趙麗雯,趙文智,吉喜斌
中國生態系統研究網絡臨澤內陸河流域研究站,中國科學院內陸河流域生態水文重點實驗室,中國科學院寒區旱區環境與工程研究所,蘭州
730000
西北黑河中游荒漠綠洲農田作物蒸騰與土壤蒸發區分及作物耗水規律
趙麗雯,趙文智*,吉喜斌
中國生態系統研究網絡臨澤內陸河流域研究站,中國科學院內陸河流域生態水文重點實驗室,中國科學院寒區旱區環境與工程研究所,蘭州
730000
利用中國生態系統研究網絡臨澤內陸河流域研究站綠洲農田2009年小氣候、湍流交換、土壤蒸發和葉片氣孔導度等綜合觀測試驗數據,應用Shuttleworth-Wallace(S-W)雙源模型以半小時為步長估算了綠洲農田玉米生長季實際蒸散量,并利用渦動相關與微型蒸滲儀實測數據對田間蒸散發量和棵間土壤蒸發量計算結果進行了檢驗。結果表明:S-W模型較好地估算研究區的蒸散量,并能有效區分農田作物蒸騰和土壤蒸發;全生育期玉米共耗水640 mm,其中作物蒸騰累積量為467 mm,土壤蒸發累積量為173 mm,分別占總量的72.9%和27.1%;日時間尺度上,作物蒸騰和土壤蒸發分別在0—6.3 mm/d和0—4.3 mm/d之間變化,其日平均分別為2.9 和1.0 mm/d;田間供水充足,作物蒸騰與土壤蒸發比值明顯受作物生長過程影響,播種—出苗期、出苗—拔節期、拔節—抽雄期、抽雄—灌漿期、灌漿—成熟期,其比值分別為0.04、0.8、7.0、5.2和1.4,不同階段的比值差異主要受葉面積指數影響。
Shuttleworth-Wallace模型;作物蒸騰;土壤蒸發;耗水規律
作物蒸散發與耗水規律研究是制定節水灌溉制度和提高作物水分生產率的重要依據。目前在理論和實驗方面開展了大量關于蒸散發研究,逐漸形成了水量平衡法、波文比-能量平衡法、渦動相關實測法、模型模擬等一系列成熟可靠的蒸散發研究方法[1- 7]。國內外對于上述幾種方法展開了大量的研究,對于蒸散發有了較為成熟的理解,然而為了進一步研究蒸散發的機理,需對作物蒸騰和土壤蒸發進行區分。目前基于實驗能夠將蒸散發區分為土壤蒸發和作物蒸騰的方法主要有:直接觀測和模型估算。基于實測資料區分的方法主要有植物生理學方法[8- 11]和水熱平衡法[1, 12]。Yunusa等基于莖稈液流及微型蒸滲儀實測數據估算了澳大利亞干旱區葡萄園3—5月的作物蒸騰與土壤蒸發,但對于如何將莖稈液流觀測值轉化為田間作物蒸騰速率,并沒有給出進一步科學的解釋。Zeggaf等基于實測數據利用波文比能量平衡法對日本干旱區玉米生長季中典型天氣下的作物蒸騰及土壤蒸發進行了區分,其方法較為合理,但是研究時間尺度較短(僅4d)。雖然直接觀測方法能更精準的反映實際情況,但是耗時費力。相比而言,模型計算簡單易操作。模型計算方法主要有雙作物系數法(FAO- 56)[7, 13]和Shuttleworth-Wallace(S-W)雙源模型[6, 14]等。Liu等使用雙作物系數法估算了禹城冬小麥和夏玉米的蒸散發,但是未對作物蒸騰與土壤蒸發進行區分[15],Er-Raki等是利用雙作物系數法區分了摩洛哥干旱區橄欖樹的作物蒸騰與土壤蒸發[16]。相比于雙作物系數法,S-W模型雙源模型從動量吸收、能量和物質轉化傳輸過程及兩者相互關系角度將土壤蒸發和作物蒸騰分開,具有較清晰的物理含義[17]。David等針對科羅拉南部半干旱區稀疏植被,利用S-W雙源模型估算了該植被的蒸散發[18];Odhiambo等不僅利用S-W雙源模型估算了內布拉斯加州滴灌條件下大豆農田的蒸散發,而且有效區分作物蒸騰與土壤蒸發[19]。此外,大量的研究都利用S-W雙源模型對不同地區作物蒸騰和土壤蒸發進行了區分[20- 23],但是這些研究對于干旱區荒漠綠洲卻研究甚少。吉喜斌等基于Penman-Monteith(P-M)模型,對黑河流域中游山前綠洲農田春小麥生長季土壤蒸發、作物蒸騰及總蒸散發進行了模擬研究[24]。該研究應用SPAC水熱傳輸理論對S-W雙源模型的參數進行改進,但是由于當時實驗條件限制,葉片氣孔導度及土壤熱通量等參數均通過計算得到,與實際值難免會產生偏差,進而影響模型的模擬精度。因此,有必要針對干旱區荒漠綠洲,對作物蒸騰與土壤蒸發區分及其耗水規律展開進一步的研究。
本研究利用中國生態系統研究網絡臨澤內陸河流域研究站荒漠綠洲農田2009年的小氣候、土壤蒸發及葉片氣孔導度等綜合觀測試驗數據,應用S-W雙源模型估算了作物蒸騰和土壤蒸發,采用渦動相關實測蒸散發數據對計算值進行了驗證,得到了合理的作物蒸騰和土壤蒸發比值,探討了不同生育期玉米耗水規律以及蒸散發對環境因子的響應。
1.1 研究區概況
實驗于2009年4—9月在中國生態系統研究網絡臨澤內陸河流域研究站荒漠綠洲農田綜合觀測場進行。該觀測場位于黑河中游荒漠邊緣(100°08′27″E、39°19′38″N,海拔1381 m),為典型的荒漠綠洲農田,屬溫帶干旱氣候,年均氣溫為7.6 ℃,最高氣溫在7月為39.1 ℃;最低氣溫在1月為-27.3 ℃。年均降雨量為113.4 mm,主要集中在7—9月份,占年降雨量的56.7%—62.6%。年蒸發量為1900—2088 mm,年均日照時數3051 h,年均無霜期165 d,平均地下水位為(6.18±0.08) m。試驗場位于制種公司制種區內,面積高達25 km2,內外地勢平坦,種植結構相同作物分布均勻且長勢一致。2009年種植大田制種玉米,生長季為4月10日—9月20日,在制種公司統籌管理下統一播種、施肥、灌溉、去父本和收獲。
1.2 田間觀測項目

圖1 農田小氣候觀測系統(a)、渦動相關觀測系統(b)及微型蒸滲儀(c)Fig.1 Farmland microclimate observation system (a)、Eddy covariance observation system (b) and Micro-Lysimeters (c)
(1)綜合環境觀測
采用站內安裝的綠洲農田小氣候觀測系統(圖1a),配有五層常規氣象要素探頭(包括風速(LISA, Siggelkow, 德國)、氣濕與氣溫(HMP45D, Vaisala, 芬蘭)分別安裝在2、4、6、12、20 m處;總輻射、凈輻射儀(Kipp & Zonen, Delft, 荷蘭))均安裝在地面以上4 m處;土壤溫度探頭(Pt100, IMKO, 德國)安裝在地表0 cm和地表以下5、10、20、40、80、120 cm;土壤濕度探頭TDR(TRIME-IT, IMKO, 德國)安裝在地表以下5、20、60、100、200、300 cm處;土壤熱通量探頭(HFP01, Hukseflux, 荷蘭)安裝在地表以下2 cm處,均以30 min為步長輸出。
(2)渦動相關觀測
站內安裝有渦動協方差系統(圖1b),配有三維超聲風速儀(HS50, Gill Instruments, 英國)、快速響應紅外CO2/H2O氣體分析儀(LI- 7500, LI-COR Inc., 美國);原始數據采集頻率為20 Hz。
(3)土壤蒸發觀測
采用微型蒸滲儀(Micro-Lysimeter)進行觀測,蒸滲儀為內外雙桶設計,內桶由不銹鋼制成,內徑為0.10 m,高0.25 m,外桶由PVC管制成,放置于制種玉米行間(圖1c),頂部與大田保持一致,設置6個重復,每日8:00稱重換土,使用精度為0.1 g的電子天平稱重,前后兩次的差值即為當天的蒸發量,取6組微型蒸發儀測量的平均值作為當天的土壤蒸發實測值。
(4)葉片氣孔導度測定
利用Li- 6400便攜式光合儀(LI-COR Inc., 美國)于作物出苗后每月對玉米葉片的氣孔導度(Gs)進行測定,同時測得凈光合速率(Pn)、蒸騰速率(Tr)等參數,測定時間從8:00到20:00,間隔1 h。
(5)其它測定項目
每隔10d隨機取18個2 m×2 m的樣方測量植株密度和高度,采用LI- 3100葉面積儀測定葉面積指數(LAI)。播種時采用覆膜式播種,灌溉方式為畦灌。2009年生長季中共灌溉7次,總灌溉定額為797 mm,平均灌溉定額為114 mm。
1.3 Shuttleworth-Wallace雙源模型

圖2 雙源蒸散發模型系統水熱傳輸示意圖 Fig.2 The sketch of two-source evapotranspiration model scheme
1985年Shuttleworth和Wallace[17]研究了稀疏植被覆蓋條件下土壤表面的蒸散,在P-M模型的基礎上,假設作物均勻覆蓋,引入植被冠層阻力和土壤表面阻力兩個阻力參數,建立了由植被和植被覆蓋下的土表兩部分組成的雙源模型。該模型通過研究與作物生理特性(氣孔導度、光合作用)、作物生長環境(太陽輻射、大氣溫度、水汽壓)以及土壤水熱傳輸等有關的阻力系統(圖2),基于能量平衡原理,將作物上方的蒸散量分解為兩部分:
λE=CcPMc+CsPMs
(1)
式中,PMc為冠層潛熱通量(MJ m-2d-1),PMs為冠層下部土壤潛熱通量(MJ m-2d-1),分別用于計算冠層蒸騰和土壤蒸發,用參考水平面飽和水汽壓差(D)表示的計算公式為:
(2)
(3)
系數Cc和Cs由下式給出:
(4)
(5)
其中:
(6)
(7)
(8)

A=Rn-G
(9)
(10)
式中,Rn和Rns分別為冠層和地面的凈輻射通量(W/m2),G為土壤熱通量(W/m2)。
(11)
式中,C為凈輻射在植被冠層群體中的衰減系數,和葉片特征相對應由作物屬性決定,變化幅度在0.3—1.5之間,根據Monsi和Saeki的經典著作中的指數公式[25]τ(L)=exp(-C(LAI))確定,τ為太陽輻射在植物群落中的穿透系數,對于農作物玉米的經驗取值見表1。

表1 葉面積指數與穿透系數τ的關系表
2.1 農田小氣候特征
根據綠洲農田小氣候觀測系統及開路渦動相關觀測系統觀測數據對2009年制種玉米生長季內總輻射、凈輻射、土壤熱通量、溫度、相對濕度及風速等小氣候資料進行分析,各個環境因子的月均值如表2所示。作物生長季中凈輻射基本呈先升后降的單峰曲線,在7.8—218.9 W/m2之間變化,日均值為138.5 W/m2,在制種玉米生長旺盛的6月和7月,凈輻射維持在一個較高水平。日均溫在-1.3—28.8 ℃之間波動,其中4月份溫度最低,5月中旬以前波動較大,6—8月日均溫維持在20 ℃左右。風速在4月和5月份作物生長初期日均值大于2 m/s,在作物主要生長季6—8月較低。相應的飽和水汽壓差在整個生長季中隨著大氣水分及作物生長的影響呈脈沖狀波動,日均值為1.2 kPa,其中8月份日均值最大,達到1.4 kPa。土壤含水量在整個生長季也呈現先增加后減小的變化趨勢,共出現了8個峰值,與7次灌溉及1次強降水對應,且峰值的大小與灌溉及降水量的強度成正相關性。

表2 各環境因子的月均值Table 2 Mean monthly values for some environmental factors
2.2 作物蒸散發模擬及其驗證
利用綠洲農田小氣候數據、作物生長參數及葉片氣孔導度等實測數據,基于S-W雙源模型(公式(1)—(11))估算了甘肅臨澤荒漠綠洲農田2009年制種玉米生長季實際蒸散發,如圖3所示。在整個生長季中,累積蒸散量為640 mm,日均蒸散發為3.9 mm/d, 其中最大值出現在5月31日,最小值出現在9月6日;作物蒸騰為467 mm,日均值為2.9 mm/d,最大值出現在6月30日,最小值出現在4月初播種-出苗期間;土壤蒸發為173 mm,日均值為1.0 mm/d,最大值出現在4月10日,最小值出現在6月30日,植物蒸騰和土壤蒸發分別占總量的71.9%和28.1%,日時間尺度上,作物蒸騰和土壤蒸發分別在0—6.3 mm/d和0—4.3 mm/d之間變化,其日平均分別為2.9 和1.0 mm/d。在生長初期階段至發育階段,土壤蒸發大于作物蒸騰,從發育階段開始作物蒸騰逐漸占主導,到后期階段作物蒸騰開始逐漸減小而土壤蒸發又逐漸增強(圖3)。
為了驗證S-W雙源模型的估算結果,采用渦動相關實測蒸散發數據對估算結果進行分析。可知S-W雙源模型估算的蒸散量與實測值規律較一致,其相關系數R2=0.70,均方差MSE=0.67,P<0.001(圖4)。采用微型蒸滲儀實測的土壤蒸發數據對S-W雙源模型估算的土壤蒸發進行驗證,從7月27日開始,剔除下雨或灌溉等不可抗拒因素影響的實測日蒸發數據,其余數據與模擬的日蒸發量進行回歸分析,相關系數R2=0.64,均方差MSE=0.05,P<0.001(圖4)。可知S-W雙源模型能夠較理想的估算綠洲農田蒸散發并區分田間作物蒸騰和土壤蒸發,可為田間水分管理提供理論依據。

圖3 S-W模型估算的農田蒸散發、作物蒸騰與土壤蒸發逐日變化Fig.3 Daily Evapotranspiration、Evaporation and transpiration estimated by S-W model

圖4 S-W估算蒸散發與渦動相關實測蒸散發相關分析;S-W估算土壤蒸發與微型蒸滲儀實測土壤蒸發相關分析Fig.4 The relationship between ETS-W and ETeddy, the relationship between ES-W and E micro-Lysimeter
3.1 作物耗水規律
作物耗水規律是確定灌水量、灌水時期、灌水方式等的依據,是制定大田作物灌溉制度,提高水分利用效率的理論基礎。根據作物生長發育將制種玉米生長劃分為5個階段:播種-出苗、出苗-拔節、拔節-抽雄、抽雄-灌漿和灌漿-成熟期,基于S-W雙源模型估算結果,對綠洲農田作物耗水規律進行分析(表3)。在播種-出苗期,LAI≈0,作物蒸騰與土壤蒸發比Tr/E=0.04,此階段農田蒸散發以土壤蒸發為主;出苗-拔節期,隨著天氣變暖農田小氣候發生相應變化,凈輻射及溫度增大,作物蒸騰與土壤蒸發均有所增加,但作物蒸騰增加幅度遠大于土壤蒸發增加的幅度,主要原因是由于此階段作物快速生長,葉面積指數逐漸增大,相應的地表覆蓋也隨之增加,表現為作物蒸騰與土壤蒸發之比Tr/E=0.8,其中作物蒸騰占此段總蒸散量的45.0%,土壤蒸發占55.0%;拔節-抽雄期,作物已發育完全,葉面積指數達到最大值(3.81 m2/m2),地表基本完全覆蓋,冠層-土壤截獲的能量絕大部分用于作物蒸騰,作物蒸騰成為農田蒸散的主導力量,此階段Tr/E=7.0,其中作物蒸騰占此階段總蒸散量的87.4%,土壤蒸發僅占12.6%;抽雄-灌漿期:由于母本去除,且在去除過程中對剩余植株葉片造成傷害,加之此階段末期葉片開始衰老,致使作物蒸騰較之上一階段有所減弱,但作物蒸騰仍占主導,Tr/E=5.2,作物蒸騰占此階段總蒸散發的83.8%,土壤蒸發所占比例提高為16.2%;灌漿-成熟期,作物已成熟,葉片衰老枯黃,制種玉米所需水分減小,作物蒸騰明顯減弱,且進入深秋,凈輻射減弱溫度降低,土壤蒸發能力也較弱,故此階段Tr/E=1.4。相比于荒漠綠洲,北京地區夏玉米生長季約為114 d,其作物蒸騰與土壤蒸發比在拔節后期、孕穗期、抽雄灌漿期和成熟期差異性較小依次為,2.7、3.5、3.3和3.0[29]。而河南新鄉冬小麥夏玉米共生期作物蒸騰與土壤蒸發比呈現無規律變化,于拔節-抽雄期達到最大為7.0[30]。由此可知作物耗水規律在不同地區、不同時間和不同供水條件下,其強度和變化趨勢不同。制種玉米在生育期內不能受到水分脅迫,田間供水充足,故其耗水規律不同與其它地區。
在制種玉米生育期內,拔節-抽雄期和抽雄-灌漿期作物蒸騰量最大(表3),而此時對應的灌溉量也最大,說明這兩個生育階段內灌溉合理;整個生育期累積土壤蒸發為173 mm,占總蒸散發量的27.1%,可采用覆膜或秸稈覆蓋等措施,減少灌溉用水量;整個生育期內蒸散發量為640 mm,灌溉和降水總量約為895 mm,可知在當前降雨條件下,灌溉量可保證制種玉米供水充足,故當生長季內降雨量減小或者增大時,可相應的調控灌溉量以減少水資源浪費;田間高效節水灌溉措施需要在田間耗水規律的基礎上,根據田間水分動態平衡及作物實際生長生理狀況才可得到進一步完善。

表3 不同生長階段農田水分利用狀況Table 3 Farmland water use during different growing stage
3.2 農田蒸散發對環境因子的響應
作物蒸散發強度與氣象要素、土壤水分狀況、作物種類及其生長發育階段、農業技術措施、灌溉排水措施等有關[7]。制種玉米在生長過程中要求水分供應充足,不能受到水分脅迫,故農田蒸散發變化主要由環境因素及作物生長狀況引起。對于環境因子而言,凈輻射與蒸散發具有較好的相關性,本文監測數據顯示,凈輻射小于137 W/m2時,農田蒸散發隨著凈輻射的增加而加大,凈輻射在137—226 W/m2時,農田蒸散發最大,日均值達到6.4 mm/d; 對于農田作物蒸騰,凈輻射在137—199 W/m2時,作物蒸騰速率最快,日均值達到6.0 mm/d。當日均溫為17.4—25.7 ℃時,農田蒸散發與作物蒸騰日均值均達到最大值。在水分條件良好的農田生態系統中,ET與飽和水汽壓差呈現良好的線性正相關[31],例如在抽雄-灌漿期內,8月12日和8月20日對應的飽和水汽壓差分別為2.65和0.38 kPa,其對應的日均蒸散發為6.1 mm/d和3.9 mm/d,這正好說明了這一點。風速對作物蒸散發的影響是通過加快水汽擴散、減少水汽擴散阻力來實現的,在一定范圍內,蒸散發的增減與風速的0.5—1次方成正比[32],但是在生長季內,荒漠綠洲農田蒸散發與風速呈負相關,且相關性較小。
植物體作為植被蒸散中的生物因素,在很多方面對蒸散產生影響[33]。其中,不同作物的葉面積指數(LAI)因植物作物類型、生長階段、環境狀況及管理情況不同而呈現動態變化[34],其作為估計和評價植被蒸散耗水的指標比植物密度高度等更符合生物學邏輯[35]。經統計分析可知,制種玉米的土壤蒸發、作物蒸騰與LAI存在顯著的相關關系,如圖6所示。從圖中可以看出作物蒸騰與蒸散發和LAI呈正相關,土壤蒸發與LAI呈負相關,這主要是因為作物蒸騰主要是通過葉片上的氣孔散失到外界中[36],葉片的大小和濃密程度在很大程度上決定了蒸騰速率,葉片對于土壤蒸發的影響主要是通過影響地面覆蓋率及太陽輻射的穿透率來控制的。葉面積指數首先影響蒸騰表面積,其次影響地表覆蓋度和冠層通風狀況,通過一系列反饋效應影響蒸散過程。當LAI<0.5 m2/m2時土壤蒸發日均值達到2.0 mm/d,當LAI>0.5 m2/m2時,土壤蒸發逐漸減小;作物蒸騰與LAI呈顯著正相關,作物蒸騰能力隨著LAI的增大而增強,當LAI>3.0 m2/m2時作物蒸騰日均值達到4.7 mm/d。當LAI≈3.2 m2/m2時,農田蒸散發日均值最大為6.5 mm/d。
從以上分析可知,氣象要素(凈輻射、溫度等)和作物自身都會對農田蒸散發過程造成影響,但是氣象要素主要通過改變農田微氣候環境影響蒸散發的總量,而植物體本身的各個要素尤其是葉面積指數通過影響蒸騰表面積、地表覆蓋度及冠層空氣動力學狀況等在很大程度上影響了作物蒸騰與土壤蒸發的比值。

圖5 S-W雙源模型估算土壤蒸發、農田蒸散及作物蒸騰對葉面積指數的響應Fig.5 Response of modeled E、ET and Tr on LAI, respectively
(1)S-W雙源模型能夠有效的估算黑河中游荒漠綠洲農田制種玉米蒸散發并區分作物蒸騰與土壤蒸發,模型模擬結果表明2009年整個生長季荒漠綠洲農田制種玉米累積蒸散量為640 mm,日均蒸散量為3.9 mm/d,其中作物蒸騰為467 mm,土壤蒸發為173 mm,分別占總量的72.9%和27.1%。
(2)田間耗水規律表現為:作物蒸騰與土壤蒸發比值在播種—出苗期、出苗—拔節期、拔節—抽雄期、抽雄—灌漿期、灌漿—成熟期依次為0.04、0.8、7.0、5.2和1.4,呈現出先增大后減小的偏“凸”字變化趨勢。氣象要素(凈輻射、溫度等)主要影響農田蒸散發總量,植物體本身的各個要素尤其是葉面積指數主要影響作物不同生長階段作物蒸騰與土壤蒸發的比值。
[1] Gochis D J, Cuenca R H. Plant water use and crop curves for hybrid poplars. Journal of Irrigation and Drainage Engineering, 2000, 126(4): 206- 214.
[2] Verma S B. Micrometeorological methods for measuring surface fluxes of mass and energy. Remote Sensing Reviews, 1990, 5(1): 99- 115.
[3] Leuning R, Moncrieff J. Eddy covariance CO2flux measurements using open and closed-path CO2analyzers-corrections for analyzer water vapour sensitivity and damping of fluctuations in air sampling tubes. Boundary-Layer Meteorology, 1990, 53(1/2): 63- 76.
[4] Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 1972, 100(2): 81- 92.
[5] M Monteith J L. Evaporation and environment // Fagged G E, ed. The State and Movement of Water in Living Organism. Cambridge, UK: Cambridge University Press, 1965: 205- 234.
[6] Shuttleworth W J, Wallance J S. Evaporation from sparse crops an energy combination theory.Quarterly Journal of Meteorological Society, 1985, 111(469): 839- 855.
[7] Allen R G, Pereira L S, Raes D, Smith M. Crop evapotranspiration, Guide-lines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Rome, 1998.
[8] Garcia M, Raes D, Allen R G, Herbas C. Dynamics of reference evapotranspiration in the Bolivian highlands (Altiplano). Agricultural and Forest Meteorology, 2004, 125(1/2): 67-82.
[9] Granier A, Bobay V, Gash J H C, Gelpe J, Saugier B, Shuttleworth W J. Vapour flux density and transpiration rate comparisons in a stand of maritime pine (Pinus pinaster Ait.) in Les Landes forest. Agricultural and Forest Meteorology, 1990, 51(3-4): 309- 319.
[10] Cermak J, Nadezhdina N. Sapwood as the scaling parameter- defining according to xylem water content or radial pattern of sap flow? Annals Des Sciences Forestières, 1998, 55(5): 509- 521.
[11] Dugas W A. Sap flow in stems. Remote Sensing Reviews, 1990, 5(1): 225- 235.
[12] Meiresonne L, Nadezhdina N, Cermak J, Van Slycken J, Ceulemans R. Measured sap flow and simulated transpiration from a poplar stand in Flanders (Belgium). Agricultural and Forest Meteorology, 1999, 96(4): 165- 179.
[13] Allen R G, Clemmens A J, Burt C M, Solomon K, O′Halloran T. Prediction accuracy for project wide evapotranspiration using crop coefficients and reference evapotranspiration. Journal of Irrigation and Drainage Engineering, 2005, 131(1): 24- 36.
[14] Wallace J, Roberts J, Sivakumar M. The estimation of transpiration from sparse dryland millet using stomatal conductance and vegetation area indices. Agricultural and Forest Meteorology, 1990, 51(1): 35-49.
[15] Liu Y, Luo Y. A consolidated evaluation of the FAO- 56 dual crop coefficient approach using the lysimeter data in the North China Plain. Agricultural Water Management, 2010, 97(1): 31-40.
[16] Er-Raki S, Chehbouni A, Boulet G, Williams D G. Using the dual approach of FAO- 56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region. Agricultural Water Management, 2010, 97(11): 1769- 1778.
[17] Shuttleworth W J, Gurney R J. The theoretical relationship between foliage temperature and canopy resistance in sparse crops. Quarterly Journal of Royal Meteorological Society, 1990, 16(492): 497-519.
[18] David I S. Comparison of Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor Evapotranspiration models for wildland vegetation in semiarid rangeland. Water Resources Research, 1993, 29(5): 1379- 1392.
[19] Odhiambo L, Irmak S. Performance of extended Shuttleworth-Wallace model for estimating and partitioning of evapotranspiration in a partial residue-covered subsurface drip-irrigated Soybean field. Transactions of the ASABE, 2011, 54(3): 915- 930.
[20] Bernhofer C, Blanford J, Siegwolf R, Wedler M. Applying single and two layer canopy models to derive conductances of a Scots pine plantation from micrometeorological measurements. Theoretical and Applied Climatology, 1996, 53(1/3): 95- 104.
[21] Brisson N, Itier B, L′Hotel J C, Lorendeau J Y. Parameterisation of the Shuttleworth-Wallace model to estimate daily maximum transpiration for use in crop models. Ecological Modelling, 1998, 107(2): 159- 169.
[22] Iritz Z, Lindroth A, Heikinheimo M, Grelle A, Kellner E. Test of a modified Shuttleworth-Wallace estimate of boreal forest evaporation. Agricultural and Forest Meteorology, 1999, 98: 605- 619.
[23] Iritz Z, Tourula T, Lindroth A, Heikinheimo M. Simulation of willow short-rotation forest evaporation using a modified Shuttleworth-Wallace approach. Hydrological Processes, 2001, 15(1): 97- 113.
[24] 吉喜斌, 康爾泗, 趙文智, 陳仁升, 金博文, 張智慧. 黑河流域山前綠洲灌溉農田蒸散發模擬研究. 冰川凍土, 2004, 26(6): 713- 719.
[25] Montieth J L. Vegetation and the Atmosphere Volume 1 Principles. London: Academic Press, London, 1975.
[26] Brenner A J, Incoll L D. The effect of clumping and stomatal response on evaporation from sparsely vegetated shrublands. Agricultural and Forest Meteorology, 1997, 84(3-4): 187- 205.
[27] Noilhan J, Planton S. A simple parameterization of land surface processes for meteorological models. American Meteorological, 1989, 177(3): 536- 549.
[28] Ortega-Farias S, Poblete-Echeverria C, Brisson N. Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements. Agricultural and Forest Meteorology, 2010, 150(2): 276- 286.
[29] 石俊杰, 龔道枝, 梅旭榮, 馬孝義, 郝衛平, 胡笑濤. 穩定同位素法和渦度-微型蒸滲儀區分玉米田蒸散組分的比較. 農業工程學報, 2012, 28(20): 114- 120.
[30] 高陽, 段愛旺, 劉浩, 劉戰東, 申孝軍. 冬小麥, 春玉米間作條件下作物需水規律. 節水灌溉, 2007, 3: 18- 25.
[31] 于貴瑞, 王秋風. 植物光合、蒸騰與水分利用的生理生態學. 北京:科學出版社, 2010: 355- 356.
[32] 彭世彰, 徐俊增. 農業高效節水灌溉理論與模式. 北京:科學出版社, 2009: 45-46.
[33] Baldocchi D D, Xu L K, Kiang N. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland. Agricultural and Forest Meteorology, 2004, 123(1): 13- 39.
[34] Weiss M, Baret F, Smith G J, Jonckheere I, Coppin P. Review of methods for in situ leaf area index (LAI) determination Part I: Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, 2004, 12l(1/2): 37- 53.
[35] 王彥輝, 熊偉, 于彭濤, 沈振西, 郭春明, 管偉, 馬長明, 葉兵, 郭浩. 干旱缺水地區森林植被蒸散耗水研究. 中國水土保持科學, 2006, 4(4): 19- 25.
[36] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33(1): 317- 345.
Division between transpiration and evaporation, and crop water consumption over farmland within oases of the middlestream of Heihe River basin, Northwestern China
ZHAO Liwen, ZHAO Wenzhi*, JI Xibin
LinzeInlandRiverBasinResearchStation,ChineseEcosystemNetworkResearch,KeyLaboratoryofEcohydrologyofInlandRiverBasin,ColdandAridRegionsEnvironmentalandEngineeringResearchInstitute,ChineseAcademyofSciences,Lanzhou730000,China
The process of evapotranspiration (ET), which takes into account both evaporation (E) and plant transpiration (Tr), plays a prominent role in water and heat exchange in terrestrial ecosystem, given that it involves interactions between plants, soil and atmosphere. Evapotranspiration is also vital for developing water-saving irrigation schemes and improving the crop water productivity of farmland ecosystems. As for the components of evapotranspiration, investigating transpiration and evaporation separately can help us understanding crop water requirements more thoroughly. We investigated the variation in crop water consumption during the growing season for a maize field located in the Linze Inland River Basin Research Station of the Chinese Ecosystem Research Network. In this investigation, we obtained essential data, including microclimate, turbulent exchange, evaporation, and leaf stomatal conductance, in 2009. Based on these data, we simulated transpiration and evaporation in half-hour time steps using the Shuttleworth-Wallace (S-W) model. Comparing the calculatedETdata with eddy covariance data through correlation analysis, we found that the correlation coefficient (R2) was 0.70, the mean square error (MSE) was 0.67, andPless than 0.001. A correlation analysis between evaporation data measured by a micro-lysimeter and evaporation data simulated by S-W model shows a good accordance between them, withR2of 0.64, MSE of 0.67, andPless than 0.001. The S-W model was found to be useful for dividing evapotranspiration into transpiration and evaporation. After applying the model, it can be concluded that during the growing season, the cumulative evapotranspiration was about 640 mm, which consisted of 467 mm of transpiration and 173 mm of evaporation. It means that transpiration and evaporation accounted for 72.9% and 27.1% of evapotranspiration, respectively. On a daily basis, transpiration ranged from 0 to 6.3 mm/d (mean = 2.8 mm/d), while evaporation ranged from 0 to 4.3 mm/d (mean = 1.0 mm/d). The ratio of transpiration to evaporation varied with crop growth. Transpiration (water consumption) of maize during different growing stages can be summarized as follows. The ratio of transpiration to evaporation (Tr/E) was 0.04 when the leaf area index (LAI) was close to zero from seeding to emergence stage, indicating that evaporation constituted a large proportion of evapotranspiration. From emergence to jointing stage (LAI= 0.35), the ratio ofTrtoEwas 0.8, while transpiration and evaporation accounted for 45% and 55% of evapotranspiration, respectively. However, from jointing to tasseling stage (LAI= 3.81), when most of the solar radiation was captured by the canopy, transpiration accounted for 87.4% and evaporation dropped to only 12.6% of evapotranspiration, whileTr/Ewas 7.0. From tasseling to filling stage, the ratio ofTrtoEwas 5.2, while transpiration and evaporation constituted 83.8% and 16.2% of evapotranspiration, respectively. Finally, from filling to maturity, the ratio ofTrtoEdropped to 1.4 causing by little water requiring by mature maize. From these findings about evapotranspiration related to maize, it can be seen that water consumption varies by regions, growing stages of the crop, and water availability. Evapotranspiration was greatest during the tasseling and filling stages, and irrigation was also heavy at these times, indicating that the irrigation scheme was reasonable. The total evapotranspiration over the growing season was 640 mm, while the total water supply (the sum of irrigation and precipitation) was 895 mm, which means that the current irrigation scheme supplied a sufficient amount of water to the maize. However, as precipitation changes during the growth stage, the irrigation scheme should also be adjusted such that the water supplied is balanced with the water requirements of the crop for a particular growth stage. To keep water balance between supply and consumption will be help water saving in this area. Both meteorological factors and crop conditions can affect evapotranspiration. Microclimate changes with meteorological factors, leading the variation in total evapotranspiration. In addition, the earth surface coverage, canopy aerodynamics, and other conditions are affected by the crop itself (especially the LAI), which can alter the ratio of crop transpiration and water evaporation from soil.
Shuttleworth-Wallace model; transpiration; evaporation; water consumption
國家杰出青年科學基金(41125002); 國家自然科學基金項目(40930634, 41271036)
2013- 04- 22;
日期:2014- 04- 11
10.5846/stxb201304220778
*通訊作者Corresponding author.E-mail: zhaowzh@lzb.ac.cn
趙麗雯,趙文智,吉喜斌.西北黑河中游荒漠綠洲農田作物蒸騰與土壤蒸發區分及作物耗水規律.生態學報,2015,35(4):1114- 1123.
Zhao L W, Zhao W Z, Ji X B.Division between transpiration and evaporation, and crop water consumption over farmland within oases of the middlestream of Heihe River basin, Northwestern China.Acta Ecologica Sinica,2015,35(4):1114- 1123.