張智健 逄宇 趙雁林 劉長庭
?
·綜述·
膿腫分枝桿菌復合群的研究進展
張智健 逄宇 趙雁林 劉長庭
膿腫分枝桿菌復合群(Mycobacteriumabscessuscomplex,MABC)是可引起人體致病的重要非結核分枝桿菌(non-tuberculous Mycobacteria, NTM),它由膿腫分枝桿菌、馬賽分枝桿菌和Mycobacteriumbolletii3個菌種組成。多靶位基因測序為MABC準確可靠的菌種鑒定方法。克拉霉素是MABC感染所致疾病治療的基石,近年來,MABC研究較大的進展就是紅霉素核糖體甲基化酶(41)[erythromycin ribosome methytransferase,erm(41)]基因的發現,erm(41)與克拉霉素誘導耐藥相關。膿腫分枝桿菌和M.bolletii均攜帶完整的erm(41)基因,而馬賽分枝桿菌erm(41)基因有2個片段缺失。膿腫分枝桿菌28位堿基具有多態性,T28序列型可誘導耐藥,C28序列型不誘導耐藥。為檢測膿腫分枝桿菌是否對克拉霉素誘導耐藥,建議培養時間由3 d 延長至14 d。另外,已有證據表明MABC可能在人與人之間傳染,有必要研究MABC的基因分型技術。
分枝桿菌屬; 非結核分枝桿菌; 抗藥性, 細菌; 基因型
膿腫分枝桿菌復合群(Mycobacteriumabscessuscomplex,MABC)是由膿腫分枝桿菌、馬賽分枝桿菌和Mycobacteriumbolletii3個菌種組成的復合群,是可引起人體致病的重要非結核分枝桿菌(non-tuberculous Mycobacteria, NTM)。在所有NTM中,MABC分離率占第二位,僅次于鳥分枝桿菌復合群[1]。在快生型NTM中分離率占第一位,65%~80%的快生型NTM肺病是由MABC引起[2]。MABC是致病性最高,耐藥性最強的快生型NTM。
近年來,NTM感染患者明顯增多,其中以MABC感染為多見[3]。MABC主要侵犯人體肺臟,引起MABC肺病,還可以侵犯肺外組織器官如皮膚和軟組織、淋巴結、骨骼、關節等,甚至引起角膜炎、心內膜炎等,重癥患者可引起全身播散性疾病、MABC菌血癥[4-7]。MABC感染所致的疾病診斷困難,治療棘手,所以引起各國學者的廣泛關注。可以說,MABC是目前國際上NTM研究的重點和熱點。關于MABC的研究成果和進展,也是如今NTM研究領域的一大亮點。
MABC的命名經歷了較大的歷史變化。最早并不是一個復合群,僅有膿腫分枝桿菌單一菌種,并且是歸屬于龜分枝桿菌的一個亞種,稱為龜分枝桿菌。1953年Moore和Frerichs[8]報道1例由該菌引起膝關節膿腫樣感染的患者,“膿腫”由此得名。隨后將其命名為龜分枝桿菌膿腫亞種(Mycobacteriumchelonaesubsp.abscessus)。一直到1992年,美國胸科學會(American Thoracic Society, ATS)根據該菌的藥物敏感性試驗(簡稱“藥敏試驗”)及核酸序列分析將膿腫亞種從龜分枝桿菌中獨立出來,成為一個單獨的菌種,稱為膿腫分枝桿菌[9]。
隨著細菌分離培養及分子鑒定技術的發展,相繼有新的與膿腫分枝桿菌親緣關系密切的菌種被發現。2004年,法國馬賽l例50歲女性肺炎患者痰液中分離出一株NTM,表型和膿腫分枝桿菌相似,16SrRNA測序顯示和膿腫分枝桿菌標準株相似度達100%,但rpoB測序相似度僅為96%,系統進化分析顯示其來源于膿腫分枝桿菌,因其發現于馬賽故將其命名為“馬賽分枝桿菌”[10]。隨后馬賽分枝桿菌相繼在美國等其他國家被發現和報道[11-13]。2006年Adékambi等[14]又發現一株與膿腫分枝桿菌親緣關系密切的菌種,并以其已故同事,一位叫Bollet的微生物家命名,稱為“Mycobacteriumbolletii”。這樣一來,廣義的膿腫分枝桿菌不再是單一菌種,而是由3個菌種形成的一個復合群。目前多數文獻認同,廣義的膿腫分枝桿菌改稱為膿腫分枝桿菌復合群(MABC),它由膿腫分枝桿菌、馬賽分枝桿菌和M.bolletii3個菌種組成[15]。少數文獻不改變膿腫分枝桿菌的稱謂,將其所屬3個菌種稱為其亞種:分別為:膿腫分枝桿菌膿腫亞種(Mycobacteriumabscessussubsp.abscessus)、膿腫分枝桿菌馬賽亞種(Mycobacteriumabscessussubsp.massiliense) 和膿腫分枝桿菌bolletii亞種(Mycobacteriumabscessussubsp.bolletii)。
也有學者對上述三分類法持異議,他們根據多靶位基因的系統進化樹中馬賽分枝桿菌和M.bolletii位置接近,認為兩者應該合二為一,統稱為膿腫分枝桿菌bolletii亞種[16]。這樣,膿腫分枝桿菌就只包含2個亞種:膿腫分枝桿菌膿腫亞種和膿腫分枝桿菌bolletii亞種。
所以,到底是三分類還是二分類,目前爭議較大,各方觀點見仁見智,多數人傾向于三分類。考慮到馬賽分枝桿菌在對克拉霉素敏感性上優于M.bolletii,我們認同三分類法。最新有研究支持我們的觀點,該研究根據全基因組單核苷酸多態性位點建立的進化樹顯示:MABC明確包含3個進化支,這3個進化支分別為膿腫分枝桿菌、馬賽分枝桿菌和M.bolletii;有意思的是,M.bolletii位置和膿腫分枝桿菌還更為鄰近,而不是和馬賽分枝桿菌更為鄰近[17]。
現有研究資料統計發現,MABC的菌種構成中不同國家地區有不同的分布。膿腫分枝桿菌占71%~43%;馬賽分枝桿菌占21%~56%;M.bolletii較為少見,占1%~18%[18-25]。
我國對MABC的研究較少,大多還停留在“龜-膿腫分枝桿菌復合群”或者“膿腫分枝桿菌” 的概念,文獻中的稱謂比較混亂,對國際上的研究熱點馬賽分枝桿菌,僅有個別文獻的個案報道,M.bolletii在我國更是還未見報道[26]。
準確的菌種鑒定是臨床正確診斷、有效治療的前提。并且,現有研究發現,膿腫分枝桿菌、馬賽分枝桿菌及M.bolletii對克拉霉素具有不同的藥敏特性,膿腫分枝桿菌及M.bolletii大多對克拉霉素耐藥,而馬賽分枝桿菌大多對克拉霉素敏感[27]。所以臨床上觀察到,同樣的治療藥物,對MABC有不同的治療效果。對于MABC這一異質性種群來說,僅局限于菌群鑒定遠遠不能滿足臨床的需要,準確的菌種鑒定顯得尤為重要。
傳統表型鑒定方法,如生化法及對硝基苯甲酸和(或)噻吩-2-羧酸肼鑒別培養基,由于耗時費力,鑒定結果可靠性差[28-29]。最主要的問題是不能準確鑒定到種。所以,在MABC的鑒定中已沒有地位。
以靶位基因PCR為基礎的分子鑒定為目前分枝桿菌主流的菌種鑒定方法。具體包括核酸探針、基因芯片、PCR-限制性片段長度多態性(restriction fragment length polymorphism,RFLP)、PCR-直接測序法等。對于MABC來說,由于膿腫分枝桿菌、馬賽分枝桿菌及M.bolletii親緣關系密切,以16s rRNA為靶位基因的任何鑒定方法都無法對它們鑒別。
于是,核酸探針、基因芯片等多以16s rRNA為靶位基因的商品化的鑒定試劑盒對于MABC的鑒定就顯得無能為力。PCR-RFLP(PRA)作為較為成熟的NTM鑒定方法,已得到了廣泛應用。最常用的靶位基因為rpoB、hsp65。但具體對于MABC來說, PRA-hsp65有兩種酶切圖譜[30],文獻最初稱為hsp65 Ⅰ型和hsp65 Ⅱ型,后來研究發現,hsp65 Ⅰ型為膿腫分枝桿菌,hsp65 Ⅱ型為馬賽分枝桿菌和M.bolletii[31]。所以PRA-hsp65只能鑒定出膿腫分枝桿菌,不能鑒定馬賽分枝桿菌和M.bolletii。PRA-rpoB對MABC更是只有一種酶切圖譜,只能鑒定到菌群,不能準確鑒定到菌種[32]。PRA在MABC的鑒定中也受到限制。
所以,PCR-直接測序法為目前MABC鑒定的主要方法, 靶基因包括間隔區序列(internal transcribed spacer,ITS)、rpoB、hsp65、sodA、recA等。但研究發現,單靶位基因測序鑒定MABC有時可能得到錯誤的結果[33]。所以,目前多采用多靶位基因測序,測序結果相互驗證[33-34]。對于多靶位基因測序鑒定結果不一致的現象,文獻稱之為“菌種間復合模式”, 處理原則為取多數靶位基因鑒定一致的結果[31]。多靶位基因聯合測序鑒定快速,結果可靠,值得在MABC的菌種鑒定中推廣應用;缺點是費用成本較高。
以克拉霉素和阿奇霉素為代表的大環內酯類抗生素是MABC感染所致疾病治療的基石。克拉霉素的地位尤其突出,它在所有的大環內酯類抗生素中抗分枝桿菌的活力最強[35]。 MABC對克拉霉素的耐藥機制成為了近年來人們關注的焦點。
克拉霉素作用靶位為細菌核糖體50S大亞基中23S rRNA 結構域Ⅴ區,該區具有肽酰轉移酶活性,克拉霉素與其結合后阻礙肽鏈延伸,阻止蛋白的翻譯合成[36]。MABC對克拉霉素的耐藥機制主要有兩種情況:一種是獲得性耐藥,為編碼 23S rRNA 的rrl基因2058或者2059位點A堿基的點突變,導致克拉霉素失去作用靶位而耐藥[37]。rrl的突變是由于長期的克拉霉素治療引起,細菌在抗生素的選擇壓力下發生的自發點突變。rrl突變率早期較低, 1996年Wallace等[38]報道,在800例MABC肺病及全身性感染的患者中,僅有18例,占2.3%。近年來有增高趨勢,韓國報道突變率在7%~23%[25,39]。
MABC對克拉霉素的另外一種耐藥機制為誘導耐藥。MABC的誘導耐藥為近年來研究的熱點。最早于1992年,Brown等[35]觀察到,在MABC的體外藥敏試驗中,隨著培養時間的延長,最低抑菌濃度(minimum inhibitory concentration,MIC)有逐漸增高的現象,這種情況一時找不到合理的解釋。后來,人們在結核分枝桿菌[40]、恥垢分枝桿菌[41]、偶發分枝桿菌[42]中相繼發現紅霉素核糖體甲基化酶(erythromycin ribosome methytransferase,erm)基因,分別命名為erm(37)、erm(38)、erm(39),這種基因編碼的erm能使克拉霉素的作用位點2058或2059位點腺嘌呤的甲基化,導致克拉霉素失去作用靶位而失活。2009年,Nash等[43]從上述分枝桿菌中存在erm基因得到啟示,是否MABC中也存在erm基因?通過基因重組及轉化,最終證實erm基因在MABC中的存在,將其命名為erm(41)。
erm(41) 可被克拉霉素誘導表達,有活性的erm(41)能催化23S rRNA 2058或2059位腺嘌呤甲基化,導致常規培養3 d藥敏試驗結果為敏感的MABC,在延長培養至14 d后,對克拉霉素表現出耐藥。但不是所有MABC都會產生誘導耐藥。不少文獻詳細研究并總結了erm(41)基因在膿腫分枝桿菌、馬賽分枝桿菌及M.bolletii之間的結構差異和它們相應的在誘導耐藥方面的特點,結果發現:結構上,膿腫分枝桿菌和M.bolletii均攜帶完整的erm(41)基因,而馬賽分枝桿菌erm(41)基因有2個片段缺失,分別為276 bp長片段和2 bp短片段缺失[43-45]。另外,基因序列第28位堿基存在多態性,膿腫分枝桿菌有T28序列型或C28序列型,馬賽分枝桿菌和M.bolletii只有T28序列型。誘導耐藥表型上,只有T28序列型的膿腫分枝桿菌和M.bolletii可表現為誘導耐藥。C28序列型的膿腫分枝桿菌和馬賽分枝桿菌沒有誘導耐藥。
erm(41)的發現解釋了臨床困擾已久的MABC對克拉霉素治療反應的異質性問題。現在明白,這種情況是由于不同的菌種,或者是膿腫分枝桿菌不同的28位堿基序列型引起。治療反應好的菌株為沒有誘導耐藥表型的馬賽分枝桿菌或C28序列型的膿腫分枝桿菌;相應地,治療反應差的為有誘導耐藥表型的M.bolletii或者T28序列型的膿腫分枝桿菌。
對于克拉霉素的耐藥表型和基因型的對應關系,不同的研究的有不同的結論。多數研究認為,培養3 d的耐藥菌株對應的改變為rrl基因突變,培養14 d的誘導耐藥株對應的erm(41)的基因型為T28序列型[38]。也有研究持不同看法,有研究發現培養3 d的耐藥菌株并不都存在rrl基因突變,可能還有其他機制[27]。還有研究發現,并不是所有的T28序列型膿腫分支桿菌都能夠誘導耐藥[46]。另外,erm(41)和rrl一般認為屬于兩個獨立的機制,兩者可以在一株菌中共存;但有的研究認為,erm(41)和rrl兩種機制只存在二選一的問題,不可能共存[47]。上述爭議還有待于進一步深入地進行研究。
體外藥敏試驗是幫助克服盲目經驗性用藥、促進治療有的放矢的有力工具和最佳途徑。為此,國內外指南對NTM的體外藥敏試驗作了綱領性規定。2007版ATS的NTM診治指南及我國2012版《非結核分枝桿菌病診斷與治療專家共識》都建議,有條件應盡可能做體外藥敏試驗,然后根據藥敏試驗結果選擇相應敏感的治療藥物[2,48]。并且,ATS指南推薦,對于快生型NTM,常規藥敏試驗應包括九種藥物:克拉霉素、阿米卡星、頭孢西汀、亞胺培南、氟喹諾酮類、多西環素、復方新諾明、妥布霉素、利奈唑胺。指南還明確規定了NTM體外藥敏試驗的方法:肉湯微量稀釋法測定MIC。美國臨床與實驗室標準委員會(Clinical and Laboratory Stan-dards Institute, CLSI)也更新了NTM體外藥敏試驗指南(CLSI 2011版M24-A2)[49],為各種類型NTM的肉湯微量稀釋法提供了標準化的操作方法步驟。這些指南有力地推動和規范了NTM體外藥敏試驗的開展。
對MABC的體外藥敏試驗,進展最大的是:由于MABC對克拉霉素可能產生誘導耐藥,所以培養時間由常規培養3 d,要求進一步延長至14 d,以檢測誘導耐藥的現象。以前僅僅培養3 d的體外藥敏試驗結果只反映MABC的獲得性耐藥情況,沒有體現出誘導耐藥的情況。
相對于結核分枝桿菌的基因分型技術的成熟,NTM的基因分型剛剛起步。以前人們一直樂觀預期NTM不會在人與人之間傳染,但最新的多個研究表明NTM可能在人與人之間傳染[50-52]。較多文獻報道MABC在醫院內暴發和流行[6, 53-54],所以對于MABC的基因分型,目前已提上研究日程。
隨著各種NTM標準株全基因測序的完成,可變數量串聯重復序列(variable number of tandem repeats,VNTR)分型技術在NTM檢測中逐漸興起,先后有胞內分枝桿菌[55]、鳥分枝桿菌[56]、MABC[57]根據自身標準株的全基因序列建立了相應的VNTR分型技術。這些分型技術有力地推動了NTM院內暴發感染傳播機制的研究。不僅如此,有文獻還發現了VNTR分型的基因型和體外藥敏試驗結果,以及臨床表型和臨床預后之間有一定內在聯系[58]。這無疑拓寬了VNTR的應用范圍,為預測NTM患者的藥物治療反應及最終預后提供了新的視角。
總之,近年來有關MBAC的研究成果頗為豐富。即便如此,我國MABC感染所致疾病的防治形勢依然嚴峻。要攻克和解決MABC感染所致疾病的診治困境和難題,我們還任重道遠。
[1] Simons S, van Ingen J, Hsueh PR, et al. Nontuberculous mycobacteria in respiratory tract infections, eastern Asia. Emerg Infect Dis, 2011, 17(3): 343-349.
[2] Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med, 2007, 175(4): 367-416.
[3] Chen CY, Chen HY, Chou CH, et al. Pulmonary infection caused by nontuberculous mycobacteria in a medical center in Taiwan, 2005—2008. Diagn Microbiol Infect Dis, 2012, 72(1): 47-51.
[4] Tsai WC, Hsieh HC, Su HM, et al.Mycobacteriumabscessusendocarditis: a case report and literature review. Kaohsiung J Med Sci, 2008, 24(9): 481-486.
[5] Toy BR, Frank PJ. Outbreak ofMycobacteriumabscessusinfection after soft tissue augmentation. Dermatol Surg, 2003, 29(9): 971-973.
[6] Kim HY, Yun YJ, Park CG, et al. Outbreak ofMycobacteriummassilienseinfection associated with intramuscular injections. J Clin Microbiol, 2007, 45(9): 3127-3130.
[7] Hamamoto T, Yuki A, Naoi K, et al. Bacteremia due toMycobacteriummassiliensein a patient with chronic myelogenous leukemia: case report. Diagn Microbiol Infect Dis, 2012, 74(2): 183-185.
[8] Moore M, Frerichs JB. An unusual acid-fast infection of the knee with subcutaneous, abscess-like lesions of the gluteal region; report of a case with a study of the organism,Mycobacteriumabscessus, n. sp. J Invest Dermatol, 1953, 20(2): 133-169.
[9] Kusunoki S, Ezaki T. Proposal ofMycobacteriumperegrinumsp. nov., nom. rev., and elevation ofMycobacteriumchelonaesubsp. abscessus (Kubica et al.) to species status:Mycobacteriumabscessuscomb. nov. Int J Syst Bacteriol, 1992, 42(2): 240-245.
[10] Adékambi T, Reynaud-Gaubert M, Greub G, et al. Amoebal coculture of “Mycobacteriummassiliense” sp. nov. from the sputum of a patient with hemoptoic pneumonia. J Clin Microbiol, 2004, 42(12): 5493-5501.
[11] Simmon KE, Pounder JI, Greene JN, et al. Identification of an emerging pathogen,Mycobacteriummassiliense, byrpoBsequencing of clinical isolates collected in the United States. J Clin Microbiol, 2007, 45(6): 1978-1980.
[12] Nakanaga K, Hoshino Y, Era Y, et al. Multiple cases of cutaneousMycobacteriummassilienseinfection in a “hot spa” in Japan. J Clin Microbiol, 2011, 49(2): 613-617.
[13] Mitra S, Tapadar SR, Banerjee D, et al. Pulmonary disease due toMycobacteriummassiliense. Indian J Chest Dis Allied Sci, 2012, 54(1): 53-57.
[14] Adékambi T, Berger P, Raoult D, et al.rpoBgene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov.,Mycobacteriumphocaicumsp. nov. andMycobacteriumaubagnensesp. nov. Int J Syst Evol Microbiol, 2006, 56(Pt 1): 133-143.
[15] Griffith DE, Brown-Elliott BA, Benwill J, et al.Mycobacteriumabscessus. “Pleased to Meet You, Hope You Guess My Name...”. Ann Am Thorac Soc, 2015, 12(3):436-439.
[16] Leao SC, Tortoli E, Euzéby JP, et al. Proposal thatMycobacteriummassilienseandMycobacteriumbolletiibe united and reclassified asMycobacteriumabscessussubsp. bolletii comb. nov., designation ofMycobacteriumabscessussubsp. abscessus subsp. nov. and emended description ofMycobacteriumabscessus. Int J Syst Evol Microbiol, 2011, 61(Pt 9): 2311-2313.
[17] Davidson RM, Hasan NA, de Moura VC, et al. Phylogeno-mics of Brazilian epidemic isolates ofMycobacteriumabscessussubsp. bolletii reveals relationships of global outbreak strains. Infect Genet Evol, 2013, 20: 292-297.
[18] Roux AL, Catherinot E, Ripoll F, et al. Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in france. J Clin Microbiol, 2009, 47(12): 4124-4128.
[19] Zelazny AM, Root JM, Shea YR, et al. Cohort study of molecular identification and typing ofMycobacteriumabscessus,Mycobacteriummassiliense, andMycobacteriumbolletii. J Clin Microbiol, 2009, 47(7): 1985-1995.
[20] van Ingen J, de Zwaan R, Dekhuijzen RP, et al. Clinical relevance ofMycobacteriumchelonae-abscessus group isolation in 95 patients. J Infect, 2009, 59(5): 324-331.
[21] Harada T, Akiyama Y, Kurashima A, et al. Clinical and microbiological differences betweenMycobacteriumabscessusandMycobacteriummassilienselung diseases. J Clin Microbiol, 2012, 50(11): 3556-3561.
[22] Yoshida S, Tsuyuguchi K, Suzuki K, et al. Further isolation ofMycobacteriumabscessussubsp. abscessus and subsp. bolletii in different regions of Japan and susceptibility of these isolates to antimicrobial agents. Int J Antimicrob Agents, 2013, 42(3):226-231.
[23] Huang CW, Chen JH, Hu ST, et al. Synergistic activities of tigecycline with clarithromycin or amikacin against rapidly growing mycobacteria in Taiwan. Int J Antimicrob Agents, 2013, 41(3): 218-223.
[24] Koh WJ, Jeon K, Lee NY, et al. Clinical significance of differe-ntiation ofMycobacteriummassiliensefromMycobacteriumabscessus. Am J Respir Crit Care Med, 2011, 183(3): 405-410.
[25] Lee SH, Yoo HK, Kim SH, et al. The drug resistance profile ofMycobacteriumabscessusgroup strains from Korea. Ann Lab Med, 2014, 34(1): 31-37.
[26] 王濤,張媛媛,秦雪冰,等. 馬賽分枝桿菌肺病一例并文獻復習.中華結核和呼吸雜志,2011,34(8):571-574.
[27] Nie W, Duan H, Huang H, et al. Species identification ofMycobacteriumabscessussubsp. abscessus andMycobacteriumabscessussubsp. bolletii usingrpoBandhsp65, and susceptibility testing to eight antibiotics. Int J Infect Dis, 2014, 25: 170-174.
[28] 李國利, 張靈霞, 陳澎. 對硝基苯甲酸生長試驗鑒別結核與非結核分枝桿菌應用評價. 臨床肺科雜志, 2009, 14(12): 1648-1649.
[29] Shao Y, Chen C, Song H, et al. The epidemiology and geographic distribution of nontuberculous mycobacteria clinical isolates from sputum samples in the eastern region of China. PLoS Negl Trop Dis, 2015, 9(3): e0003623.
[30] Devallois A, Goh KS, Rastogi N. Rapid identification of mycobacteria to species level by PCR-restriction fragment length polymorphism analysis of thehsp65 gene and proposition of an algorithm to differentiate 34 mycobacterial species. J Clin Microbiol, 1997, 35(11): 2969-2973.
[31] Kim HY, Kook Y, Yun YJ, et al. Proportions ofMycobacteriummassilienseandMycobacteriumbolletiistrains among KoreanMycobacteriumchelonae-Mycobacteriumabscessusgroup isolates. J Clin Microbiol, 2008, 46(10): 3384-3390.
[32] 李艷冰, 張媛媛, 李曉亮, 等. PCR-RFLP技術用于膿腫分枝桿菌群鑒定的初步研究. 中華檢驗醫學雜志, 2011, 34(11): 1017-1022.
[33] Macheras E, Roux AL, Ripoll F, et al. Inaccuracy of single-target sequencing for discriminating species of theMycobacteriumabscessusgroup. J Clin Microbiol, 2009, 47(8): 2596-2600.
[34] Slany M, Pavlik I. Molecular detection of nontuberculous mycobacteria: advantages and limits of a broad-range sequencing approach. J Mol Microbiol Biotechnol, 2012, 22(4): 268-276.
[35] Brown BA, Wallace RJ Jr, Onyi GO, et al. Activities of four macrolides, including clarithromycin, againstMycobacteriumfortuitum,Mycobacteriumchelonae, andM.chelonae-like organisms. Antimicrob Agents Chemother, 1992, 36(1): 180-184.
[36] Poehlsgaard J, Douthwaite S. The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol, 2005, 3(11): 870-881.
[37] Meier A, Kirschner P, Springer B, et al. Identification of mutations in 23SrRNAgene of clarithromycin-resistantMycobacteriumintracellulare. Antimicrob Agents Chemother, 1994, 38(2): 381-384.
[38] Wallace RJ Jr, Meier A, Brown BA, et al. Genetic basis for clarithromycin resistance among isolates ofMycobacteriumchelonaeandMycobacteriumabscessus. Antimicrob Agents Chemother, 1996, 40(7): 1676-1681.
[39] Kim HY, Kim BJ, Kook Y, et al.Mycobacteriummassilienseis differentiated fromMycobacteriumabscessusandMycobacteriumbolletiiby erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. Microbiol Immunol, 2010, 54(6): 347-353.
[40] Andini N, Nash KA. Intrinsic macrolide resistance of theMycobacteriumtuberculosiscomplex is inducible. Antimicrob Agents Chemother, 2006, 50(7): 2560-2562.
[41] Nash KA. Intrinsic macrolide resistance inMycobacteriumsmegmatisis conferred by a novelermgene,erm(38). Antimicrob Agents Chemother, 2003, 47(10): 3053-3060.
[42] Nash KA, Zhang Y, Brown-Elliott BA, et al. Molecular basis of intrinsic macrolide resistance in clinical isolates ofMycobacteriumfortuitum. J Antimicrob Chemother, 2005, 55(2): 170-177.
[43] Nash KA, Brown-Elliott BA, Wallace RJ Jr. A novel gene,erm(41), confers inducible macrolide resistance to clinical isolates ofMycobacteriumabscessusbut is absent fromMycobacteriumchelonae. Antimicrob Agents Chemother, 2009, 53(4): 1367-1376.
[44] Yoshida S, Tsuyuguchi K, Suzuki K, et al. Further isolation ofMycobacteriumabscessussubsp. abscessus and subsp. bolletii in different regions of Japan and susceptibility of these isolates to antimicrobial agents. Int J Antimicrob Agents, 2013, 42(3):226-231.
[45] Maurer FP, Rüegger V, Ritter C, et al. Acquisition of clari-thromycin resistance mutations in the 23S rRNA gene ofMycobacteriumabscessusin the presence of inducibleerm(41). J Antimicrob Chemother, 2012, 67(11): 2606-2611.
[46] Brown-Elliott BA, Vasireddy S, Vasireddy R, et al. Utility of Sequencing theerm(41) Gene in Isolates ofMycobacteriumabscessussubsp. abscessus with Low and Intermediate Clarithromycin MICs. J Clin Microbiol, 2015, 53(4):1211-1215.
[47] Bastian S, Veziris N, Roux AL, et al. Assessment of clari-thromycin susceptibility in strains belonging to theMycobacteriumabscessusgroup byerm(41) andrrlsequencing. Antimicrob Agents Chemother, 2011, 55(2): 775-781.
[48] 中華醫學會結核病學分會, 《中華結核和呼吸雜志》編輯委員會. 非結核分枝桿菌病診斷與治療專家共識. 中華結核和呼吸雜志, 2012, 35(8): 572-580.
[49] Woods GL, Brown-Elliott BA, Conville PS, et al. Susceptibi-lity testing of mycobacteria, nocardiae, and other aerobic actinomycetes; approbed standard-secone edition.Wayne:Clinical and Laboratory Standards Institute,2011.
[50] Aitken ML, Limaye A, Pottinger P, et al. Respiratory outbreak ofMycobacteriumabscessussubspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med, 2012, 185(2): 231-232.
[51] Huang WC, Chiou CS, Chen JH, et al. Molecular epidemiology ofMycobacteriumabscessusinfections in a subtropical chronic ventilatory setting. J Med Microbiol, 2010, 59(Pt 10): 1203-1211.
[52] Bryant JM, Grogono DM, Greaves D, et al. Whole-genome sequencing to identify transmission ofMycobacteriumabscessusbetween patients with cystic fibrosis: a retrospective cohort study. Lancet, 2013, 381(9877): 1551-1560.
[53] Song JY, Sohn JW, Jeong HW, et al. An outbreak of post-acu-puncture cutaneous infection due toMycobacteriumabscessus. BMC Infect Dis, 2006, 6: 6.
[54] Viana-Niero C, Lima KV, Lopes ML, et al. Molecular characterization ofMycobacteriummassilienseandMycobacteriumbolletiiin isolates collected from outbreaks of infections after laparoscopic surgeries and cosmetic procedures. J Clin Microbiol, 2008, 46(3): 850-855.
[55] Ichikawa K, Yagi T, Inagaki T, et al. Molecular typing ofMycobacteriumintracellulareusing multilocus variable-number of tandem-repeat analysis: identification of loci and analysis of clinical isolates. Microbiology, 2010, 156(Pt 2): 496-504.
[56] Inagaki T, Nishimori K, Yagi T, et al. Comparison of a variable-number tandem-repeat (VNTR) method for typingMycobacteriumaviumwith mycobacterial interspersed repetitive-unit-VNTR and IS1245 restriction fragment length polymorphism typing. J Clin Microbiol, 2009, 47(7): 2156-2164.
[57] Wong YL, Ong CS, Ngeow YF. Molecular typing ofMycobacteriumabscessusbased on tandem-repeat polymorphism. J Clin Microbiol, 2012, 50(9): 3084-3088.
[58] Tatano Y, Sano C, Yasumoto K, et al. Correlation between variable-number tandem-repeat-based genotypes and drug susceptibility inMycobacteriumaviumisolates. Eur J Clin Microbiol Infect Dis, 2012, 31(4): 445-454.
(本文編輯:薛愛華)
Research progress ofMycobacteriumabscessuscomplex
ZHANGZhi-jian*,PANGYu,ZHAOYan-lin,LIUChang-ting.
*RespiratoryDiseasesDepartmentofNanlou,ChinesePeople’sLiberationArmyGeneralHospital,Beijing100853,China
s:LIUChang-ting,Email:liuchangting301@163.com;ZHAOYan-lin,Email:zhaoyanlin@chinatb.org
Mycobacteriumabscessuscomplex (MABC), an important non-tuberculous mycobacteria (NTM) that can cause human diseases, consistes ofMycobacteriumabscessus,MycobacteriummassilienseandMycobacteriumbolletii. Multi target gene sequencing is deemed to be the most accurate and reliable method for species identification of MABC. Clarithromycin plays a role of cornerstone in the treatment of MABC diseases. Recently, one of the greatest progress of the discovery of erythromycin ribosome methylase (erm(41)) which is associated with inducing resistance to clarithromycin.M.abscessusandM.bolletiiboth have an intacterm(41) gene whileM.massiliensehas two deletions inerm(41) gene.M.abscessusstrains have a T/C polymorphism at the 28th nucleotide: T28 strains demonstrates inducible clarithromycin resistance, while C28 strains are susceptible. For the purpose of detecting induced resistance to clarithromycin ofMycobacteriumabscessus, it’s advised to prolong the incubation from 3 days to 14 days. In addition, recent evidences had raised the possibility that person-to-person transmission could occur among highly susceptible individuals, so it is necessary to study the genotyping of MABC.
Mycobacterium; Nontuberculous mycobacteria; Drug resistance, bacterial; Genotype
10.3969/j.issn.1000-6621.2015.06.017
100853 北京,解放軍總醫院南樓呼吸科(張智健、劉長庭);中國疾病預防控制中心 國家結核病參比實驗室(逄宇、趙雁林)
劉長庭,Email:liuchangting301@163.com;趙雁林,Email:zhaoyanlin@chinatb.org
2015-04-16)