梁湘輝,朱文浩,高 穎
(1. 山東省濟寧市中醫院,山東 濟寧 272013;2. 山東省淄博市中醫醫院,山東 淄博 255300;3. 北京中醫藥大學東直門醫院,北京 100700)
綜 述
小膠質細胞介導多發性硬化發病的機制研究進展
梁湘輝1,朱文浩2,高 穎3
(1. 山東省濟寧市中醫院,山東 濟寧 272013;2. 山東省淄博市中醫醫院,山東 淄博 255300;3. 北京中醫藥大學東直門醫院,北京 100700)
小膠質細胞;多發性硬化;實驗性自身免疫性腦脊髓炎;發病機制
多發性硬化(multiple sclerosis,MS)是一種自身免疫反應引起的中樞神經系統(central nervous system,CNS)慢性炎癥性脫髓鞘性疾病,以炎癥反應、髓鞘脫失、軸突損傷、髓鞘再生和膠質增生為主要病理特征[1]。MS的確切發病機制尚未完全闡明,但與自身免疫反應有關。小膠質細胞(microglial cell,MG)是CNS內常駐免疫細胞,占所有膠質細胞的10%~20%,靜息狀態下負責CNS的監視作用,在大多數CNS病理條件下被激活,激活的MG發生形態學和分子學變化,參與先天和自適應免疫反應[2-3]。MS及實驗性自身免疫性腦脊髓炎(experimental autoimmune encephalomyelitis,EAE)中均存在MG的激活。研究表明,MG的激活發生在脫髓鞘改變的2~4周前[4]。在MS和EAE中,MG不僅參與免疫反應引起的CNS損傷,在疾病的恢復和神經再生中也起重要作用[5]。現對MG在MS和EAE中的作用進行綜述。
MG是腦內主要的抗原呈遞細胞(antigen-presenting cells,APCs),參與了反應性T細胞浸潤[6]。研究發現,在MS的急性活躍病灶和慢性活躍病灶的邊緣部存在大量的CD163+MG/巨噬細胞,慢性不活躍病灶和慢性活躍病灶的中央部罕見CD163+MG/巨噬細胞[7]。雙標法顯示,在腦實質和血管周圍CD163+MG/巨噬細胞內堿性髓鞘蛋白(myelin basic protein,MBP)和人白細胞(位點)DR抗原[human leukocyte antigen(locus)DR,HLA-DR]陽性,說明CD163+MG/巨噬細胞可以攝取和呈遞抗原[7]。MG(HLA-DR+細胞)的呈遞作用與MS病灶內的軸突損傷密切相關,但軸突損傷部位的HLA-DR+細胞比髓鞘脫失處少[8]。在體外,原代人MG通過抗原呈遞作用可以降低人腦內髓鞘和神經元蛋白,引起髓鞘和神經元損傷[8]。許多研究表明,神經元抗原是自身免疫反應的觸點[9-11],因此攝取和呈遞神經元抗原將加重病理性自身免疫反應。MG可以攝取神經元抗原,并將其呈遞給免疫反應性T細胞,使其聚集到CNS并轉化成細胞毒性表型細胞(如Th1、Th17),引起神經損傷。
MG向T細胞進行有效的抗原呈遞,需要能對抗原進行識別、呈遞的主要組織相容性復合體(major histocompatibility complex,MHC)分子和APC中能與T細胞結合的協同刺激分子(co-stimulatory molecule)的共同參與。其中MHCⅡ吞噬呈遞抗原的作用受Toll樣受體(Toll-like receptor,TLR)和神經元表達的膜糖蛋白CD200的調節[12-13]。MS中重要的T細胞協同刺激分子有CD40、CD137、B7糖蛋白等,它們通過與T細胞上的配體結合協同APC完成抗原呈遞作用[14-15]。
激活的MG可以釋放IL-1α、IL-1β、IL-2、IL-4、IL-6、IL-10、IL-12、IL-17、IL-18、IL-23、IL-27等[14,16]。IL-1β、IL-6、IL-12、IL-23可以使Th0細胞向Th1細胞和Th17細胞分化,二者均參與MS/EAE的發病。其中IL-12使Th0分化為Th1,進而釋放IL-2、γ-干擾素(INF-γ)等,促進T細胞增殖,加重炎癥反應[17]。IL-1β、IL-6、IL-23可以使Th0分化為Th17,進而釋放IL-6、IL-17、IL-23、腫瘤壞死因子-α(TNF-α)等,參與了EAE的發病。研究表明,MS患者復發時IL-17A、IL-6和IL-23p19均升高[18],而MS或EAE的病情進展與IL-23有密切關系。
IL-4主要由Th2細胞分泌,但激活的MG也可以釋放IL-4。IL-4是抗炎性細胞因子,能拮抗INF-γ產生的神經破壞作用。Butovsky等[19]研究發現,IL-4可拮抗高濃度IFN-γ誘導的MG對少突膠質細胞發生的阻礙作用。IL-4可以逆轉IFN-γ引起的抑制少突膠質細胞發生的作用,減少TNF-α的生成,增加胰島素樣生長因子-1(IGF-1)的產生。在嚙齒類EAE的腦脊液中注射IL-4活化的MG,可以使脊髓中的少突膠質細胞形成增加和臨床癥狀改善。IL-10可以與Th1效應細胞上的IL-10受體結合,抑制炎癥性T細胞的轉移和增殖,對EAE起保護作用[20]。
INF-γ是一種促炎性細胞因子,主要由Th1細胞分泌,但激活的MG也可以分泌INF-γ。激活的Th1細胞通過上調MHCⅡ分子和協同刺激分子B7-1和B7-2,使MG被激活并成為APCs。活化的MG分泌IL-12、IL-18、IL-23和IL-27,使Th0細胞分化成Th1細胞,成熟的Th1 CD4+細胞又產生INF-γ,進一步激活MG。同時,激活的MG也分泌INF-γ,形成正反饋回路[14]。INF-γ參與了炎癥反應,促進MS/EAE的發病。
近年來研究表明,INF-γ對MS/EAE也有保護作用,與誘導MG的凋亡有關。Takeuchi等[21]研究發現,INF-γ可以誘導MG的凋亡和活化MG誘導的細胞死亡,這可能是通過自限性負反饋調節實現的。MG的凋亡與促凋亡蛋白,特別是Bax的表達上調有關,而抑制凋亡蛋白的表達下調。INF-γ誘導的MG活化和后續死亡在MS的復發和緩解中起重要作用。
TNF-α是一種促炎性細胞因子,在CNS主要由激活的MG分泌,通過抑制MG產生的TNF-α可以抑制炎癥性脫髓鞘。TNF-α可以中和抗體或結合重組的TNF受體蛋白,導致MS復發[14]。研究表明,TNF-α可以誘導MG釋放谷氨酸,引起神經毒性損傷[22]。在體外,TNF-α可以下調少突膠質細胞上的谷氨酸轉運蛋白的表達、抑制谷氨酸的攝取和促進NO的合成,加重MS/EAE的病情[14]。
此外,TNF還有神經保護作用。在EAE中,TNF主要由T細胞和髓系細胞分泌,它可以協同抑制APCs產生IL-12p40和IL-6,進而抑制致腦炎性T細胞發育成Th1和Th17,減輕EAE的病情[23]。
IGFs是CNS正常發育不可或缺的肽類激素,它能促進少突膠質細胞的發育、生存和髓磷脂合成,具有保護中樞神經和生髓作用[24-25]。體內和體外實驗研究均表明,IGF-1能減少小鼠視網膜內感光細胞的死亡,對營養不良的視網膜有神經保護作用[26]。MG衍生的IGF-2能阻斷半乳糖腦苷脂(GalC)對少突膠質細胞的毒性[27]。在缺氧缺血性腦病的損傷部位,MG表達IGF-1 mRNA[28]。胰島素樣生長因子-2(IGF-2)存在于未激活的和INF-γ處理的MG[24]。MG對神經的保護作用是通過分泌IGF-1實現的[26]。其功能依賴于IGF結合蛋白高親和力調節因子(IGFBPs),特別是IGFBP-2[24]。研究表明,MS的發病可能與IGF-1的生物利用度減少有關[29],系統性注入IGF-1對EAE的臨床病程表現出多樣和瞬變的保護作用[30]。
NGF是第一個被發現的神經營養因子,它能刺激外周和中樞神經系統神經元的分化、生存和生長,保護神經元和髓鞘免受炎癥的損傷,調節免疫系統,減輕急性炎癥反應過程中的興奮性毒性[31]。研究表明,激活的MG可以產生NGF,MG表達和釋放NGF受A2 a-腺苷受體的調節[32]。NGF與其高親和力的受體TrkA結合后發揮生物學作用。在EAE急性期,運動神經元中TrkA的免疫反應減少,而在少突膠質細胞中上調,并且主要集中在CNS白質[33],說明在EAE急性期神經元損傷的同時,少突膠質細胞被激活,發揮修復神經元的作用。另有研究表明,在MS的損傷組織,神經營養因子缺乏可以通過外周血單核細胞合成補償。在復發-緩解型MS,β-NGF與認知表現密切相關,它在MS中可能起到神經保護作用,特別是在認知功能區[34]。
在MS或EAE中,激活的MG高水平表達趨化因子(如CCL2~CCL5、CCL8、CCL19、CCL21、CXCL1和CXCL8~CXCL13等)及其受體(如CCR3、CXCR1和CXCR3等)[35],募集白細胞、單核細胞、巨噬細胞、T細胞、B細胞和樹突狀細胞向CNS的病灶部位聚集,引起局部的神經炎癥,參與髓鞘的吞噬[36]。對多種趨化因子受體敲除模型進行研究表明,趨化因子對EAE的發病和進展非常重要。如CCR1敲除小鼠表現出較輕的EAE,CCR2敲除小鼠表現出部分或完全抵抗EAE,CCR8敲除小鼠的病情減弱和臨床癥狀出現的時間延遲[14]。趨化因子還可以趨化抗炎性細胞,如CCL11募集Th2細胞到達MS病灶處,起到保護神經的作用[37]。
PGs是花生四烯酸的衍生物,它可以調節多種生理系統,包括CNS、呼吸系統、心血管系統、胃腸系統、泌尿系統、內分泌系統和免疫系統[38]。PGs是花生四烯酸通過環氧合酶1/2(COX1/2)通路合成的強效氧化脂質分子,以自分泌和旁分泌的形式分泌[39-40],與炎癥反應有關,可能是MS病理變化的有效調節因子[38]。研究表明,在髓鞘脫失過程中腦內的PGE2、PGD2和PGI2水平升高,在髓鞘再生過程中腦內的PGE2、PGD2和PGI2水平恢復正常[41]。Kihara等[42]指出,EAE的病變主要與PGE2通路有關,而與PGD2、PGI2和5-脂氧合酶(5-LO)通路的關系較弱[42]。激活的MG可以通過COX-1/2合成和釋放PGE2,同時COX-PGE2通路受p38絲裂原活化蛋白激酶(p38MAPK)的調節[43]。PGE2合成和釋放受COX1/2的限制,因此調節MG內COX-1/2的活性,可以調節PGE2的合成和釋放,從而影響EAE的病理變化和病情進展。研究表明,阻斷COX1/2可以延遲EAE的發病,減輕EAE的病情,降低Th1型細胞因子的產生[40]。除促炎癥作用外,COX-2衍生的PGE2對先天免疫反應還顯示出抗炎作用[44],介導神經保護。
NO是一種信號分子,也是一種神經遞質和自由基。正常條件下,它參與了血管擴張、神經功能和免疫反應。此外,它還參與了許多病理反應,如MS[45]。研究表明,NO及其衍生物在MS中發揮重要作用[46];NO的代謝物增高與軸突變性和臨床殘疾相關[47];在MS髓鞘脫失和髓鞘再生病變處表達誘導型一氧化氮合酶(iNOS)[48]。激活的MG可以表達iNOS mRNA及其蛋白,釋放NO。NO與超氧化物反應產生過氧亞硝基(ONOO-),對成熟少突膠質細胞有毒性[49]。另有研究表明,內皮型一氧化氮合酶缺陷(eNOS-/-)小鼠EAE的發病延遲,與血腦屏障(BBB)的破壞延遲有關。說明eNOS產生的NO是T細胞滲透至CNS的基礎。然而,eNOS-/- EAE小鼠的最終臨床癥狀更重,并且恢復延遲,說明NO在MS/EAE中有雙重作用,即促炎性作用和神經保護作用[50]。
谷氨酸是哺乳動物大腦內主要的興奮性神經遞質。經谷氨酸突觸傳導的正常神經沖動是整個大腦所需要的,是學習和記憶的基礎。然而,異常高水平的細胞外谷氨酸會導致神經軸突細胞死亡[51]。研究表明,在MS脫髓鞘和軸突變性斑塊內存在過量的谷氨酸釋放,最有可能釋放谷氨酸的細胞是浸潤的白細胞和激活的MG[52]。激活的MG通過谷氨酰胺酶生成谷氨酸,并經縫隙連接的半通道釋放[53]。正常情況下,谷氨酸通過興奮性氨基酸轉運蛋白(EAAT)轉運。在MS中,激活的MG可以釋放ONOO-和氧自由基,下調EAAT的表達和功能,導致谷氨酸轉運障礙,引起髓鞘、神經元、突觸和少突膠質細胞損傷。
MMPs屬于鋅依賴性肽鏈內切酶,存在于中樞和外周神經系統,參與了細胞外基質和細胞基質的重塑及相互反應,與多種神經病理性疾病有關,其中包括MS[54]。激活的MG可以分泌MMPs,MMPs在MS和EAE的MBP裂解和脫髓鞘中起重要作用[55],并參與了神經炎癥、血腦屏障(BBB)破壞和免疫反應。
研究表明,脂多糖(LPS)激活的BV-2小膠質細胞產生ROS增加[56],而激活的BV-2小膠質細胞通過ROS通路使TNF-α和MCP-1增加[57],參與MS和EAE的發病。
在MS中,MG通過吞噬作用清除死亡細胞、誘導神經營養因子、抗炎性細胞因子和抗氧化酶而顯示出神經保護作用。
以上研究結果表明,MG在MS/EAE中的具體作用機制可能與以下幾方面作用有關:①抗原呈遞作用。MG可以將抗原呈遞給T細胞,使之分化成細胞毒性T細胞,參與免疫反應。②吞噬作用。MG可以吞噬死亡的細胞或神經元碎片,為神經的修復提供有利環境,促進神經再生。③分泌各種細胞毒性物質。如細胞因子、趨化因子、NO、谷氨酸、PGs、ROS等,在MS/EAE的過程中顯示出損害或保護兩方面的作用。
MG在MS/EAE的發病和修復中均起非常重要的作用,是治療MS的關鍵之一。因此,對MG在MS/EAE中的作用機制進行系統而深入的研究,明確MG介導MS發病的可能機制,有助于從調節MG功能的角度而不是單純抑制MG功能的角度研發治療MS的新藥。
[1] De-Lago E,Moreno-Martet M,Cabranes A,et al. Cannabinoids ameliorate disease progression in a model of multiple sclerosis in mice, acting preferentially through CB1 receptor-mediated anti-inflammatory effects[J]. Neuropharmacology,2012,62(7):2299-2308
[2] Hanisch U,Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathological brain[J]. Nat Neurosci,2007,10(11):1387-1394
[4] Skripuletz T,Bussmann JH,Gudi V,et al. Cerebellar cortical demyelination in the murine cuprizone model[J]. Brain Pathol,2010,20(2):301-312
[5] Napoli I,Neumann H. Protective effects of microglia in multiple sclerosis[J]. Exp Neurol,2010,225(1):24-28
[6] McKenzie BS,Kastelein RA,Cua DJ. Understanding the IL-23-IL-17 immune pathway[J]. Trends Immunol,2006,27(1):17-23
[7] Zhang Z,Zhang ZY,Schittenhelm J,et al. Parenchymal accumulation of CD163+ macrophages/microglia in multiple sclerosis brains[J]. J Neuroimmunol,2011,237(1/2):73-79
[8] Huizinga R,Van-Der-Star BJ,Kipp M,et al. Phagocytosis of neuronal debris by microglia is associated with neuronal damage in multiple sclerosis[J]. Glia,2012,60(3):422-431
[9] Huizinga R,Heijmans N,Schubert P,et al. Immunization with neurofilament light protein induces spastic paresis and axonal degeneration in Biozzi ABH mice[J]. J Neuropathol Exp Neurol,2007,66(4):295-304
[10] Huizinga R,Gerritsen W,Heijmans N,et al. Axonal loss and gray matter pathology as a direct result of autoimmunity to neurofilaments[J]. Neurobiol Dis,2008,32(3):461-470
[11] Mathey EK,Derfuss T,Storch MK,et al. Neurofascin as a novel target for autoantibody-mediated axonal injury[J]. J Exp Med,2007,204(10):2363-2372
[12] Blander JM. Coupling Toll-like receptor signaling with phagocytosis: potentiation of antigen presentation[J]. Trends Immunol,2007,28(1):19-25
[13] Hernangómez M,Mestre L,Correa FG,et al. CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation[J]. Glia,2012,60(9):1437-1450
[14] Sanders P,De Keyser J. Janus faces of microglia in multiple sclerosis[J]. Brain Res Rev,2007,54(2):274-285
[15] Yeo YA,Martínez Gómez JM,Croxford JL,et al. CD137 ligand activated microglia induces oligodendrocyte apoptosis via reactive oxygen species[J]. J Neuroinflammation,2012,9(1):173
[16] Black JA,Liu S,Waxman SG. Sodium channel activity modulates multiple functions in microglia[J]. Glia,2009,57(10):1072-1081
[17] Sumoza-Toledo A,Eaton AD,Sarukhan A. Regulatory T cells inhibit protein kinase C theta recruitment to the immune synapse of naive T cells with the same antigen specificity[J]. J Immunol,2006,176(10):5779-5787
[18] Muls N,Jnaoui K,Dang HA,et al. Upregulation of IL-17,but not of IL-9,in circulating cells of CIS and relapsing MS patients. Impact of corticosteroid therapy on the cytokine network[J]. J Neuroimmunol,2012,243(1/2):73-80
[19] Butovsky O,Landa G,Kunis G. Induction and blockage of oligodendro-genesis by differently activated microglia in an animal model of multiple sclerosis[J]. J Clin Invest,2009,116(4):905-915
[20] Huss DJ,Winger RC,Cox GM,et al. TGF-β signaling via Smad4 drives IL-10 production in effector Th1 cells and reduces T-cell trafficking in EAE[J]. Eur J Immunol,2011,41(10):2987-2996
[21] Takeuchi H,Wang J,Kawanokuchi J,et al. Interferon-gamma induces microglial activation induced cell death: a hypothetical mechanism of relapse and remission in multiple sclerosis[J]. Neurobiol Dis,2006,22(1):33-39
[22] Takeuchi H,Jin S,Wang J,et al. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner[J]. J Biol Chem,2006,281(30):21362-21368
[23] Kruglov AA,Lampropoulou V,Fillatreau S,et al. Pathogenic and protective functions of TNF in neuroinflammation are defined by its expression in T lymphocytes and myeloid cells[J]. J Immunol,2011,187(11):5660-5670
[24] Chesik D,De Keyser J,Wilczak N. Insulin-like growth factor binding protein-2 as a regulator of IGF actions in CNS: implications in multiple sclerosis[J]. Cytokine Growth Factor Rev,2007,18(3/4):267-278
[25] Wilczak N,Chesik D,Hoekstra D,et al. IGF binding protein alterations on periplaque oligodendrocytes in multiple sclerosis: implications for remyelination[J]. Neurochem Int,2008,52(8):1431-1435
[26] Arroba AI,Alvarez-Lindo N,van Rooijen N,et al. Microglia-mediated IGF-1 neuroprotection in the rd10 mouse model of retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci,2011,52(12):9124-9130
[27] Nicholas RS,Stevens S,Wing MG,et al. Microglia-derived IGF-2 prevents TNF alpha induced death of mature oligodendrocytes in vitro[J]. J Neuroimmunol,2002,124(1/2):36-44
[28] O’Donnell SL,Frederick TJ,Krady JK,et al. IGF-I and microglia/macrophage proliferation in the ischemic mouse brain[J]. Glia,2002,39(1):85-97
[29] Lanzillo R,Di Somma C,Quarantelli M,et al. Insulin-like growth factor (IGF)-1 and IGF-binding protein-3 serum levels in relapsing-remitting and secondary progressive multiple sclerosis patients[J]. Eur J Neurol,2011,18(12):1402-1406
[30] Genoud S,Maricic I,Kumar V,et al. Targeted expression of IGF-1 in the central nervous system fails to protect mice from experimental autoimmune encephalomyelitis[J]. J Neuroimmunol,2005,168(1/2):40-45
[31] Colafrancesco V,Villoslada P. Targeting NGF pathway for developing neuroprotective therapies for multiple sclerosis and other neurological diseases[J]. Arch Ital Biol,2011,149(2):183-192
[32] Heese K,Fiebich BL,Bauer J,et al. Nerve growth factor (NGF) expression in rat microglia is induced by adenosine A2 a-receptors[J]. Neurosci Lett,1997,231(2):83-86
[33] Oderfeld-Nowak B,Zaremba M,Lipkowski AW,et al. High-affinity NGF receptor in the rat spinal cord during acute and chronic phases of experimental autoimmune encephalomyelitis:a possible functional significance[J]. Arch Ital Biol,2003,141(2/3):103-116
[34] Kalinowska-yszczarz A,Pawlak MA,Michalak S,et al. Cognitive deficit is related to immune-cell beta-NGF in multiple sclerosis patients[J]. J Neurol Sci,2012,321(1/2):43-48
[35] Flynn G,Maru S,Loughlin J,et al. Regulation of chemokine receptor expression in human microglia and astrocytes[J]. J Neuroimmunol,2003,136(1/2):84-93
[36] Koning N,Uitdehaag BM,Huitinga I,et al. Restoring immune suppression in the multiple sclerosis brain[J]. Prog Neurobiol,2009,89(4):359-368
[37] Wainwright DA,Xin J,Sanders VM,et al. Differential actions of pituitary adenylyl cyclase-activating polypeptide and interferon gamma on Th2-and Th1-associated chemokine expression in cultured murine microglia[J]. J Neurodegener Regen,2008,1(1):31-34
[38] Mirshafiey A,Jadidi-Niaragh F. Prostaglandins in pathogenesis and treatment of multiple sclerosis[J]. Immunopharmacol Immunotoxicol,2010,32(4):543-554
[39] Cimino PJ,Keene CD,Breyer RM,et al. Therapeutic targets in prostaglandin E2 signaling for neurologic disease[J]. Curr Med Chem,2008,15(19):1863-1869
[40] Marusic S,Thakker P,Pelker JW. Blockade of cytosolic phospholipase A2 alpha prevents experimental autoimmune encephalomyelitis and diminishes development of Th1 and Th17 responses[J]. J Neuroimmunol,2008,204(1/2):29-37
[41] Palumbo S,Toscano CD,Parente L,et al. Time-dependent changes in the brain arachidonic acid cascade during cuprizone-induced demyelination and remyelination[J]. Prostaglandins Leukot Essent Fatty Acids,2011,85(1):29-35
[42] Kihara Y,Matsushita T,Kita Y,et al. Targeted lipidomics reveals mPGES-1-PGE2 as a therapeutic target for multiple sclerosis[J]. Proc Natl Acad Sci U S A,2009,106(51):21807-21812
[43] Matsui T,Svensson CI,Hirata Y,et al. Release of prostaglandin E(2) and nitric oxide from spinal microglia is dependent on activation of p38 mitogen-activated protein kinase[J]. Anesth Analg,2010,111(2):554-560
[44] Brenneis C,Coste O,Altenrath K,et al. Anti-inflammatory role of microsomal prostaglandin E synthase-1 in a model of neuroinflammation[J]. J Biol Chem,2011,286(3):2331-2342
[45] Roghani M,Mahboudi F,Saharian MA,et al. Concentrations of nitric oxide metabolites in the serum of Iranian multiple sclerosis patients[J]. J Neurol Sci,2010,294(1/2):92-94
[46] Ljubisavljevic S,Stojanovic I,Pavlovic D. Correlation of nitric oxide levels in the cerebellum and spinal cord of experimental autoimmune encephalomyelitis rats with clinical symptoms[J]. Acta Neurobiol Exp (Wars),2012,72(1):33-39
[47] Rejdak K,Petzold A,Stelmasiak Z,et al. Cerebrospinal fluid brain specific proteins in relation to nitric oxide metabolites during relapse of multiple sclerosis[J]. Mult Scler,2008,14(1):59-66
[48] Jack C,Antel J,Brück W. Contrasting potential of nitric oxide and peroxynitrite to mediate oligodendrocyte injury in multiple sclerosis[J]. Glia,2007,55(9):926-934
[49] Barcellos LF,Ramsay PP,Caillier SJ,et al. Genetic variation in nitric oxide synthase 2A (NOS2A) and risk for multiple sclerosis[J]. Genes Immun,2008,9(6):493-500
[50] Li S,Vana AC,Ribeiro R,et al. Distinct role of nitric oxide and peroxynitrite in mediating oligodendrocyte toxicity in culture and in experimental autoimmune encephalomyelitis[J]. Neuroscience,2011,184:107-119
[51] Baranzini SE,Srinivasan R,Khankhanian P,et al. Genetic variation influences glutamate concentrations in brains of patients with multiple sclerosis[J]. Brain,2010,133(9):2603-2611
[52] Frigo M,Cogo MG,Fusco ML,et al. Glutamate and multiple sclerosis[J]. Curr Med Chem,2012,19(9):1295-1299
[53] Shijie J,Takeuchi H,Yawata I,et al. Blockade of glutamate release from microglia attenuates experimental autoimmune encephalomyelitis in mice[J]. Tohoku J Exp Med,2009,217(2):87-92
[54] Romi F,Helgeland G,Gilhus NE. Serum levels of matrix metalloproteinases: implications in clinical neurology[J]. Eur Neurol,2012,67(2):121-128
[55] Shiryaev SA,Savinov AY,Cieplak P,et al. Matrix metalloproteinase proteolysis of the myelin basic protein isoforms is a source of immunogenic peptides in autoimmune multiple sclerosis[J]. PLoS One,2009,4(3):1-9
[56] Wu Y,Zhai H,Wang Y et al. Aspirin-triggered lipoxin A(4) attenuates lipopolysaccharide-induced intracellular ROS in BV2 microglia cells by inhibiting the function of NADPH oxidase[J]. Neurochem Res,2012,37(8):1690-1696
[57] Quan Y,Jiang CT,Xue B,et al. High glucose stimulates TNF-α and MCP-1 expression in rat microglia via ROS and NF-κB pathways[J]. Acta Pharmacol Sin,2011,32(2):188-193
朱文浩,E-mail:doctorzwh@163.com
國家自然科學基金資助項目(81072770)
10.3969/j.issn.1008-8849.2015.27.042
R364.32
A
1008-8849(2015)27-3067-05
2015-01-15