劉 梅, 鄭青松, 劉兆普, 郭世偉
(南京農(nóng)業(yè)大學資源與環(huán)境科學學院, 江蘇省海洋生物學重點實驗室, 江蘇南京 210095)
鹽脅迫下氮素形態(tài)對油菜和水稻幼苗離子運輸和分布的影響
劉 梅, 鄭青松, 劉兆普, 郭世偉*
(南京農(nóng)業(yè)大學資源與環(huán)境科學學院, 江蘇省海洋生物學重點實驗室, 江蘇南京 210095)
油菜; 水稻; 氮素形態(tài); 鹽脅迫; 離子運輸; 離子積累
土壤中鹽分過多會影響作物生長,并導致產(chǎn)量下降。鹽脅迫對植物的傷害作用主要是通過滲透脅迫、離子毒害、營養(yǎng)失衡三個方面來實現(xiàn)的[1]。鹽脅迫引起的滲透脅迫對干物質分配、細胞伸展、葉片光合作用等造成不利影響,抑制植物生長[2]。植物在鹽漬條件下生長會吸收大量的Na+,形成離子毒害,對植物代謝造成傷害[3-4]。植物具有避免鹽離子積累的機制,如將Na+儲存在液泡或排入質外體[5],Na+從細胞質排到細胞外和液泡能降低鹽離子對細胞的毒害作用[6],控制Na+的積累是植物耐鹽的重要生理過程[7]。
研究表明,只有水稻、蘆葦?shù)壬贁?shù)植物能夠在銨態(tài)氮作為單一氮源條件下生長良好,大多數(shù)旱地植物的氮營養(yǎng)以硝態(tài)氮為主[20]。因此,了解不同形態(tài)氮素營養(yǎng)對作物在鹽脅迫下的響應顯得尤為重要[21]。油菜是典型的喜硝植物,水稻是典型的喜銨植物。本文通過對油菜和水稻幼苗供應不同形態(tài)氮素培養(yǎng)后進行鹽脅迫處理,比較鹽脅迫對不同形態(tài)氮素營養(yǎng)下油菜和水稻幼苗生長、Na+和K+在不同組織中的積累和運輸?shù)挠绊懀U述不同形態(tài)氮素營養(yǎng)對兩種作物耐鹽機制的影響。
1.1 供試材料
油菜品種: 南鹽油1號(甘藍型油菜);水稻品種: 汕優(yōu)63(雜交秈稻)。
1.2 試驗設計與處理
試驗在南京農(nóng)業(yè)大學牌樓溫室實驗基地進行,白天室內(nèi)溫度為28_35℃,光合有效輻射為1000_1500 [μmol/(m2·s)]左右,光照時間每天10小時左右。
1.3 植株生物量的測定
樣品分地上部(油菜包括莖、葉片和葉柄;水稻包括莖和葉)和根系兩部分采集,先用自來水沖洗,再用去離子水清洗干凈,用吸水紙吸干表面水分后,于105℃烘箱中殺青30 min后,降溫至70_80℃烘至恒重,測定干重。
1.4 植株Na+和K+含量的測定
取0.05 g植株組織干樣,經(jīng)H2SO4-H2O2消煮,取過濾后的待測液5 mL置于50 mL容量瓶,用去離子水定容。待測樣品用火焰光度計(FP6410,上海)測定[24]。
1.5 植株Na+積累量的測定
植物根系(地上部)Na+積累量=根系(地上部)Na+濃度×根系(地上部)干重。
Na+傷害度(單位Na+積累量對植株根系(地上部)生物量的影響)=[對照植株根系(地上部)生物量-鹽處理植株根系(地上部)生物量)]/[(鹽處理植株根系(地上部)Na+積累量-對照植株根系(地上部)Na+積累量]
1.6 木質部傷流液的收集及Na+和K+濃度的測定
收獲前一天進行植株木質部傷流液的收集。稱取0.1_0.2 g脫脂棉,在距根基2 cm處用手術刀片切斷莖稈,10 min后用潔凈的濾紙吸走斷莖處的組織液,以防韌皮部汁液的交叉污染,然后迅速將脫脂棉包在莖稈并使莖端面與其接觸,用保鮮膜包好,收集1 2小時(晚18: 00至次日早6: 00)[25]。用注射器將脫脂棉中汁液擠出后過濾置于試管中,待測樣品用火焰光度計(FP6410,上海)測定。
1.7 韌皮部汁液的收集及Na+和K+濃度的測定
收獲前一天進行植株韌皮部汁液的收集。在距根基2 cm處用手術刀片切斷莖稈,將地上部浸泡在裝有30 mL的20 mmol/L LiOH-EDTA溶液的玻璃瓶(玻璃瓶空瓶稱重)中(用LiOH避免測定時陽離子相互干擾)。每個容器和植物材料放置在密封容器中,黑暗中放置12 h(晚18: 00至次日早6: 00)獲得滲出物[26]。滲出液過濾后用火焰光度計(FP6410,上海)測定。
1.8 數(shù)據(jù)處理
采用SPSS軟件進行相關分析和單因素方差(ANOVA)分析,用LSD多重檢驗法對不同處理結果進行顯著性檢驗。
2.1 不同氮素形態(tài)及鹽脅迫對油菜和水稻生物量的影響
注(Note): 同列中不同字母表示差異顯著(P<0.05) Different letters in the same column indicate significant difference (P<0.05).
2.2 不同形態(tài)氮素營養(yǎng)及鹽脅迫對油菜和水稻組織Na+和K+含量的影響
鹽脅迫條件下,硝營養(yǎng)水稻莖和葉Na+含量顯著高于銨營養(yǎng)水稻,根系Na+含量顯著低于銨營養(yǎng)(水稻營養(yǎng)液添加0.1 mmol/L Na2SiO3保證Si營養(yǎng)供應[27])。對照及鹽脅迫條件下,硝態(tài)氮營養(yǎng)水稻根系K+含量高于銨營養(yǎng);鹽脅迫下,硝態(tài)氮營養(yǎng)水稻莖K+含量明顯下降,銨態(tài)氮營養(yǎng)水稻幼苗不受影響;氮素形態(tài)及鹽脅迫對水稻葉片K+含量無顯著影響。
注(Note): 同列中不同字母表示差異顯著(P<0.05) Different letters in the same column indicate significant difference (P<0.05); “nd”—小于檢測限No detected.
2.3 不同形態(tài)氮素營養(yǎng)及鹽脅迫對油菜和水稻Na+傷害度的影響
注(Note): 同列中不同字母表示差異顯著(P<0.05) Different letters in the same column indicate significant difference (P<0.05).
2.4 不同形態(tài)氮素營養(yǎng)及鹽脅迫對油菜和水稻木質部及韌皮部汁液Na+和K+濃度的影響
注(Note): 同列中不同字母表示差異顯著(P<0.05) Different letters in the same column indicate significant difference (P<0.05).
3.1 硝態(tài)氮處理植株比銨態(tài)氮處理植株更耐鹽
3.2 不同形態(tài)氮素營養(yǎng)在鹽脅迫條件下對油菜和水稻Na+和K+運輸及積累的影響
我們采用單位Na+傷害度表示植株對Na+的敏感程度,盡管硝營養(yǎng)油菜和水稻根系及地上部Na+積累量高于銨營養(yǎng)(表4),但是生物量減少幅度小于銨營養(yǎng)植株(圖1)。因此,銨營養(yǎng)油菜和水稻對Na+更敏感;油菜根系生長受Na+影響大于地上部,水稻則是地上部生長受抑制更顯著(圖1)。本研究中,油菜NaCl處理含量高達150 mM NaCl,屬于重度脅迫,根系直接與營養(yǎng)液接觸,因此受到的Na+毒害也更直接。對于水稻而言,研究表明,50_100 mM NaCl處理不同耐鹽性水稻均顯示水稻幼苗地上部對鹽害的反應比根系更敏感[23]。鹽脅迫條件下,兩種供氮形態(tài)油菜和水稻表現(xiàn)出不同的傷害部位,可能與其自身生長模式、調節(jié)機制等有關,具體原因有待進一步研究。
綜上所述,硝營養(yǎng)油菜和水稻木質部-韌皮部對離子的調控能力更強, Na+傷害度更小,因此供應硝態(tài)氮植株比銨態(tài)氮更耐鹽。
[1] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681.
[2] Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Annual review of plant physiology, 1980, 31(1): 149-190.
[3] Marschner H. Mineral nutrition of higher plants [M]. London: Academic Press, 1995.
[4] Sibole J V, Montero E, Cabot Cetal. Role of sodium in the ABA-mediated long-term growth response of bean to salt stress[J]. Physiologia Plantarum, 1998, 104(3): 299-305.
[5] Glenn E P, Brown J J, Blumwald E. Salt tolerance and crop potential of halophytes[J]. Critical Reviews in Plant Sciences, 1999, 18(2): 227-255.
[6] Amthor J S. The role of maintenance respiration in plant growth[J]. Plant, Cell & Environment, 1984, 7(8): 561-569.
[7] Ashraf M, Wu L. Breeding for salinity tolerance in plants[J]. Critical Reviews in Plant Sciences, 1994, 13(1): 17-42.
[8] Grattan S R, Grieve C M. Mineral element acquisition and growth response of plants grown in saline environments[J]. Agriculture, Ecosystems & Environment, 1992, 38(4): 275-300.
[9] Kafkafi U, Valoras N, Letey J. Chloride interaction with nitrate and phosphate nutrition in tomato (LycopersiconesculentumL.)[J]. Journal of Plant Nutrition, 1982, 5(12): 1369-1385.
[10] Leidi E O, Silberbush M, Lips S H. Wheat growth as affected by nitrogen type, pH and salinity. I. Biomass production and mineral composition[J]. Journal of Plant Nutrition, 1991, 14(3): 235-246.
[11] Pessarakli M, Tucker T C. Ammonium (15N) metabolism in cotton under salt stress[J]. Journal of plant nutrition, 1985, 8(11): 1025-1045.
[12] Taylor A R, Bloom A J. Ammonium, nitrate, and proton fluxes along the maize root[J]. Plant, Cell & Environment, 1998, 21(12): 1255-1263.
[13] 陸景陵. 植物營養(yǎng)學[M]. 北京: 中國農(nóng)業(yè)大學出版社, 2003. Lu J L. Plant nutrition [M]. Beijing: China Agricultural University Press, 2003.
[14] Haynes R J, Goh K M. Ammonium and nitrate nutrition of plants[J]. Biological Reviews, 1978, 53(4): 465-510.
[15] Alyemeni M N. Growth response ofVignaambacensisL. seedling to the interaction between nitrogen source and salt stress[J]. Pakistan Journal of Botany, 1997, 29(2): 323-330.
[16] Wilcox G E, Hoff J E, Jones C M. Ammonium reduction of calcium and magnesium content of tomato and sweet corn leaf tissue and influence on incidence of blossom end rot of tomato fruit[J]. Plant Disease, 1973,65(10): 821-822.
[17] Polizotto K R, Wilcox G E, Jones C M. Response of growth and mineral composition of potato to nitrate and ammonium nitrogen[J]. Journal of America Society for Horticultural Science, 1975, 100(2): 165-168.
[18] Speer M, Brune A, Kaiser W M. Replacement of nitrate by ammonium as the nitrogen source increases the salt sensitivity of pea plants. I. Ion concentrations in roots and leaves[J]. Plant, Cell & Environment, 1994, 17(11): 1215-1221.
[19] Botella M A, Martínez V, Nieves Metal. Effect of salinity on the growth and nitrogen uptake by wheat seedlings[J]. Journal of Plant Nutrition, 1997, 20(6): 793-804.
[20] 戴廷波, 曹衛(wèi)星, 李存東. 作物增銨營養(yǎng)的生理效應[J]. 植物生理學通訊, 1998, 34(6): 488-493. Dai T B, Cao W X, Li C D. Physiological influence of enhanced ammonium nutrition on crop growth[J]. Plant Physiology Communications, 1998, 34(6): 488-493.
[21] Barker A V, Mills H A. Ammonium and nitrate nutrition of horticultural crops[J]. Horticultural Reviews, 1980, 2: 395-423.
[22] 楊瑛, 馬梅, 鄭青松, 等. 不同供氮形態(tài)下油菜幼苗對鹽脅迫的響應[J]. 植物營養(yǎng)與肥料學報, 2012, 18(5): 1229-1236. Yang Y, Ma M, Zheng Q Setal. Effect of different nitrogen forms on the response of canola plants to salt stress[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1229-1236.
[23] 嚴小龍, 鄭少玲, 連兆煌. 水稻耐鹽機理的研究Ⅰ. 不同基因型植株水平耐鹽性初步比較[J]. 華南農(nóng)業(yè)大學學報(自然科學版), 1992,13(4): 6-11. Yan X L, Zheng S L, Lian Z H. Studies on the mechanisms of salt tolerance in riceⅠ.Comparisons of whole-plant salt tolerance among different genotypes[J]. Journal of South China Agricultural University (Natural Science Edition), 1992, 13(4): 6-11.
[24] Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J]. Environmental and Experimental Botany, 2002, 47(1): 39-50.
[25] 宋娜, 郭世偉, 沈其榮. 不同氮素形態(tài)及水分脅迫對水稻苗期水分吸收, 光合作用及生長的影響[J]. 植物學通報, 2007, 24(4): 477-483. Song N, Guo S W, Shen Q R. Effects of different nitrogen forms and water stress on water absorption, photosynthesis and growth ofOryzasativaseedlings[J]. Chinese Bulletin of Botany. 2007,24(4): 477-48.
[26] Alfocea F P, Balibrea M E, Alarcón J Jetal. Composition of xylem and phloem exudates in relation to the salt-tolerance of domestic and wild tomato species[J]. Journal of Plant Physiology, 2000, 156(3): 367-374.
[27] 陳平平. 硅在水稻生活中的作用[J]. 生物學通報, 1998, 33(8): 5-7. Chen P P. The role of silicon in rice life[J]. Biological Bulletin, 1998, 33(8): 5-7.
[28] Lewis O A M, Leidi E O, Lips S H. Effect of nitrogen source on growth response to salinity stress in maize and wheat[J]. New Phytologist, 1989, 111(2): 155-160.
[29] Ali A, Tucker T C, Thompson T L et al. Effects of salinity and mixed ammonium and nitrate nutrition on the growth and nitrogen utilization of barley[J]. Journal of Agronomy & Crop Science, 2001, (186), 223-228.
[30] Frechilla S, Lasa B, Ibarretxe Letal. Pea responses to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate)[J]. Plant Growth Regulation, 2001, 35(2): 171-179.
[31] Misra N, Gupta A K. Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content inCatharanthusroseusseedlings[J]. Journal of Plant Physiology, 2006, 163(1): 11-18.
[32] Rios-Gonzalez K, Erdei L, Lips S H. The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources[J]. Plant Science, 2002, 162(6): 923-930.
[33] Speer M, Kaiser W M. Ion relations of symplastic and apoplastic space in leaves fromSpinaciaoleraceaL. andPisumsativumL. under salinity[J]. Plant Physiology, 1991, 97(3): 990-997.
[34] Zheng Q, Liu L, Liu Zetal. Comparison of the response of ion distribution in the tissues and cells of the succulent plantsAloeveraandSalicorniaeuropaeato saline stress[J]. Journal of Plant Nutrition and Soil Science, 2009, 172(6): 875-883.
[35] Ashraf M, Sultana R. Combination effect of NaCl salinity and nitrogen form on mineral composition of sunflower plants[J]. Biologia Plantarum, 2000, 43(4): 615-619.
[36] Davenport R, James R A, Zakrisson-Plogander Aetal. Control of sodium transport in durum wheat[J]. Plant Physiology, 2005, 137(3): 807-818.
[37] Shabala S, Cuin T A. Potassium transport and plant salt tolerance[J]. Physiologia Plantarum, 2008, 133(4): 651-669.
[38] Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses[J]. Plant, Cell & Environment, 1993, 16(1): 15-24.
[39] Apse M P, Aharon G S, Snedden W Aetal. Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiport in Arabidopsis[J]. Science, 1999, 285(5431): 1256-1258.
[40] Zhang H X, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J]. Nature Biotechnology, 2001, 19(8): 765-768.
[41] Berthomieu P, Conéjéro G, Nublat Aetal. Functional analysis of AtHKT1 in Arabidopsis shows that Na+recirculation by the phloem is crucial for salt tolerance[J]. The EMBO Journal, 2003, 22(9): 2004-2014.
[42] Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell & Environment, 2002, 25(2): 239-250.
Effects of nitrogen forms on transport and accumulation of ions in canola (B.napusL.) and rice (OryzasativaL.) under saline stress
LIU Mei, ZHENG Qing-song, LIU Zhao-pu, GUO Shi-wei*
(CollegeofResourcesandEnvironmentalSciences,NanjingAgriculturalUniversity/JiangsuProvincialKeyLaboratoryofMarineBiologyNanjing210095,China)
canola; rice; nitrogen form; salt stress; ions transport; ions accumulation
2014-03-07 接受日期: 2014-04-15
國家支撐項目(2011BAD13B09)資助。
劉梅(1989—),女,重慶人,碩士研究生,主要從事植物逆境營養(yǎng)生理生態(tài)研究。E-mail: 2011103003@njau.edu.cn * 通信作者 E-mail: sguo@njau.edu.cn
S143.1+9; S565.4
A
1008-505X(2015)01-0181-09