潘 影, 余成群,2, 土艷麗, 孫 維,2, 羅黎鳴, 苗彥軍, 武俊喜,2,*
1 中國科學院地理科學與資源研究所, 北京 100101 2 中國科學院地理科學與資源研究所生態系統網絡觀測與模擬重點實驗室, 北京 100101 3 西藏自治區高原生物研究所, 拉薩 850001 4 西藏大學農牧學院, 林芝 860000
西藏草地植物功能性狀與多項生態系統服務關系
潘 影1, 余成群1,2, 土艷麗3, 孫 維1,2, 羅黎鳴2,4, 苗彥軍4, 武俊喜1,2,*
1 中國科學院地理科學與資源研究所, 北京 100101 2 中國科學院地理科學與資源研究所生態系統網絡觀測與模擬重點實驗室, 北京 100101 3 西藏自治區高原生物研究所, 拉薩 850001 4 西藏大學農牧學院, 林芝 860000
針對植被功能性狀與生態系統服務功能之間的相互關系,構建了西藏草地株高和可食性兩種功能性狀的9項指標,并基于土壤和植物采樣,分析了9項植物功能性狀指標和5項生態系統服務指標間的相關性,探討了4種機制(Mass ratio, Selection, Niche complementarity及Insurance)在西藏草地的適用性。結果表明,9項功能性狀指標中,株高Rao和可食種與所有種株高CWM比分別與土壤有機碳、土壤全氮和土壤含水率3項生態系統服務指標呈顯著負相關及顯著正相關。說明群落植被對光能競爭的互補性及可食性狀植株在群落中的光能資源相對競爭力,與土壤固碳、肥力供給及水源涵養有顯著相關關系。而群落可食種、優勢種、優勢種與次優勢種對光能資源競爭力水平,可食植株多樣性、可食植株在群落中的優勢度及其光能資源競爭力均值,對草地生態系統服務無顯著影響。西藏草地植物功能性狀對多項生態系統服務的影響機制從光能資源競爭角度更符合Niche complementarity和Insurance理論,而從可食功能性狀角度更符合Mass ratio和Selection理論。
西藏; 植物功能性狀; 生態系統服務; 機理
植物與環境相互作用的漫長進化過程,形成了植物多樣性;這些多樣性改變了生態系統的過程與功能,影響著生態系統服務[1-4]。研究表明,生物多樣性對生態系統功能與服務的影響多由植物性狀的變化引起;這些植物性狀也被稱為植物功能性狀[5-6]。植物功能性狀對生態系統功能與服務影響的基礎研究在土地利用、氣候變化對生態系統功能與服務影響的模擬[7-9]以及生態規劃及區域評價中都有所應用[10-13]。
國際上針對植物功能性狀對生態系統功能與服務的影響提出了幾種理論,包括Mass ratio, Selection, Niche complementarity及Insurance[6]。Mass ratio理論最早針對功能性狀及多樣性對生態系統初級生產力影響的研究[14],后擴展到生態系統功能[6]。Mass ratio理論認為在某個特定時間斷面,生態系統功能主要由其優勢種功能性狀決定,而與次優勢種和一些生物量較小物種無關[6,14]。Selection理論與Mass ratio大體一致,表示生態系統功能主要由群落中生物量最大的優勢種的功能性狀決定,與其他生物量較小物種無關[15]。
而Niche complementarity理論是指群落中不同生態位植物能夠增強群落的資源利用率,從而提高群落生物量,影響生態系統功能[15]。而Insurance理論表示,在群落中,一些非優勢種,甚至稀有種,能夠在群落的生態系統功能供給方面提供“緩沖”作用,緩沖降雨、溫度、病原體等生物、環境因子變化對群落生態功能的影響[16]。
4種理論在不同區域、不同生態系統有不同適用性,對這種適用性的研究有助于理解當地氣候環境因子-植物群落-生態系統功能服務的相互聯系和影響,指導當地生態系統恢復及生態系統功能與服務提升[17-19]。本文擬利用西藏草地土壤、植被采樣數據,研究西藏草地植物典型功能性狀對草地多功能的影響及四種理論的適用性。
新倉村(29°29′—30°02′N、91°15′—91°41′E)隸屬于西藏自治區拉薩市達孜縣,位于拉薩河流域的藏南谷地下游南岸。研究區域平均海拔4500 m,年均溫7.5 ℃,年均日照時數3065 h,年均降水450 mm,降水多集中在植物生長季6—9月。采樣區域土壤類型包括亞高山草甸草原土、亞高山灌叢草甸土、高山草甸土,植被類型包括亞高山草甸草原、亞高山灌叢草甸、高山草甸。
本文選取株高及可食性兩種功能性狀,分析其功能性狀差異性和功能性狀均值[6]。在此基礎上構建了9項指標(表1),其中群落株高功能性狀差異性、可食性功能性狀差異性參數反映植株功能性狀在群落生態位的多樣性,用以驗證niche complementarity及insurance理論在西藏草地的適用性。所有種、優勢及次優勢種株高功能性狀均值及可食性功能性狀優勢度用于分析優勢種、次優勢種等與多功能的相關性,用以驗證mass ratio和selection理論在西藏草地的適用性。本文選取了地上可食生物量、土壤有機碳、土壤全氮、土壤含水率、植被覆蓋度5項指標定量生態系統服務,研究不同功能性狀指標與生態系統服務之間的關系。具體參數見表1。

表1 植物功能性狀對多項生態系統服務影響機制分析參數
功能性狀差異性由Rao指數定量,計算公式如下:
(1)
式中,s為群落中物種數,pi、pj為第i、j個物種在群落種的相對蓋度,dij為物種i和j之間某種性狀的差額。
功能性狀均值由CWM指數定量,計算公式如下:
(2)
式中,s為群落中物種數,pi為第i個物種在群落種的相對蓋度,di為物種i功能性狀值。
本文數據樣品于2012年7月采集于西藏拉薩市達孜縣新倉村山坡草地,海拔梯度從3949 m至4940 m,沿坡底到坡頂共設15個5 m× 5m樣地,每個樣地中隨機選取3個面積為0.5 m×0.5 m的樣方重復。物種的株高、蓋度和多度現場記錄,地上生物量齊地面分種刈割,于實驗室65 ℃烘干48 h稱重[20-21]。并在刈割后的樣方挖剖面環刀取土,測定含水量,土鉆取土測定有機碳、全氮。本文的植株可食性是針對牦牛、山羊、綿羊及馬,假設一種或一種以上牲畜采食該種草,則該草可食。為了減少牲畜啃食對植株高度的影響,在測量植株高度時,僅選取葉片完整的植株進行測量。
在株高與可食性兩個功能性狀的9項指標中,有6項指數相互呈顯著相關(圖1)。其中所有種、優勢種、優勢種與次優勢種株高CWM指標兩兩之間呈顯著正相關;說明某群落優勢種和次優勢種對光能資源競爭力越強,整個群落光能資源競爭水平越高。

圖1 草地植物功能性狀指數皮爾遜相關性Fig.1 Pearson correlation of the pairs of indicators of the plant functional traits點圖為散點圖,數字為皮爾遜相關系數,其中**代表在0.01水平顯著相關
株高Rao指數和可食種與所有種株高CWM比指標呈顯著負相關;說明可食性物種在群落中對光能資源競爭力越高,群落植物對光能資源競爭互補性越低,或者說群落株高功能性狀趨同。
可食性種CWM分別與所有種、優勢種、優勢種與次優勢種株高CWM呈顯著正相關關系;主要由于新倉村草地群落大部分由可食性種建群。
可食性種的豐富度與株高相關指標無顯著相關關系,說明群落可食性功能性狀的差異性與群落植株對光能資源競爭力無明顯關系。
9項植物功能性狀指標中,株高Rao、可食種與所有種株高CWM比兩項指標與土壤有機碳、土壤全氮和土壤含水率3項生態系統服務指標顯著相關(圖2,表2)。其中株高Rao與土壤有機碳、土壤全氮、土壤含水率呈顯著負相關,說明群落植被對光能競爭互補性越強,則對土壤中養分、水分等資源有更多利用,導致土壤有機碳、全氮和含水率的降低。

圖2 植物功能性狀指標與生態系統服務指標散點圖Fig.2 Scatter diagrams of the plant functional traits and ecosystem services
可食種與所有種株高CWM比和土壤有機碳、土壤全氮、土壤含水率呈顯著正相關,說明具有可食性狀植株在群落中的光能資源相對競爭力,與土壤有機碳、全氮和含水量的保持有顯著正相關關系。
所有種、優勢種、優勢種與次優勢種、可食種株高CWM,可食種豐富度、可食種占總種比例、可食生物量比例7項指標與生態系統服務的5項指標皆無顯著相關關系。說明群落植株包括可食種、優勢種、優勢種與次優勢種對光能資源競爭力水平,具有可食性狀植株的多樣性、具有可食性狀植株在群落中的優勢度和其光能資源競爭力均值,對草地生態系統服務無顯著影響。

表2 植物功能性狀指標與生態系統服務指標皮爾遜相關性
本文選取了株高和可食性兩項植物功能性狀,株高是反映植株對光能資源的競爭力較成熟的指標[6-7,12-13],同樣比葉面積和葉片氮含量也能反映植株光能資源競爭力[5,7]。由于研究區域和問題的不同,可食性性狀在很多國際研究中被忽視[5,22-23],但由于西藏當地牧民的生產生活和其生態安全屏障功能同樣重要[24],可食性功能性狀在西藏草地研究中尤為值得關注。除了株高和可食性兩種功能性狀外,還有很多功能性狀,如葉片磷含量、葉片光合速率、植株生殖高度、根密度、凋落物碳氮含量等,可以反映群落的健康水平、繁殖能力、碳氮等營養物質循環[5,25-26]。這些功能性狀都與生態系統服務相關[27]。生態系統水源涵養功能與水循環過程有關,其中地表植被、枯落物層及土壤的最大持水力、土壤的降雨入滲率、地表蒸散率等都是重要參數。草地土壤持水占草地生態系統持水的大部分,而小尺度上,本研究選取的土壤含水率可以反映一定時間斷面水循環的狀態,從一定程度上區別不同生態系統水源涵養功能。
Mass ratio, Selection理論和Niche complementarity及Insurance理論的較大分歧點是在群落中的一些非優勢種和稀有種對生態系統功能是否有影響。
本研究結果表明,株高功能性狀差異性對多項生態系統服務有顯著影響,而無論是優勢種、次優勢種或全部種的株高性狀均值對生態系統服務皆無顯著影響。這意味著,西藏草地生態系統服務與植株株高差異程度有關,而與優勢種或次優勢種等的株高功能性狀相對水平無關。本研究結果表明,西藏草地從光能資源競爭角度,其植物功能性狀對多項生態系統服務的影響更加符合Niche complementarity和Insurance理論。
而西藏草地可食性功能性狀對多項生態系統服務的影響機制與株高性狀不同。可食性功能性狀的指標更多程度上反映的是群落中可食種與不可食種的種間競爭和對環境的適應性。本研究結果表明,在反映可食性功能性狀優勢度與生態系統服務聯系方面,可食種與所有種株高CWM較豐富度比例、生物量比例更加適合本研究。可食性種的優勢度,或更進一步描述,是可食性種在群落中對光能的競爭力與草地生態系統服務顯著相關。而可食性種間的多樣性或株高差異性對生態系統服務并無顯著影響。西藏草地可食功能性狀對多項生態系統服務的影響更加符合Mass ratio和Selection理論。
本文利用株高、可食性兩個植物功能性狀的9項指標與5項生態系統服務指標的統計分析,能夠較好反映西藏草地植物功能性狀與多項生態系統服務的相關性;同樣也初步印證了Mass ratio, Selection, Niche complementarity及Insurance理論在西藏草地生態系統的適用性。對于可食性功能性狀,前兩種理論更加適用,而對于株高功能性狀后兩種理論更加適用。結果表明,西藏植株光能競爭的生態位差異及可食性種優勢度與草地生態系統服務供給顯著相關,而群落優勢種、次優勢種等的光能競爭水平及可食性種多樣性與草地生態系統服務供給無關。
[1] Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime J P, Hector A, Hooper D U, Huston M A, Raffaelli D, Schmid B, Tilman D, Wardle D A. Biodiversity and ecosystem functioning:current knowledge and future challenges. Science, 2001, 294(5543):804-808.
[2] Balvanera P, Pfisterer A B, Buchmann N, He J S, Nakashizuka T, Raffaelli D, Schmid B. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 2006, 9(10):1146-1156.
[3] Hector A, Bagchi R. Biodiversity and ecosystem multifunctionality. Nature, 2007, 448(7150):188-190.
[4] Mace G M, Norris K, Fitter A H. Biodiversity and ecosystem services:a multilayered relationship. Trends in Ecology and Evolution, 2012, 27(1):19-26.
[5] Wright I J, Reich P B, Westoby M, Ackerly D D, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J H C, Diemer M, Flexas J, Garnier E, Groom P K, Gulias J, Hikosaka K, Lamont B B, Lee T, Lee W, Lusk C, Midgley J J, Navas M L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov V I, Roumet C, Thomas S C, Tjoelker M G, Veneklaas E J, Villar R. The worldwide leaf economics spectrum. Nature, 2004, 428(6985):821-827.
[6] Diaz S, Lavorel S, de Bello F, Quetier F, Grigulis K, Robson T M. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(52):20684-20689.
[7] Quetier F, Thebault A, Lavorel S. Plant traits in a state and transition framework as markers of ecosystem response to land-use change. Ecological Monographs, 2007, 77(1):33-52.
[8] Soudzilovskaia N A, Elumeeva T G, Onipchenko V G, Shidakov I I, Salpagarova F S, Khubiev A B, Tekeev D K, Cornelissen J H C. Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(45):18180-18184.
[9] Geijzendorffer I R, Roche P K. Can biodiversity monitoring schemes provide indicators for ecosystem services? Ecological Indicators, 2013, 33:148-157.
[10] Naidoo R, Balmford A, Costanza R, Fisher B, Green R E, Lehner B, Malcolm T R, Ricketts T H. Global mapping of ecosystem services and conservation priorities. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28):9495-9500.
[11] Anderson B J, Armsworth P R, Eigenbrod F, Thomas C D, Gillings S, Heinemeyer A, Roy D B, Gaston K J. Spatial covariance between biodiversity and other ecosystem service priorities. Journal of Applied Ecology, 2009, 46(4):888-896.
[12] Lavorel S, Grigulis K, Lamarque P, Colace M P, Garden D, Girel J, Pellet G, Douzet R. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 2010, 99(1):135-147.
[13] Lavorel S, Grigulis K. How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. Journal of Ecology, 2012, 100(1):128-140.
[14] Grime J P. Benefits of plant diversity to ecosystems:immediate, filter and founder effects. Journal of Ecology, 1998, 86(6):902-910.
[15] Cardinale B J, Wright J P, Cadotte M W, Carroll I T, Hector A, Srivastava D S, Loreau M, Weis J J. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(46):18123-18128.
[16] Diaz S, Fargione J, Chapin F S III, Tilman D. Biodiversity loss threatens human well-being. PLoS Biology, 2006, 4(8):e277.
[17] 王平, 盛連喜, 燕紅, 周道瑋, 宋彥濤. 植物功能性狀與濕地生態系統土壤碳匯功能. 生態學報, 2010, 30(24):6990-7000.
[18] 龔時慧, 溫仲明, 施宇. 延河流域植物群落功能性狀對環境梯度的響應. 生態學報, 2011, 31(20):6088-6097.
[19] 胡耀升, 么旭陽, 劉艷紅. 長白山不同演替階段森林植物功能性狀及其與地形因子間的關系. 生態學報, 2014, 34(20): 5915-5924
[20] Cornelissen J H C, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich D E, Reich P B, ter Steege H, Morgan H D, van der Heijden M G A, Pausas J G, Poorter H. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51(4):335-380.
[21] Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte M S, Cornwell W K, Craine J M, Gurvich D E, Urcelay C, Veneklaas E J, Reich P B, Poorter L, Wright I J, Ray P, Enrico L, Pausas J G, de Vos A C, Buchmann N, Funes G, Quetier F, Hodgson J G, Thompson K, Morgan H D, ter Steege H, van der Heijden M G A, Sack L, Blonder B, Poschlod P, Vaieretti M V, Conti G, Staver A C, Aquino S, Cornelissen J H C. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2013, 61(3):167-234.
[22] Grigulis K, Lavorel S, Krainer U, Legay N, Baxendale C, Dumont M, Kastl E, Arnoldi C, Bardgett R D, Poly F, Pommier T, Schloter M, Tappeiner U, Bahn M, Clément J C. Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. Journal of Ecology, 2013, 101(1):47-57.
[23] Maestre F T, Quero J L, Gotelli, N J, Escudero A, Ochoa V, Delgado-Baquerizo M, García-Gómez M, Bowker M A, Soliveres S, Escolar C, García-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, Aguilera L, Arredondo T, Blones J, Boeken B, Bran D, Concei??o A A, Cabrera O, Chaieb M, Derak M, Eldridge D J, Espinosa C I, Florentino A., Gaitán J, Gatica M G, Ghiloufi W, Gómez-González S, Gutiérrez J R, Hernández R M, Huang X, Huber-Sannwald E, Jankju M, Miriti M, Monerris J, Mau R L, Morici E, Naseri K, Ospina A, Polo V, Prina A, Pucheta E, Ramírez-Collantes D A, Rom?o R, Tighe M, Torres-Díaz C, Val J, Veiga J P, Wang D, Zaady E. Plant species richness and ecosystem multifunctionality in Global Drylands. Science, 2012, 335(6065):214-218.
[24] Yu C, Zhang Y, Claus H, Zeng R, Zhang X, Wang J. Ecological and environmental issues faced by a developing Tibet. Environmental Science and Technology, 2012, 46(4):1979-1980.
[25] Jiang J, Li Y, Wang M, Zhou C, Cao G, Shi P, Song M. Litter species traits, but not richness, contribute to carbon and nitrogen dynamics in an alpine meadow on the Tibetan Plateau. Plant and Soil, 2013, 373(1/2):931-941.
[26] Butterfield B J, Suding K N. Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape. Journal of Ecology, 2013, 101(1):9-17.
[27] 孟婷婷, 倪健, 王國宏. 植物功能性狀與環境和生態系統功能. 植物生態學報, 2007, 31(1):150-165.
The relationship between plant functional traits and multiple ecosystem services in a Tibetan grassland ecosystem
PAN Ying1, YU Chengqun1,2, TU Yanli3, SUN Wei1,2, LUO Limimg2,4, MIAO Yanjun4, WU Junxi1,2,*
1InstituteofGeographicSciencesandNaturalResourcesResearch,ChineseAcademyofSciences,Beijing100101,China2KeyLaboratoryofEcosystemNetworkObservationandModeling,InstituteofGeographicSciencesandNaturalResourcesResearch,ChineseAcademyofSciences.Beijing100101,China3TibetPlateauInstituteofBiology,Lhasa850001,China4AgriculturalandAnimalHusbandryCollegeofTibetUniversity,Linzhi860000,China
We studied the relationships among plant functional traits and multiple ecosystem services. Nine indicators of plant functional traits of plant heights and palatability were established, which were Rao index of plant heights, the community weighted mean value (CWM) of plant heights of all species, the CWM of plant heights of dominant species, the CWM of plant heights of dominant and subdominant species, the richness of palatable plants, the richness ratio of palatable species to all species, the ratio of palatable biomass to total biomass, the CWM of plant heights of palatable species, and the CWM of the ratio of heights of palatable plants to all plant species. The ecosystem services we analyzed included forage supply, soil carbon stocks, soil fertilization supply, water regulation, and soil retention. Further, we attempted to test four candidate mechanisms by which plant functional traits influence ecosystem services. These were:1) mass ratio, 2) selection, 3) niche complementarity, and 4) insurance. In 2012, we collected soil and vegetation samples from Xincang village, Lhasa, Tibet. Ecosystem services and plant functional traits were quantified based on these samplings. Pearson correlations were calculated among the nine functional traits, as well as between the functional traits and ecosystem services. The results showed that among the functional traits, the Rao index of plant heights was significant negatively correlated with soil organic carbon, soil total nitrogen, and soil water content. The ratio of the CWM of the heights of palatable plants to all plant species was significant positively correlated with soil organic carbon, soil total nitrogen, and soil water content. However, the CWM of the plant heights of all species, palatable species, dominant species, dominant and subdominant species, as well as the richness of palatable species, the ratio of the palatable specie richness to all species, and the ratio of palatable biomass to all species, were not significantly correlated with any of the ecosystem services. Our results demonstrated that the niche complementarity of the light captures of the plant community has negative impacts on ecosystem soil carbon stock, fertilization provisioning, and water regulating services. However, the relative niche competitiveness of light captures of palatable plants in the community has positive impacts on ecosystem soil carbon stock, fertilization provisioning, and water regulating services. The results imply, from the perspective of resource competitiveness, the concepts of niche complementarity and insurance best characterize the mechanisms by which plant functional traits determine ecosystem services in grassland. However, from the perspective of palatability, the concepts of mass ratio and selection are more reasonable.
Tibet; plant functional traits; ecosystem services; mechanisms
國家自然科學青年基金(31200364); 國家科技支撐計劃項目(2011BAD17B05); “西部之光”人才培養計劃項目(20100309); 西藏生態專項(Z2012C07G03)
2014-04-16; < class="emphasis_bold">網絡出版日期:
日期:2014-12-18
10.5846/stxb201404160738
*通訊作者Corresponding author.E-mail: wujx@igsnrr.ac.cn
潘影, 余成群, 土艷麗, 孫維, 羅黎鳴, 苗彥軍, 武俊喜.西藏草地植物功能性狀與多項生態系統服務關系.生態學報,2015,35(20):6821-6828.
Pan Y, Yu C Q, Tu Y L, Sun W, Luo L M, Miao Y J, Wu J X.The relationship between plant functional traits and multiple ecosystem services in a Tibetan grassland ecosystem.Acta Ecologica Sinica,2015,35(20):6821-6828.