李永洙, 李 進, 張寧波, 陳常秀, CUI Yongquan
1 臨沂大學生命科學學院, 臨沂 276000 2 山東龍盛農牧集團, 臨沂 276000 3 國立岡山大學自然科學研究科, 日本岡山 700- 8530
熱應激環(huán)境下蛋雞腸道微生物菌群多樣性
李永洙1,*, 李 進2, 張寧波1, 陳常秀1, CUI Yongquan3
1 臨沂大學生命科學學院, 臨沂 276000 2 山東龍盛農牧集團, 臨沂 276000 3 國立岡山大學自然科學研究科, 日本岡山 700- 8530
通過分析熱應激環(huán)境下蛋雞腸道菌群結構的變化,旨在揭示熱應激對腸道微生態(tài)環(huán)境的影響機理,為探索炎熱環(huán)境下家禽腸道菌群定植規(guī)律提供理論依據。試驗選擇16周齡濟寧百日雞96只,隨機分成對照組[(24±1) ℃,Ⅰ]和熱應激[(38±1) ℃]組,分別在2個人工環(huán)境氣候艙中飼養(yǎng),各組設6個重復,每個重復8只,試驗持續(xù)14 d。采用16S rDNA的變性梯度凝膠電泳(Denatured gradient gel electrophoresis, PCR-DGGE)技術和實時熒光定量(Real-time quantitative RT-PCR) 以及多變量統(tǒng)計(Principal Components Analysis,PCA)分析等手段,分析熱應激2d(Ⅱ)、7d(Ⅲ)和14 d(Ⅳ)時,對十二指腸、空腸及回腸內容物菌群多樣性以及菌群數量變化。PCA分析結果顯示,熱應激暴露過程中十二指腸部位菌群組成與對照組保持相似的趨勢,但熱應激2 d時空腸部位菌群組成有分開趨勢;到7 d時空腸與回腸部位菌群組成分開明顯,而14 d時菌群組成具有明顯差異;熱應激7、14 d時空腸和回腸部位末檢測到敏感乳桿菌(Lactobacillusagilis),回腸部位也末檢測到約氏乳桿菌(Lactobacillusjohnsonii)、不可培養(yǎng)細菌(Unculturedbacterium)等芽孢桿菌綱,而熱應激不同時間段空腸和回腸部位可檢測到不可培養(yǎng)細菌(UnculturedEscherichiasp)、潰瘍擬桿菌(Bacteroideshelcogenes)、卵形擬桿菌(Bacteroidesovatus)和索氏志賀氏菌(Shigellasonnei) 等擬桿菌綱和γ-變形菌綱;其中約氏乳桿菌、敏感乳桿菌數量變化在空腸部位減少最明顯(P<0.05),空腸和回腸卵形擬桿菌、不可培養(yǎng)的擬桿菌數量明顯上升(P<0.05)。熱應激環(huán)境下蛋雞空腸、回腸部位菌群多樣性較為豐富,其抑制乳桿菌屬、不可培養(yǎng)細菌的增殖,促進卵形擬桿菌的繁殖,而促進卵形擬桿菌的繁殖,導致消化道菌群平衡的破壞。
熱應激; 蛋雞; 腸道菌群; 多樣性
正常菌群作為機體的重要組成部分,參與了家禽的生長、發(fā)育、消化、吸收、營養(yǎng)、免疫、生物拮抗及其各種功能和結構的發(fā)生、發(fā)展及衰退的全過程[1- 2]。環(huán)境溫度是影響家禽生產性能的重要因素,在高溫時機體熱平衡失調引起熱應激。此時,宿主與菌群動態(tài)的微生態(tài)平衡遭到破壞,正常菌群會發(fā)生變化,導致生產性能下降,嚴重時甚至因抵抗力下降而大批死亡,造成巨大的經濟損失。當環(huán)境溫度超過28 ℃時,可導致雞十二指腸、空腸、回腸絨毛頂端輕微破裂、腸絨毛局部區(qū)域水腫、斷裂和成片絨毛嚴重缺失[3];應激會降低家畜的腸道絨毛高度,增加隱窩深度,而腸絨毛高度降低及表面積的減少會導致腸道吸收功能的減弱,腸道微生物區(qū)系的穩(wěn)態(tài)失衡[4]。近幾年,關于腸道菌群研究頗受關注,并證實腸道菌群與宿主免疫[5]、物質代謝[6]緊密相關,但是對于熱應激環(huán)境下宿主腸道優(yōu)勢菌以及導致疾病或與疾病相關的微生物如何變化的了解還遠遠不足。另外,采用傳統(tǒng)和基于16S rRNA的變性梯度凝膠電泳(PCR-DGGE)技術等方法研究家禽腸道微生物菌群多樣性的報道較多[7- 8],但由于PCR-DGGE方法的局限性[9],必須結合其它方法來彌補只能菌群定性的缺陷。已有報道實時熒光定量PCR可以檢測腸道內容物以及糞便中低至101—102拷貝數的細菌的16S rRNA[10- 11],為菌落多樣性的進一步分析提供技術支撐。熱應激對家禽腸道微生態(tài)環(huán)境的影響非常復雜,本研究通過對熱應激環(huán)境下腸道微生物群落結構以及菌株數量差異的分析,闡明腸道微生物多樣性特征,探討熱應激造成的蛋雞小腸不同部位對微生物群落分布的影響,為探索熱應激對腸道菌群定植規(guī)律和構建豐富菌種資源提供理論依據。
1.1 實驗動物的處理
選擇體質健康、體重相近的16周齡濟寧百日雞96只,隨機分配在2個人工環(huán)境氣候艙,每個氣候艙設6個重復,每個重復8只。其中對照組[(24±1) ℃]采樣時間為0 d,記為Ⅰ組;高溫組[(38±1) ℃]采樣時間為2、7和14 d,分別記為Ⅱ、Ⅲ、Ⅳ組,試驗持續(xù)14 d。試驗期間自由飲水,艙內除溫度外,其他各環(huán)境因素(飼料原料組成、飼養(yǎng)條件)保持一致,相對濕度55%,光照16 h,強度10 lx,艙內持續(xù)均勻通風。研究期間所有試驗雞飼喂相同玉米-豆粕型日糧,日糧參照中國雞飼養(yǎng)標準(NY/T33—2004)配制,并在飼喂前進行滅菌處理。
1.2 樣品的收集與處理
在隨機從各處理組的每重復中取5只雞進行剖殺,分別在無菌狀態(tài)下采集十二指腸、空腸及回腸的內容物為樣本,并將該5只雞腸內容物均勻混合,然后按0.2 g/管分裝到2 mL離心管,置-20 ℃保存,用于分析腸道菌群多樣性。
1.3 腸道微生物菌群多樣性分析
1.3.1 細菌總DNA的提取
參照文獻[12],采用QIAamp? DNA Stool MiniKit,按照操作手冊提取細菌總DNA。用核酸濃度測定儀測定總DNA濃度,-20 ℃保存?zhèn)溆谩?/p>
1.3.2 基因組總DNA 16S rDNA V3區(qū)特異性擴增片段
參照文獻[13],PCR反應體系(50 μL): 10×緩沖液5 μL (含15 mmol/L MgCl2),dNTP(10 mmol/μL) 4 μL,引物(357f-GC、517r; 10 μmol/μL) 1 μL,模板DNA1.0 μL,TaqDNA聚合酶(5 U/μL) 0.5 μL,用ddH2O補足50 μL。同時設置不添加模板的陰性對照。PCR擴增條件為94 ℃預變性4 min;94 ℃變性30 s,58 ℃退火30 s,72 ℃延伸2 min,30個循環(huán),最后72 ℃延伸10 min。PCR產物用1.0%(質量分數)瓊脂糖凝膠電泳檢測片段大小和濃度。根據大腸桿菌16S rDNA V3區(qū)片段設計合成,上游引物為:357f-GC(5′-CGCCCGCCGCGCGCGGCGG-GCGGGGCGGG GGCACGGGGGGCCTACGGGAGGCAGCAG- 3′)、357f (5′-CCTACGGGAGGCAGCAG- 3′)和下游引物517r(5′-ATTACCGCGGCTGCTGG- 3′)。
1.3.3 DGGE多態(tài)性分析
利用已獲得DNA 16S rDNA V3區(qū)擴增片段產物,用相應的微衛(wèi)星引物和PCR擴增條件進行PCR擴增。PCR產物用1.0%瓊脂糖凝膠電泳檢測片段大小和濃度。參照文獻[14],使用Bio-Rad Dcode進行DGGE凝膠電泳。用8%(質量分數)的聚丙烯酰胺膠進行分離,變性劑梯度范圍為20%—60%(100%的變性劑包含7 mol/L尿素和40%去離子甲酰胺)。電泳在恒溫60 ℃下1×TAE緩沖液中進行,電壓150 V,時間12 h。電泳結束后進行SYBR green I(100×稀釋倍)染色,用UVI成像系統(tǒng)檢測照相。電泳得到的圖譜照片用Quantity One軟件(Bio-Rad, USA)進行條帶識別,使用分析軟件BioNumerics 3.0(Applied Maths, Sint-Martens-Latem, Belgium)對PCR-DGGE指紋圖譜進行條帶計數,應用主成分分析(PCA)法對數字化的PCR-DGGE圖譜進行分析,用UPGMA(unweighted pair group mean average)進行聚類分析。
1.3.4 割膠回收差異條帶和共性條帶、純化與載體的連接、測序
將DGGE圖譜上的差異條帶和共性條帶分別回收,從凝膠上小心切下DGGE條帶,放入1.5 mL滅菌離心管中,加入10 μL滅菌蒸餾水,在暗處4 ℃中放置12 h。用相應的微衛(wèi)星引物(357f和517r)進行二次PCR擴增。PCR產物用1.0%瓊脂糖凝膠電泳檢測片段大小和濃度。用無菌手術刀將瓊脂糖凝膠電泳割膠回收。回收產物用Wizard PCR Prep DNA Purification System進行純化,純化產物采用DynaExpressTA PCR Cloning Kit(TaKaRa)構建克隆文庫,用QIAamp? DNA Stool MiniKit抽提質粒,經PCR和電泳驗證克隆片段的正確性。將篩選后的細菌DNA應用PCR的ByeDye25法全域增幅。PCR產物經處理后在310型DNA測序儀測序。所得結果利用GenBank (http://www.ncbi.nlm.nih.gov)數據庫進行序列同源性比對,并將所得序列提交RDP 數據庫鑒定種屬,計算各類群所占的比例[15]。
1.4 實時熒光定量PCR(RT-PCR)反應
1.4.1 乳酸桿菌、雙歧桿菌、擬桿菌和大腸桿菌的特異性引物
分別參照Denman[16- 19]等方法,其上、下游序列見表1,引物對由上海生工生物工程技術服務有限公司合成。參照Taverniers[20- 21]等方法制備RT-PCR所檢測菌的標準模板,采用能作為特異性引物模板的DNA序列與克隆載體相連,獲得重組質粒,以重組質粒模擬菌群基因組DNA作為標準品。RT-PCR反應體系為20 μL: SYBR Green QPCR Mix(TOYOBO)10 μL,上、下游引物各0.4 μL,DNA 模板5 μL,加水至20 μL。所有熒光定量PCR反應在ABI 7500real-time PCR system-(ABI)上進行,其PCR反應程序見表2。

表1 乳酸桿菌、雙歧桿菌、擬桿菌和大腸桿菌特異性引物Table 1 The specific primer for Lactobacillus, Bifidbacterium and E.coil

表2 PCR反應程序Table 2 PCR reaction program
1.4.2 實時熒光定量PCR
提取陽性克隆質粒,利用紫外分光光度儀測定質粒濃度,將此定量模板倍比稀釋得到7個不同濃度的標準模板,采用優(yōu)化好的PCR條件進行熒光定量PCR,以Ct值為縱坐標,以稀釋倍數的對數為橫坐標,建立相對定量標準曲線。
1.5 數據統(tǒng)計分析
RT-PCR檢測數據采用SPSS13.0中的單因素方差分析(ONE-WAY ANOVA)進行統(tǒng)計分析,數據以平均值±標準差(Mean ± SD)表示,n=5,均值采用Duncan法進行多重比較。
2.1 熱應激對蛋雞腸道內容物中特定菌群的影響
從圖1指紋圖譜中可以看出,盡管高溫暴露時間不同,但還存在一些共性條帶;腸道同一部位內指紋圖譜的平均條帶數差異不顯著(P>0.05),但腸道不同部位間指紋圖譜的平均條帶數差異顯著(P<0.05)??漳c內容物中細菌種類最豐富,條帶數最多,分別為15、16、12和14;其次是十二指腸,條帶數分別為12、10、12和13;而回腸細菌種類比較少,條帶數分別為9、11、12和13(圖1-A),對于PCR-DGGE方法而言,不同細菌的條帶分得越明顯,條帶數越多,越能夠反映細菌菌群的多樣性。以凝膠圖譜中相應位置是否出現條帶作為依據,對各腸段的微生物多樣性進行聚類分析的結果見圖1-B)。熱應激2、7和14 d時,空腸部位細菌間相似性最小,相似度分別為46.30%、36.52%和32.64%;其次是對回腸細菌的影響,相似度分別為57.34%、34.63%和39.34%;對十二指腸部位細菌間相似性最高,相似度分別為84.17%、68.52%和72.38%。各腸段間分析結果表明,空腸與回腸部位相似度23.17%,空腸與十二指腸部位相似度28.59%,熱應激2 d比7、14 d時各腸段間相似度較小,說明熱應激7、14 d時對腸道各部位細菌組成的影響較為明顯。

圖1 不同腸段微生物細菌16S rDNA V3區(qū)基因共性、特異性PCR-DGGE指紋圖譜(A)與聚類分析(B)Fig.1 Common character and Specificity PCR-DGGE DNA fingerprint of the V3 region of 16S rDNA gene (A) of bacteria in microbial different bowel (B)

圖2 熱應激第2天、7天與14天時不同腸段微生物細菌16S rDNA基因 V3區(qū)PCR-DGGE 指紋圖譜的PCA分析Fig.2 Heat stress when the V3 region of 16S rRNA gene PCR-DGGE fingerprin of different intestinal segments microbial bacterial at the 2 day,7 day and 14 day of analysis of the PCA score plots
對照組與熱應激組16S rDNA V3 區(qū)PCR-DGGE圖譜的PCA分析結果見圖2。PCA分析結果顯示,熱應激2 d時,十二指腸部位菌群組成與對照組相似,而空腸部位菌群組成有分開趨勢;熱應激7 d時,十二指腸部位菌群組成與對照組略有相似,空腸與回腸部位菌群組成分開明顯;至熱應激14 d時,十二指腸部位菌群組成繼續(xù)保持與對照組相似的趨勢,但是空腸與回腸部位菌群組成具有明顯差異(圖2)。
2.2 蛋雞腸道內容物中各細菌菌群的物種多樣性分析
圖1中箭頭所指的指紋圖譜中分別割膠回收測序結果見表3。13個共性、特異性條帶均成功回收、克隆和測序。測序結果可見,熱應激7、14 d時空腸和回腸部位末檢測到敏感乳桿菌(Lactobacillusagilis、9條帶),回腸部位也末檢測到約氏乳桿菌(Lactobacillusjohnsonii、1條帶)、不可培養(yǎng)細菌(Unculturedbacterium、10條帶)和不可培養(yǎng)的擬桿菌屬(UnculturedBacteroidalesbacterium、12條帶);另外,熱應激不同時間段與對照組比較可檢測到不可培養(yǎng)細菌(UnculturedEscherichiasp、4條帶)、潰瘍擬桿菌(Bacteroideshelcogenes、5條帶)、卵形擬桿菌(Bacteroidesovatus、7條帶)、索氏志賀氏菌(Shigellasonnei、8條帶)。在13個測序結果中,與GenBank數據庫中微生物的同源性絕大多數都大于98%,有的同源性甚至達到100%。但條帶5、7、11和12與數據庫中與之親緣關系最近的已鑒定的微生物的同源性僅為92、90、94、90%。13條序列分布于厚壁菌門(Firmicutes)、擬桿菌門(Bacteroidetes)、變形菌門(Proteobacteria)以及沒有注冊的菌(Unclassified-bacteria),其中4條序列與未培養(yǎng)細菌的DNA序列具有高度相似性,說明熱應激環(huán)境下腸道微生物菌株豐富,且存在未被認知的類群。DGGE圖譜中熱應激環(huán)境下末檢測到菌屬主要集中于芽孢桿菌綱的乳酸桿菌屬,而繁衍微生物主要集中于擬桿菌綱擬桿菌屬、γ-變形菌綱索氏志賀氏菌屬。

表3 PCR-DGGE共性條帶和特異性條帶的基因片段序列的比對結果Table 3 Comparison of genomic sequences in common bands and special bands by sequencing and BLAST analysis
2.3 熱應激對蛋雞不同腸道部位各菌株數量的影響
用RT-PCR方法檢測熱應激環(huán)境下十二指腸、空腸和回腸的微生物菌群結果見表4。從表4可以看出,十二指腸和空腸部位的約氏乳桿菌、不可培養(yǎng)細菌(條帶13)在不同熱應激時段與對照組比較均顯著下降。其中,熱應激14 d時下降最為明顯(P<0.05);約氏乳桿菌在十二指腸部位與空腸部位比較下降幅度較為明顯,而不可培養(yǎng)細菌在空腸部位與十二指腸部位比較顯著下降(P<0.05)。卵形擬桿菌在各腸段部位不同熱應激時段與對照組比較均顯著上升(P<0.05);其中回腸部位熱應激2 d時上升最為明顯,其次為空腸、十二指腸。另外,不可培養(yǎng)的擬桿菌(條帶12)和不可培養(yǎng)細菌(條帶13)分別在空腸和回腸部位不同熱應激時段與對照組比較均顯著上升(P<0.05),其中回腸部位熱應激2 d時上升幅度明顯 (P<0.05)。本試驗中每1 g腸道內容物中各菌株的對數值均在1.76—6.58 lg CFU/g之間。
3.1 熱應激對腸道菌群定植規(guī)律的影響
動物處于健康狀態(tài)時,腸道微生物種類和數量相對平衡,但是此平衡失調會導致一系列負面后果。已有報道,飼糧、日齡和環(huán)境因素均可影響腸道菌群[22- 24]。日齡因素在早期對腸道菌群影響較大,到成熟期菌群趨向穩(wěn)定,而成熟后飼料和飼養(yǎng)環(huán)境成為主要的影響因素[25]。家禽小腸微生物菌群大概是在2周內建立起來的,40 d內其微生物主要是糞鏈球菌和大腸桿菌類,隨后乳酸桿菌成為優(yōu)勢菌。盲腸微生物菌群的構建要滯后于小腸,大概在6—7周[22]。本試驗選擇性成熟期的16周齡雞群,其腸道擁有相對穩(wěn)定的微生物菌群。腸道微生物菌群組成還受到飼料原料、飼糧營養(yǎng)水平(脂肪、蛋白質和碳水化合物)、飼糧物理結構(顆粒大小和加工技術)、外源飼用酶類以及飼用抗生素和抗球蟲藥用的影響[26]。14 d試驗期內為避免飼料因素影響腸道菌群結構,飼喂原料組成相同并經過滅菌的飼料,通過飼料微生物與腸道菌群基因組總DNA 16S rDNA V3區(qū)擴增片段變性梯度凝膠電泳比較分析結果表明,不同腸段、不同日齡雞群小腸微生物菌群,并末受到空腹前飼喂滅菌飼糧因素的影響。

表4 Real time-PCR方法檢測蛋雞不同腸道部位各菌數量變化(lg CFU/g)Table 4 The bacteria number quantity change different intestinal parts detection of layers hen by real time-PCR
同行數據不同字母表示差異顯著(P<0.05),相同字母表示差異不顯著(P>0.05);n=5
V.B.Ahir等[27]報道,在溫熱而潮濕的環(huán)境中,用分子生物學技術分析肉雞部分腸道微生物區(qū)系變化,隨著雞的熱應激處理時間的推移,微生物菌群由簡單變?yōu)閺碗s。環(huán)境條件發(fā)生變化(熱應激、免疫應激等)[28- 29],可引起動物腸道內菌群結構的變化,從而引起消化道菌群紊亂。菌群相似度是測量群落間或樣方間相似程度的指標,其相似度的高低間接地說明共性菌群以外的菌群情況[7]。本試驗腸道內容物細菌菌群相似度分析表明,空腸部位細菌間相似性最小,而十二指腸部位相似性最高,并且熱應激2 d比7、14 d時各腸段間相似度小。說明熱應激7、14 d時空腸、回腸部位共性菌群以外的菌群較為豐富。
熱應激7、14 d時空腸和回腸部位末檢測到兩種乳桿菌屬和兩種不可培養(yǎng)菌屬,其中兩種乳桿菌屬于優(yōu)勢菌,作為一種有益菌是厚壁菌門中最大的菌屬,能調節(jié)腸道黏膜細胞因子的產生數量,在腸道中可附著于腸道上皮細胞形成穩(wěn)定的菌落,并能抑制病原菌的滋生,產生抗菌物質等;乳桿菌可以改善雞腸道微生物區(qū)系,提高有益菌數量,與腸道病原菌競爭定植位點,平衡腸道微生態(tài)區(qū)系[30- 31]。而本研究結果表明,熱應激7 d時腸道中優(yōu)勢菌的丟失,可影響優(yōu)勢菌與致病菌的平衡,促進有害微生物對腸道的刺激作用。
熱應激不同時間段在十二指腸和空腸部位檢測到四種致病菌,主要集中在γ-變形菌綱和擬桿菌綱。γ-變形菌綱是變形菌門中的優(yōu)勢亞群,本研究測序比對結果表明,γ-變形菌綱主要包括志賀氏菌屬(Shigella)、卵形擬桿菌(Bacteroidesovatus)和不可培養(yǎng)埃希氏菌屬(Escherichia)三類細菌。志賀氏菌是常見的病原菌,能夠引發(fā)家禽的細菌性痢疾,主要表現為腸道黏膜結構的水腫、潰瘍及炎癥[32];而卵形擬桿菌在熱應激環(huán)境下局部組織供血障礙造成局部厭氧微環(huán)境,有助于厭氧菌生長繁殖,導致腸道感染。大腸埃希氏菌可引起不同類型的原發(fā)性或繼發(fā)性雞大腸埃希氏菌病,該病發(fā)病率高,死亡率也高,目前該病已成為危害我國養(yǎng)雞業(yè)發(fā)展的最重要的細菌性傳染病之一[33]。由此可見,熱應激環(huán)境對腸道菌群的結構變化,易成為其它疾病的并發(fā)癥或繼發(fā)病的主要根源。而不可培養(yǎng)菌屬是否屬于優(yōu)勢菌需要進一步驗證。
3.2 熱應激對蛋雞不同腸道部位各菌株數量的影響
Deng等[34]的研究結果表明,熱應激會導致家禽腸道黏膜結構的變化,降低腸道黏膜免疫水平,在每千克飼糧中添加1×107活菌單位的地衣芽孢桿菌可以明顯改善熱應激條件下腸道的黏膜結構,這就間接說明熱應激環(huán)境下腸道有益菌的平衡遭到破壞,而補充外源有益菌可改善熱應激導致的腸道微生態(tài)環(huán)境;動物腸道內存在大量細菌,它們與機體緊密結合形成腸內生態(tài)平衡,腸道菌群自身及腸道菌群與機體之間始終存在著動態(tài)平衡,這種平衡的維持對于機體健康是必需的。正常菌通過競爭性排斥和提高機體免疫力減少病原微生物在機體內的定植,但是同一個體的不同階段甚至在同一階段不同的環(huán)境中,腸道菌群結構會有變化[35]。本試驗用RT-PCR技術檢測蛋雞不同腸道部位在熱應激環(huán)境下各種菌株數量,結果表明,熱應激環(huán)境下十二指腸和空腸的約氏乳桿菌數量明顯下降,而空腸的敏感乳桿菌也下降較為明顯。Jin[36]等發(fā)現,分離得到的乳酸桿菌僅僅26%能夠中等強度或者比較強地黏附在肉雞上皮細胞,而隨著熱應激時間的延長,消化道的黏膜結構變化,有益菌的定植受到影響,尤其是致病菌會大量繁殖,而造成營養(yǎng)物質消化率顯著下降[37]。本研究中空腸和回腸卵形擬桿菌數量明顯上升;另外,不可培養(yǎng)細菌(條帶13)數量在十二指腸和空腸部位均減少,而回腸部位明顯上升,也證實了持續(xù)的熱應激環(huán)境為致病性細菌繁殖提供有利條件,但是,這些菌種平衡變化是否與腸道黏膜結構變化直接有關,需要進一步研究。
(1) 空腸部位熱應激對空腸的微生物菌群影響最為明顯,對回腸和十二指腸微生物菌群的影響次之。
(2) 部位的熱應激環(huán)境下腸道微生物菌株豐富,且抑制了空腸部位乳桿菌屬、不可培養(yǎng)細菌的增殖,促進了空腸和回腸部位卵形擬桿菌、不可培養(yǎng)細菌的繁殖,這些致病菌導致蛋雞消化道菌群平衡的破壞。
[1] Liu F, Yin J, Du M, Yan P, Xu J, Zhu X, Yu J. Heat-stress-induced damage to porcine small intestinal epithelium associated with downregulation of epithelial growth factor signaling. Journal of Animal Science, 2009, 87(6): 1941- 1949.
[2] Quinteiro-Filho W M, Rodrigues M V, Ribeiro A, Ferraz-de-Paula V, Pinheiro M L, Sá L R M, Ferreira A J P, Palermo-Neto J. Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens: role of acute hypothalamic-pituitary-adrenal axis activation. Journal of Animal Science, 2012, 90(6): 1986- 1994.
[3] Quinteiro-Filho W M, Ribeiro A, Ferraz-de-Paula V, Pinheiro M L, Sakai M, Sá L R M, Ferreira A J P, Palermo-Neto J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poultry Science, 2010, 89(9): 1905- 1914.
[4] Burkholder K M, Thompson K L, Einstein M E, Applegate T J, Patterson J A. Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility toSalmonellaenteritidis colonization in broilers. Poultry Science, 2008, 87(9): 1734- 1741.
[5] Hansen J, Gulati A, Balfour S R. The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Current Opinion in Gastroenterology, 2010, 26(6): 564- 571.
[6] Suliaman R H O, Malik H E E, Yousif I A. Effect of dietary protein level and strain on growth performance of heat stressed broiler chicks. International Journal of Poultry Science, 2012, 11(10): 649- 653.
[7] 李永洙, Cui Y Q. 利用PCR-DGGE方法分析不同雞群的盲腸微生物菌群結構變化. 生態(tài)學報, 2011, 31(21): 6513- 6521.
[8] 倪學勤, Gong J S, Yu H, 曾東, Sharir S, 周小秋. 采用PCR-DGGE技術分析蛋雞腸道細菌種群結構及多樣性. 畜牧獸醫(yī)學報, 2008, 39(7): 955- 961.
[9] 馬俊孝, 季明杰, 孔健. PCR-DGGE技術在微生物物種多樣性研究中的局限性及其解決措施. 食品科學, 2008, 29(5): 493- 497.
[11] Md Selim A S, Boonkumklao P, Sone T, Assavanig A, Wada M, Yokota A. Development and assessment of a real-time PCR assay for rapid and sensitive detection of a novel thermotolerant bacterium,Lactobacillusthermotolerans, in chicken feces. Applied and Environmental Microbiology, 2005, 71(8): 4214- 4219.
[12] Sakai M, Matsuka A, Komura T, Kanazawa S. Application of a new PCR primer for terminal restriction fragment length polymorphism analysis of the bacterial communities in plant root. Microbiology Methods, 2004, 59(1): 81-89.
[13] Matsuka A, Sakai M, Kanazawa S. Application of T-RFLP analysis for bacterial community structure of colonies grown on agar plates. Journal of the Faculty of Agriculture, Kyushu University, 2003, 48(1/2): 107- 112.
[14] Sakai J S, Kleckner N, Yang X, Guhathakurta A. Tn10 transpososome assembly involves a folded intermediate that must be unfolded for target capture and strand transfer. The EMBO Journal, 2000, 19(4): 776- 785.
[15] 白潔, 李海艷, 趙陽國. 黃海北部不同站位海洋細菌群落分布特征. 微生物學報, 2009, 49(3): 343- 350.
[16] Denman S E, Mcsweeney C S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiology Ecology, 2006, 58(3): 572- 582.
[17] Walter J, Hertel C, Tannock G W, Lis C M, Munro K, Hammes W P. Detection ofLactobacillus,Pediococcus,Leuconostoc, andWeissellaspecies in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 2001, 67(6): 2578- 2585.
[18] Satokari R M, Vaughan E E, Akkermans A D L, Saarela M, de Vos W M. Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 2001, 67(2): 504- 513.
[19] Huijsdens X W, Linskens R K, Mak M, Meuwissen S G M, Vandenbroucke-Grauls C M J E, Savelkoul P H M. Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR. Journal of Clinical Microbiology, 2002, 40(12): 4423- 4427.
[20] Taverniers I, van Bockstaele E, De Loose M. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods. Analytical and Bioanalytical Chemistry, 2004, 378(5): 1198- 1207.
[21] Taverniers I, Windels P, Va?tilingom M, Milcamps A, Van Bockstaele E, Van den Eede G, De Loose M. Event-specific plasmid standards and real-time PCR methods for transgenic Bt11, Bt176, and GA21 maize and transgenic GT73 canola. Journal of Agricultural and Food Chemistry, 2005, 53(8): 3041- 3052.
[22] Zhu X Y, Zhong T Y, Pandya Y, Joerger R D. 16s rRNA-based analysis of microbiota from the cecum of broiler chickens. Applied and Environmental Microbiology, 2002, 68(1): 124- 137.
[23] Torok V A, Ophel-Keller K, Loo M, Hughes R J. Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Applied and Environmental Microbiology, 2008, 74(3): 783- 791.
[24] Kretzschmar-McCluskey V, Curtis P A, Anderson K E, Kerth L K, Berry W D. Influence of hen age and molting treatments on shell egg exterior, interior, and contents microflora and Salmonella prevalence during a second production cycle. Poultry Science, 2008, 87(10): 2146- 2151.
[25] 尹業(yè)師, 王欣. 影響實驗小鼠腸道菌群的多因素比較研究. 實驗動物科學, 2012, 29(4): 12- 18.
[26] Rehman H U, Vahjen W, Awad W A, Zentek J. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens.ArchivesofAnimalNutrition, 2007, 61(5): 319- 335.
[27] Ahir V B, Singh K M, Tripathi A K, Mathakiya R A, Jakhesara S J, Koringa P G, Rank D N, Jhala M K, Joshi C G. Study of bacterial diversity in poultry gut using denaturing gradient gel electrophoresis. Iranian Journal of Applied Animal Science, 2012, 2(3): 227- 232.
[28] Kim G B, Seo Y M, Kim C H, Paik I K. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poultry Science, 2011, 90(1): 75-82.
[29] 馮焱, 楊小軍, 胡雄兵, 劉燁, 尹瑞卿, 覃定奎, 姚軍虎. 免疫應激對肉雞腸道微生物區(qū)系的影響. 農業(yè)生物技術學報, 2012, 20(7): 807-814.
[30] Mountzouris K C, Tsirtsikos P, Kalamara E, Nitsch S, Schatzmayr G, Fegeros K. Evaluation of the efficacy of a probiotic containingLactobacillus,Bifidobacterium,Enterococcus, andpediococcusstrains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poultry Science, 2007, 86(2): 309- 317.
[31] Bai S P, Wu A M, Ding X M, Lei Y, Bai J, Zhang K Y, Chio J S. Effects of probiotic-supplemented diets on growth performance and intestinal immune characteristics of broiler chickens. Poultry Science, 2013, 92(3): 663- 670.
[32] Mathan M M, Mathan V I. Morphology of rectal mucosa of patients with shigellosis. Reviews of Infectious Diseases, 1991, 13(S4): S314-S318.
[33] 刁有祥, 李久芹, 陳慶普. 山東省雞大腸桿菌的分離鑒定. 中國預防獸醫(yī)學報, 2002, 24(1): 21- 23.
[34] Deng W, Dong X F, Tong J M, Zhang Q. The probioticBacilluslicheniformisameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poultry Science, 2012, 91(3): 575- 582.
[35] Chambers J R, Gong J. The intestinal microbiota and its modulation forSalmonellacontrol in chickens. Food Research International, 2011, 44(10): 3149- 3159.
[36] Jin L Z, Ho Y W, Ali M A, Abdullah N, Jalaludin S. Effect of adherentLactobacillusspp. oninvitroadherence of Salmonellae to the intestinal epithelial cells of chicken. Journal of Applied Bacteriology, 1996, 81(2): 201- 206.
[37] Swennen Q, Delezie E, Collin A, Decuypere E, Buyse J. Further investigations on the role of diet-induced thermogenesis in the regulation of feed intake in chickens: comparison of age-matched broiler versus layer cockerels. Poultry Science, 2007, 86(5): 895- 903.
Diversity analysis of the intestinal microbial flora of laying hens under heat stress
LI Yongzhu1,*, LI Jin2, ZHANG Ningbo1, CHEN Changxiu1, CUI Yongquan3
1CollegeofLifeScience,LinyiUniversity,Linyi276000,China2LongshenggroupShandong,Linyi276000,China3GraduateSchoolofNaturalScienceandTechnologyOkayamaUniversity,Okayama,700- 8530,Japan
Structural changes in the intestinal microbial flora of laying hens were analyzed to determine the influence of heat stress on the intestinal microbial environment and explore microbial colonization of the poultry intestinal tract in the hot environment. Ninety-six 16-week-old Jining Bairi chickens were randomly allotted into control group Ⅰ (24±1)℃ or the heat stress (38±1)℃ group. Each group was divided into six replicate subgroups, each consisting of eight individuals. The duration of the experiment was 14 days. Denaturing gradient gel electrophoresis combined with multivariate statistical analysis and real-time quantitative analysis of the 16S rDNA were used to analyze the diversity of the microflora in the duodenum, jejunum, and ileum. Changes in the abundance of the microflora were also studied. The effect was examined at 2 days (group Ⅱ), 7 days (group Ⅲ), and 14 days (group Ⅳ) of heat exposure. PCA was carried out and the results showed that the composition of the microflora in parts of the duodenum remained similar between the heat-stressed and control groups, but that the microbial composition of the jejunum area varied between the heat-stressed and control animals after 2 days. At 7 days, significant differences were found in the composition of the microflora in the jejunum and ileum compared with that at 2 days and at 14 days. The influence of heat stress on the bacterial composition in each part of the intestinal tract was most pronounced at the 7-day time point. Bacilli,Lactobacillusagilisin the jejunum and ileum, andLactobacillusjohnsoniiand other uncultured bacteria in the ileum, were not detected at the 7- or 14-day time points, while Bacteroidetes andγ-Proteobacteria, unculturedEscherichiasp,Bacteroideshelcogenes,Bacteroidesovatus, andShigellasonnei, were detected in the jejunum and ileum at different time points. Decreases in the overall abundance ofL.johnsoniiandL.agiliswere most obvious in the jejunum (P<0.05), while the abundance ofB.ovatusand unculturedEscherichiasp. in the jejunum and ileum was obviously increased (P<0.05). The number of bacterial cells of each of the various strains ranged between 1.76—6.58 lg CFU/g. The results indicated that the proliferation of lactobacilli and uncultured bacteria in the jejunum and ileum of laying hens was inhibited under heat stress, while the growth ofB.ovatusin the jejunum and ileum was promoted, resulting in disruption of the digestive tract microflora balance. The intestinal microflora of laying hens under heat stress is relatively abundant, and the diversity of the flora in the jejunum and ileum showed distinct patterns with increasing heat stress exposure time. The effect of heat stress on jejunal microbial flora was most pronounced, followed by the ileum and the duodenum. The types of lactobacilli in the jejunum and ileum were significantly different at the different time points. The effects of thermal stress were detected in the duodenum and jejunum, particularly in reference to four kinds of pathogenic bacteria. The results suggest that heat stress can inhibitLactobacillusspecies and promote the proliferation of oval Bacteroidetes, thereby disrupting the balance of the digestive tract microflora.
heat stress; laying hens; intestinal flora; diversity
國家高技術研究發(fā)展計劃 (2013AA102501); 山東省優(yōu)秀青年科學基金項目(BS2012NY001); 日本學生支援機構歸國外國留學生短期研究制度基金(JP22GR037)
2013- 05- 05;
日期:2014- 04- 17
10.5846/stxb201305050933
*通訊作者Corresponding author.E-mail: liyongzhu@lyu.edu.cn
李永洙, 李進, 張寧波, 陳常秀, CUI Yongquan.熱應激環(huán)境下蛋雞腸道微生物菌群多樣性.生態(tài)學報,2015,35(5):1601- 1609.
Li Y Z, Li J, Zhang N B, Chen C X, Cui Yongquan3.Diversity analysis of the intestinal microbial flora of laying hens under heat stress.Acta Ecologica Sinica,2015,35(5):1601- 1609.