陳 英,劉瑞娟,霍靜思
(湖南大學(xué) 教育部建筑安全與節(jié)能重點實驗室,湖南 長沙 410082)
沖擊荷載下角焊縫動態(tài)強度試驗研究
陳 英,劉瑞娟,霍靜思?
(湖南大學(xué) 教育部建筑安全與節(jié)能重點實驗室,湖南 長沙 410082)
對焊喉處受拉和受剪兩種受力狀態(tài)的角焊縫連接件進行動態(tài)拉伸試驗,研究沖擊荷載作用下受力狀態(tài)對角焊縫破壞形態(tài)、斷面角度、極限強度的影響規(guī)律.并通過與靜態(tài)力學(xué)性能比較發(fā)現(xiàn),動態(tài)沖擊荷載作用下,角焊縫受拉和受剪極限強度均明顯提高,即動態(tài)應(yīng)變率效應(yīng)顯著;受拉角焊縫的破壞面角度均為45°,與靜力試驗結(jié)果(90°左右)有顯著差異.角焊縫受拉下的應(yīng)變率效應(yīng)比受剪時明顯,且角焊縫動態(tài)極限強度增大系數(shù)隨應(yīng)變率的影響規(guī)律與以往文獻試驗結(jié)果一致.
沖擊荷載;動態(tài)拉伸;極限強度;應(yīng)變率
隨著科學(xué)技術(shù)的不斷發(fā)展,建筑結(jié)構(gòu)向大跨、高層以及超高層發(fā)展,鋼結(jié)構(gòu)的使用不斷增加,對于復(fù)雜的節(jié)點,焊接成為了主要的連接方式.自20世紀以來,焊接技術(shù)發(fā)展十分迅速.過去的半個多世紀里關(guān)于焊縫的靜力性能已有大量研究工作,尤其是角焊縫的強度[1-7]和斷裂角度的研究[1-4],以及外加荷載與焊縫軸線呈一定夾角時焊縫的力學(xué)性能研究[7-10];此外,對角焊縫的焊腳尺寸[3-5,7-11]和焊接方法[3-4]、焊條類型[3,5,7,9-11]以及溫度[3,7,10-12]等參數(shù)的研究也較多.在實際結(jié)構(gòu)中,大部分焊縫不是軸心受力,因此有學(xué)者對偏心荷載作用下角焊縫的力學(xué)性能進行了研究[13-16].
在制作加工過程中焊縫不可避免地存在一定缺陷,王元清等[17]對鋼厚板母材焊接影響區(qū)的力學(xué)性能進行了試驗研究.動力荷載作用下焊縫缺陷對結(jié)構(gòu)安全帶來隱患,建筑結(jié)構(gòu)在遭受爆炸、地震和沖擊作用時,鋼材表現(xiàn)出不同的力學(xué)行為,其中應(yīng)變率效應(yīng)的影響較為顯著[18].劉瑞娟[19]對角焊縫和對接焊縫分別進行動態(tài)沖擊試驗,研究焊縫的極限強度隨應(yīng)變率的變化規(guī)律.于安林等[20]采用快速加載的試驗方法研究了角焊縫的動力性能,建議不降低中級工作制吊車梁的正面角焊縫強度,與承受靜載時取相同值.
本文針對角焊縫焊喉處受拉和受剪兩種受力狀態(tài),利用一種可實現(xiàn)落錘拉伸沖擊試驗的轉(zhuǎn)換裝置和高性能落錘沖擊試驗機進行角焊縫的動態(tài)沖擊力學(xué)性能試驗研究,對比分析角焊縫在靜力荷載和動態(tài)沖擊荷載作用下的力學(xué)性能.
1.1 試件設(shè)計與制作

1.2 試驗方法
動態(tài)試驗加載及測量裝置如圖2所示,動力試驗采用一種可實現(xiàn)落錘拉伸沖擊試驗的轉(zhuǎn)換裝置[21]和高性能落錘沖擊試驗機共同完成:落錘試驗機的錘頭通過自由落體沖擊上梁,上梁通過傳力框?qū)_擊力傳給下梁,以帶動試件受拉,即實現(xiàn)了將落錘沖擊力轉(zhuǎn)化為試件的軸向拉伸動態(tài)力.為使試件與裝置形成統(tǒng)一整體,在試件兩端各焊一塊端板,并用高強螺栓與裝置連接.試件變形采用LTM-200S型位移計測量,動態(tài)沖擊荷載通過與試件相連的力傳感器測得,動態(tài)試驗數(shù)據(jù)通過NIPXIe-1006Q動態(tài)采集儀進行采集,數(shù)據(jù)采集時的頻率為1 MHz.

表1 角焊縫試驗一覽表
注:“SF”和“TF”分別表示受剪角焊縫和受拉角焊縫;字母“S”和“D”分別表示靜力試驗和動力試驗;字母“a”“b”“c”分別表示落錘沖擊高度為4 m,5 m,6 m,數(shù)字“1”“2”“3”代表重復(fù)試驗次數(shù).

圖1 角焊縫構(gòu)造(單位:mm)

圖2 動力拉伸試驗裝置
2.1 試件破壞形態(tài)對比
圖3給出了受拉角焊縫和受剪角焊縫在靜載和動態(tài)沖擊荷載作用下的破壞形態(tài).試驗表明,兩種加載方式下受剪角焊縫以及靜載下受拉角焊縫的破壞截面均為平整截面,動態(tài)沖擊拉伸作用下部分受拉角焊縫試件破壞截面出現(xiàn)凹凸現(xiàn)象.兩種角焊縫的破壞截面角度 (斷裂面與力作用方向的夾角)見表1,可知,受剪角焊縫在靜力和動力作用下的破壞截面角度均在10°以內(nèi),與理論破壞角度0°較接近;受拉角焊縫在靜載下的破壞截面角度與理論值90°接近,而動態(tài)沖擊荷載下的破壞截面角度均為45°,可能是由于施焊位置的影響使得受拉角焊縫兩個焊腳尺寸存在差異,文獻[3]的試驗也得出兩個焊腳尺寸之比對焊縫破壞截面角度有顯著影響的結(jié)論;此外,角焊縫根部存在嚴重的應(yīng)力集中[22],在動力荷載作用下應(yīng)力集中的不利影響將十分突出,往往是引起脆性破壞的根源.

(a) 受剪角焊縫靜力破壞模態(tài)

(b) 受剪角焊縫動力破壞模態(tài)

(c) 受拉角焊縫靜力破壞模態(tài)

(d) 受拉角焊縫動力破壞模態(tài)
2.2 角焊縫動態(tài)強度
受拉和受剪角焊縫試件的極限荷載Fud,焊縫的極限強度fud,極限強度平均值fa,位移Δ,單位尺寸變形Δ/hf測量值列于表1,動態(tài)沖擊拉伸作用下兩種受力狀態(tài)角焊縫極限強度均明顯增大,且隨著沖擊速度的增加,焊縫強度有增大的趨勢.將相同沖擊速度下角焊縫受拉和受剪極限強度平均值進行對比,可知,角焊縫受剪與受拉強度比在0.62~0.67之間,與鋼材抗剪設(shè)計強度為抗拉設(shè)計強度的0.58倍接近,可用相同的理論確定角焊縫動態(tài)強度設(shè)計值.由焊縫變形可知,受剪角焊縫的變形性能更好,其單位尺寸變形約為受拉角焊縫的3倍左右.



圖4 極限強度動力增大系數(shù)
Fig.4 Dynamic increase factor of ultimate strength
圖4還給出了以往文獻[19,23]有關(guān)鋼材動力試驗獲得的動態(tài)極限強度增大系數(shù)與應(yīng)變率的變化規(guī)律,這些試驗研究的鋼材應(yīng)變率主要集中在10-4s-1~101s-1之間,均小于101s-1,本文角焊縫試驗應(yīng)變率在101s-1左右.由圖可知,本文試驗結(jié)果與以往試驗規(guī)律趨勢相同,但角焊縫的極限強度增大系數(shù)較鋼材突出.
通過對焊喉處受拉和受剪的正面角焊縫動態(tài)沖擊力學(xué)性能的試驗研究,在本文試驗范圍內(nèi),可得到如下結(jié)論:
受拉角焊縫在動態(tài)沖擊荷載下的破壞截面角度與理論值有顯著差異,靜力荷載作用下受拉角焊縫破壞截面角度約為90°,與理論值接近,而動態(tài)沖擊荷載作用下的破壞截面角度約為45°,即破壞面為“V”型坡口與焊縫接觸面;動態(tài)沖擊拉伸作用下角焊縫受拉和受剪極限強度均有顯著提高,即動態(tài)應(yīng)變率效應(yīng)顯著,且角焊縫受拉時的應(yīng)變率效應(yīng)比受剪時更明顯,但兩者的極限強度增大系數(shù)均在1~1.5之間;角焊縫動態(tài)應(yīng)變率效應(yīng)隨應(yīng)變率的影響規(guī)律與以往文獻中鋼材的動態(tài)試驗結(jié)果一致.
[1] KATO B, MORITA K. Strength of transverse fillet welded joints [J]. Welding Journal, 1974, 53(2): 59s-64s.
[2] KAMTEKAR A G. A new analysis of the strength of some simple fillet welded connections [J]. Journal of Constructional Steel Research, 1982, 2(2): 33-45.
[3] NG A K F, DRIVER R G, GRONDIN G Y. Behavior of transverse fillet welds [R]. Edmonton, Canada:Department of Civil and Engineering, University of Alberta, 2002:1-90.
[4] MELLOR B G, RAINEY R C T, KIRT N E. The static strength of end and T fillet weld connections [J]. Materials & Design, 1999, 20(4): 193-205.
[5] KANVINDE A M, GOMEZ I R, ROBERTS M,etal. Strength and ductility of fillet welds with transverse root notch [J]. Journal of Constructional Steel Research, 2009, 65(4): 948-958.
[6] NEIS V V. New constitutive law for equal leg fillet welds [J]. Journal of Structural Engineering, 1985, 111(8): 1747-1759.
[7] CALLELE L J, GRONDIN G Y, DRIVER R G. Strength and behavior of multi-orientation fillet weld connections [R]. Edmonton, Canada: Department of Civil and Engineering, University of Alberta,2005:1-218.
[8] BUTLER L J, KULAK G L. Strength of fillet welds as a function of direction of load [J]. Welding Journal, 1971, 50(5): 231s-234s.
[9] MIAZGA G S, KENNEDY D J L. Behavior of fillet welds as a function of the angle of loading [J]. Canadian Journal of Civil Engineering,1989,16(4): 583-599.
[10]DENG K, GRONDIN G Y, DRIVER R G. Effect of loading angle on the behavior of fillet welds[R]. Edmonton, Canada: Department of Civil and Engineering, University of Alberta, 2003:1-169.
[11]LI C, GRONDIN G Y, DRIVER R G. Reliability analysis of concentrically loaded fillet welded joints [R].Edmonton, Canada:Department of Civil and Engineering, University of Alberta, 2007:1-277.
[12]陳建鋒, 曹平周, 董先鋒. 高溫后正面角焊縫抗拉剪切強度的試驗[J]. 焊接學(xué)報, 2009, 30 (9): 81-84.
CHEN Jian-feng, CAO Ping-zhou, DONG Xian-feng. Experiment on tensile and shear strength of front fillet welded joint post-high-temperatures [J]. Transactions of the China Welding Institution, 2009, 30 (9): 81-84. (In Chinese)
[13]DAWE J L, KULAK G L. Behaviour of welded connections under combined shear and moment [R].Edmonton, Canada:Department of Civil Engineering, University of Alberta,1972: 1-89.
[14]范正磊. 角焊縫焊接節(jié)點在平面外偏心荷載作用下的受力分析[D]. 西安:西安建筑科技大學(xué)土木工程學(xué)院, 2012: 1-79.
FAN Zheng-lei. Analysis of fillet welded joints subjected to out of plane eccentric loads [D]. Xi'an: School of Civil Engineering, Xi'an University of Architecture and Technology, 2012: 1-79.(In Chinese)
[15]KULAK G L, TIMLER P A. Tests on eccentrically loaded fillet welds [R]. Edmonton, Canada: Department of Civil and Engineering, University of Alberta, 1984:1-21.
[16]LESIK D F, KENNEDY D J L. Ultimate strength of eccentrically loaded fillet welded connections [R]. Edmonton, Canada: Department of Civil Engineering, University of Alberta:1988:1-75.
[17]王元清, 張元元, 石永久. 鋼厚板母材及其焊接影響區(qū)的Z向拉伸試驗[J]. 湖南大學(xué)學(xué)報:自然科學(xué)版,2014, 41(2): 26-31.
WANG Yuan-qing, ZHANG Yuan-yuan, SHI Yong-jiu. Experimental research of the Z-direction tensile properties of thick plate steel and its heat affected zone[J]. Journal of Hunan University: Natural Sciences, 2014, 41(2): 26-31.(In Chinese)
[18]JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. 1983, 21: 541-547.
[19]劉瑞娟.沖擊荷載作用下鋼焊縫的動態(tài)力學(xué)性能研究[D]. 長沙:湖南大學(xué)土木工程學(xué)院, 2012: 1-90.
LIU Rui-juan. Dynamic behavior of steel weld under impact loading [D]. Changsha: College of Civil Engineering,Hunan University, 2012:1-90. (In Chinese)
[20]于安林, 陳紹蕃, 申林. 角焊縫在快速荷載作用下的受力性能[J]. 西安建筑科技大學(xué)學(xué)報: 自然科學(xué)版, 1996, 28(4): 364-367.
YU An-lin, CHEN Shao-fan, SHEN Lin. On behavior of fillet welds subjected to speedy loading [J]. Journal of Xi'an University of Architecture and Technology, 1996, 28(4): 364-367. (In Chinese)
[21]湖南大學(xué). 一種可實現(xiàn)落錘拉伸沖擊試驗的轉(zhuǎn)換裝置:中國, 201110185973.3[P]. 2012-06-11.
Hunan University. A test conversion device to transfer falling weight to tensile impact:China, 201110185973.3[P]. 2012-06-11. (In Chinese)
[22]CHANG K H, LEE C H. Finite element analysis of the residual stresses in T-joint fillet welds made of similar and dissimilar steels [J]. The International Journal of Advanced Manufacturing Technology, 2009, 41(3/4): 250-258.
[23]SOROUSHIAN P, CHOI K B. Steel mechanical properties at different strain rates [J]. Journal of Structural Engineering, 1987, 113(4): 663-672.
[24]林峰, 顧祥林, 匡昕昕, 等. 高應(yīng)變率下建筑鋼筋的本構(gòu)模型 [J]. 建筑材料學(xué)報, 2008, 11(1): 14-20.
LIN Feng, GU Xiang-lin, KUANG Xin-xin,etal. Constitutive models for reinforced steel bars under high strain rates [J]. Journal of Building Materials, 2008, 11(1): 14-20. (In Chinese)
[25]SYMONDS P S. Survey of methods of analysis for plastic deformation of structures under dynamic loading[R].Providence, USA:Division of Engineering, Brown University, 1967:1-67.
Experimental Study of Dynamic Property of Transverse Fillet Weld
CHEN Ying, LIU Rui-juan, HUO Jing-si?
(Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education,Hunan Univ, Changsha, Hunan 410082, China)
Two different fillet weld connections and weld throat in tension and shear were tested under dynamic tensile load to study the influence of stress state under impact load on the failure mode, fracture angle and ultimate strength of fillet weld. Compared with the mechanical properties under a static load, the ultimate tension and shear strength increase significantly under a dynamic impact load, which shows obvious strain-rate effect. The dynamic fracture angles of the tensile fillet welds are 45°, which is quite different with static test results. The stain-rate effect of tension fillet weld is more apparent than that of shear fillet weld, and the influence of dynamic increase factor on ultimate strength of fillet weld is in accordance with test results of previous literatures.
impact loads; dynamic tension; ultimate strength; strain-rate effect
1674-2974(2015)03-0031-05
2014-06-20
國家自然科學(xué)基金資助項目(51078139), National Natural Science Foundation of China(51078139);教育部新世紀優(yōu)秀人才計劃項目(NCET-11-0123)
陳 英(1988-),女,山東膠州人,湖南大學(xué)博士研究生
?通訊聯(lián)系人,E-mail:jingsihuo@gmail.com
TU392.4
A