3H, OCH3), 3.74 (m, 2H, H-3″ and 4″), 3.71 (s, 9H, 3OCH3), 3.29 (m, 1H, H-5″), 1.78 (s, 1H, 3″-OH), 1.70 (s, 1H, 2″-OH), 1.58 (s, 1H, 4″-OH), 1.13 (d,J= 6.5 Hz, 3H, CH3-5″).13C NMR (100 MHz, CDCl3)δ173.44, 161.56, 157.51, 152.21, 146.41, 145.25, 138.32, 136.88, 136.42, 130.54, 123.74, 114.27, 113.65, 100.60, 74.37, 73.41, 73.01, 70.24, 60.70, 56.08, 17.66. MS (ESI),m/z: 557.2 [M+Na]+.
1.9 5,6,7,8,3′,4′-六甲氧基-3-O-β-半乳糖苷4的 合成
4的合成方法同1, 以8為原料得白色固體4, 產率82%;1H NMR (400 MHz, DMSO-d6)δ7.50 (dd,J= 8.5,1.9 Hz, 1H, H-6′), 7.34 (s, 1H, H-2′), 6.92 (d,J= 8.5 Hz, 1H, H-5′), 5.30 (d,J= 4.8 Hz, 1H, 2″-OH), 4.99 (d,J= 8.0 Hz, 1H, 1″-H), 4.73 (d,J= 5.5 Hz, 1H, 4″-OH), 4.61 (t,J= 7.2 Hz, 1H, 6″-OH ), 4.03 (s, 3H, OCH3), 3.96 (s, 3H, OCH3), 3.91 (s, 3H, OCH3), 3.89 (s, 3H, OCH3), 3.88 (s, 6H, 2OCH3), 3.42~3.71 (m, 6H, sugar-H);13C NMR (100 MHz, DMSO-d6)δ177.24, 153.79, 150.87, 149.55, 147.13, 146.82, 142.84, 136.72, 134.12, 130.77, 120.98, 120.33, 109.08, 109.00, 105.43, 75.84, 74.74, 73.01, 69.84, 61.92, 60.02, 59.70, 59.13, 58.10, 54.00, 53.91. MS (ESI),m/z: 603.2 [M+Na]+.
2.1 合成方法
采用高氯酸-紅磷法制備溴代乙酰糖類化合物. 將葡萄糖、半乳糖和鼠李糖乙酰化后,在紅磷和溴同時存在下,將乙酰基葡萄糖、半乳糖和鼠李糖的異頭碳溴化,得到溴代乙酰基葡萄糖、半乳糖和鼠李糖. 對于糖苷化反應曾嘗試采用如下方法:1) 四丁基溴化銨(TBBA)為相轉移催化劑, 以無水丙酮為溶劑, 同時存在弱堿 (K2CO3)的體系. 2) 氧化銀/無水二氯甲烷體系下室溫反應. 3) 四丁基溴化銨 (TBBA)為相轉移催化劑, 在稀氫氧化鈉堿性條件下的水/三氯甲烷體系中. 經過比較這3種糖苷合成方法和底物的酚羥基活性選擇了一條操作簡單且產率較高的有效的糖苷合成路線, 即以稀堿氫氧化鈉水溶液為堿性縮合劑, 采用雙相體系即CHCl3/H2O 體系, 以四丁基溴化銨(TBBA)為相轉移催化劑, 在60 ℃的反應溫度下, 分別將底物與溴代乙酰基葡萄糖、半乳糖和鼠李糖在堿性條件下進行縮合反應合成多甲氧基黃酮糖苷化合物5~8, 值得注意的是,控制反應溫度和反應時間,可以有效抑制端基碳的異構化.在相轉移催化劑條件下,可減少溴代糖水解副反應的發生.在脫去乙酰基糖苷的乙酰基保護時, 采用了簡單實用的甲醇鈉/甲醇體系, 最終合成了一系列多甲氧基黃酮糖苷化合物1~4. 1~4及化合物5~8均為未見文獻報道的新化合物. 該合成方法具有反應條件溫和、后處理方便、產率較高和立體選擇性強的優點,對具有重要生物活性的多甲氧基黃酮苷的合成具有較大的應用價值.
2.2 結構表征
利用核磁共振氫譜中糖的端基質子H-1″與H-2″的偶合常數(J值)判斷苷鍵的構型是目前最常用的方法[18]. 在葡萄糖和半乳糖的六元環中,β-型糖的H-1″和H-2″都處于a鍵,它們之間的偶合常數J1, 2= 7~10 Hz,而α-型糖的H-1″和H-2″分別處于e鍵和a鍵,它們之問的偶合常數J1, 2= 2~6 Hz,所以由此可以大概了解它們的構型. 溴代乙酰基葡萄糖、半乳糖和鼠李糖中相應的J1, 2為2~4 Hz,為α-型. 在糖苷化反應中多甲氧基黃酮3-羥基位的氧負離子一般從背面進攻溴代乙酰基糖的C1-Br 鍵,該反應屬于SN2反應機理。由于2-乙酰基的鄰基參與作用, 糖苷化反應得到1,2-反式產物,若 H-1″和H-2″都處于a鍵,得到β-型糖苷化合物. 通過用1H NMR對目標黃酮苷化合物1~8進行結構表征,化合物1, 2, 4~6, 8的端基質子H-1″與H-2″相應的J1, 2為7.6~8.0 Hz,可確證為β-苷鍵,而對于鼠李糖苷3, 7的H-1″和H-2″都處于e鍵上,相應的J1, 2為2.3 Hz,屬于α-苷鍵.
以5,6,7,8,3′,4′-六甲氧基黃酮-3-O-β-乙酰基半乳糖苷8和5,6,7,8,3′,4′-六甲氧基黃酮-3-β-D-半乳糖苷4為例,通過譜圖分析進行結構表征.化合物8和4的結構式如圖2所示.

圖2 化合物8和化合物4的結構式
5,6,7,8,3′,4′-六甲氧基黃酮-3-O-β-乙酰基半乳糖苷8的1HNMR譜圖分析如下,在δH7.50處積分為1的雙峰可歸屬為B環6′位的氫,6′位的氫和5′位的氫有較強的鄰位偶合,和2′位的氫有較弱的間位偶合,偶合常數(J)分別為8.6 Hz和1.6 Hz;δH7.71處的雙峰可歸屬為B環2′位的氫;δH7.71處的雙峰可歸屬為5′位的氫,偶合常數為8.7 Hz;δH5.64處的雙峰為半乳糖基1″的氫,偶合常數為8.0 Hz;δH5.32~5.39處的多重峰可歸屬為半乳糖基3″和4″的氫;δH5.06處的兩個雙峰可歸屬為半乳糖基2″的氫,偶合常數為8.0 Hz和3.4 Hz,由H-1″和H-2″的耦合常數J> 6 Hz,由此判斷H-1″和H-2″為均為a鍵,乙酰半乳糖苷為β構型;δH3.87~4.04處6個單峰可歸屬為黃酮6個甲氧基的氫;δH3.83處兩個雙峰為半乳糖基6″的亞甲基氫,偶合常數為6.2 Hz和3.0 Hz;δH3.79處雙峰為半乳糖基5″的氫,偶合常數為5.8 Hz;δH1.85~2.10處4個單峰可歸屬為半乳糖基4個乙酰基氫. 5,6,7,8,3′,4′-六甲氧基黃酮-3-O-β-乙酰基半乳糖苷8的13C NMR譜圖解析如下,δC62.09, 61.89, 61.66, 61.53, 60.30, 55.84為黃酮環上6個甲氧基的碳信號;δC172.60, 170.21, 170.06, 169.87, 169.80, 154.47, 151.30, 150.94, 147.98, 146.49, 143.75, 137.63, 135.21, 123.02, 121.62, 114.65歸屬于黃酮母核環上碳信號;δC112.36, 110.37, 99.18, 70.51, 68.86, 66.79 歸屬于β-D-吡喃半乳糖苷碳信號;δC55.79, 20.90, 20.44, 20.37歸屬于半乳糖苷上4個乙酰基上的甲基碳信號.
5,6,7,8,3′,4′-六甲氧基黃酮-3-O-β-半乳糖苷4 的1H NMR 譜圖分析如下,在δH7.50處積分為1的雙峰可歸屬為B環6′位的氫,偶合常數為8.5 Hz和1.9 Hz;δH7.34處的雙峰可歸屬為B環2′位的氫;δH6.92處的雙峰可歸屬為5′位的氫,偶合常數為8.5 Hz;δH5.30 處的雙峰為吡喃半乳糖基2″位的羥基氫,偶合常數為8.0和4.8 Hz;δH4.99處的雙峰可歸屬為吡喃半乳糖基1″位的氫,偶合常數為8.0 Hz;δH4.73處的雙峰可歸屬為吡喃半乳糖基4″位的羥基氫,偶合常數為5.5 Hz;δH4.61處的多重峰為吡喃半乳糖基6″位的羥基氫,偶合常數為7.2 Hz;δH3.88~4.03處6個單峰可歸屬為黃酮6個甲氧基的氫信號;δH3.42~3.71處的多重峰可歸屬為吡喃半乳糖環上的6個氫信號.5,6,7,8,3′,4′-六甲氧基黃酮-3-O-β-半乳糖苷4的13C NMR譜圖解析如下,δC60.02, 59.70, 59.13, 58.10, 54.00, 53.91為黃酮環上6個甲氧基的碳信號;δC105.43, 75.84, 74.74, 73.01, 69.84, 61.92 歸屬于β-D-吡喃半乳糖苷碳信號;其余為黃酮母核環上碳信號.
以多甲氧基黃酮橘皮素和川陳皮素為原料,分別經過氧丙酮(DMDO)氧化得到2種多甲氧基黃酮醇-3-羥基-5,6,7,8,4′-五甲氧基黃酮9和3-羥基-5,6,7,8,3′,4′-六甲氧基黃酮10,然后分別與溴代乙酰葡萄糖、溴代乙酰半乳糖和溴代乙酰鼠李糖等3種糖基供體進行糖苷化反應,首次合成了4種未見文獻報道的多甲氧基黃酮糖苷化合物1~4. 在多甲氧基黃酮糖苷合成過程中,采用NaOH水溶液/CHCl3反應體系,TBAB作相轉移催化劑. 該合成方法具有反應條件溫和、后處理方便、產率較高和立體選擇性強的優點,對具有重要生物活性的多甲氧基黃酮苷的合成具有較高的應用價值.
[1] TRIPOLE E, GUARDIA M L, GIAMMANCO S,etal. Citrus flavonoids: molecular structure, biological activity and nutritional properties: A review [J]. Food Chemistry, 2007, 104 (2): 466-479.
[2] OOGHE W C, OOGHE S J, DETAVERNIER C M,etal. Characterization of orange juice (Citrussinensis) by polymethoxylated flavones [J]. Journal of Agricultural and Food Chemistry, 1994, 42 (10): 2191-2195.
[3] LEWIN G, MACIUK A, THORET S,etal. Semisynthesis of natural flavones inhibiting tubulin polymerization, from hesperidin [J]. Journal of Natural Products, 2010, 73 (4): 702-706.
[5] LI S, PAN M H, LAI C S,etal. Isolation and syntheses of polymethoxyflavones and hydroxylated polymethoxyflavones as inhibitors of HL-60 cell lines [J]. Bioorganic and Medicinal Chemistry, 2007, 15 (10): 3381-3389.
[6] MANTHEY J A, GUTHRIE N. Antiproliferative activities of citrus flavonoids against six human cancer cell lines [J]. Journal of Agricultural and Food Chemistry, 2002, 50 (21): 5837-5843.
[7] PAN M H, CHEN W J, LIN-SHIAU S Y,etal. Tangeretin induces cell-cycle G1 arrest through inhibiting cyclin-dependent kinases 2 and 4 activities as well as elevating Cdk inhibitors p21 and p27 in human colorectal carcinoma cells [J]. Carcinogenesis, 2002, 23(10):1677-1684.
[8] HUANG Y S,HO S U.Polymethoxy flavones are responsible for the anti-inflammatory activity of citrus fruit peel [J]. Food Chemistry, 2010, 119(3): 868-873.
[9] LI S, SANG S, PAN M H,etal. Anti-inflammatory property of the urinary metabolites of nobiletin in mouse [J]. Bioorganic and Medicinal Chemistry Letters, 2007, 17(18): 5177-5181.
[10]XU J J, WU X, LI M M,etal. Antiviral activity of polymethoxylated flavones from “Guangchenpi”, the edible and medicinal pericarps of Citrus reticulata ‘Chachi’ [J]. Journal of Agricultural and Food Chemistry, 2014, 62(10): 2182-2189.
[11]汪鋼強, 陳玉玲, 韓明松, 等. 具有生物活性的紫檀芪和3'-甲氧基紫檀芪及其糖苷類化合物的合成 [J]. 有機化學, 2011, 31(12): 2114-2120.
WANG Gang-qiang, CHEN Yu-ling, HAN Ming-song,etal. Synthesis and biological activity of pterostilbene and 3′-methoxy pterostilbene and their glucosides derivatives [J]. Chinese Journal of Organic Chemistry, 2011, 31(12): 2114-2120. (In Chinese)
[12]PARK S H, KIM H J, YIM S H,etal. Delineation of the role of glycosylation in the cytotoxic properties of quercetin using novel assays in living vertebrates [J]. Journal of Natural Products, 2014, 77(11): 2389-2396.
[13]ZHANG X, SIMMONS C G, COREG D R. Liver cell specific targeting of peptide nucleic acid oligomers [J]. Bioorganic and Medicinal Chemistry Letters, 2001, 11(10):1269-1272.
[14]FURNISS B S, HANNAFORD A J, SMITH P W G A R. Textbook of practical organic chemistry [M]. 5th ed.New York:With John Wiley & Sons,1989:647.
[15]LIU J D, CHEN L, CAI S L. Semisynthesis of apigenin and acacetin-7-O-β-D-glycosides from naringin and their cytotoxic activities [J]. Carbohydrate Research, 2012, 357: 41-46.
[16]BEBAULT G M, DUTION G G S, WARFIED C K. Synthesis of 4-O-α-L-rhamnopyranosyl-L-rham-nopyranose [J]. Carbohydrate Research, 1974, 34(1):174-179.
[17]LI Y, CAI S L, HE K L,etal. Semisynthesis of polymethoxyflavonoids from naringin and hesperidin [J]. Journal of Chemical Research., 2014, 38(5):287-290.
[18]WU Z, FU X L, YANG N,etal. Synthesis and fluorescence properties of coumarin glycosides and triazoylglycosides [J]. Chemical Research in Chinese Universities, 2013, 29 (3): 460-465.
Synthesis and Structure Characterization of Bioactive Polymethoxyflavonoids Glycosides
WANG Qiu-an1?,WANG Sheng-chun1, LI Yue1, SHAN Yang2
(1.College of Chemistry and Chemical Engineering, Hunan Univ, Changsha, Hunan 410082, China;2. Institue of Agricultural Product Processing, Hunan Academy of Agricultural Science, Changsha, Hunan 410125, China)
Two most abundant sources with the highest anticancer activity of natural polymethoxyflavonoids were oxidated by dimethyldioxirane ( DMDO ) to polymethoxy flavonoids 9 and 10 respectively. 9 or 10 were condensed withα-acetylglucosyl bromide, α-acetylgalactosyl bromide or α-acetylrhamnosyl bromide in dilute NaOH (aq)/CHCl3system through phase transfer catalytic glycosation reaction, and followed by deacetylation, four new polymethoxyflavonoids glycosides 1~4 were synthesized. The structures of all the synthesized compounds were characterized by1HNMR,13CNMR and MS spectra. This synthetic method has the advantages of easy availability of starting materials,simple operation.
synthesis; polymethoxyflavonoids; glycosation reaction; structure characterization
2014-12-11
國家自然科學基金資助項目(J1210040),National Natural Science Foundation of China(J1210040) ;“十二五”農村領域國家科技計劃項目(2012BAD31B02)
汪秋安(1962-),男,湖南常德人,湖南大學教授
?通訊聯系人,E-mail:WangQA@hnu.edu.cn
1674-2974(2015)12-0053-06
O625.4
A