999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

苯并噻二唑共軛有機(jī)分子合成研究進(jìn)展

2015-03-20 05:09:44黃旦翔彭雄偉黎太浩程曉紅
云南化工 2015年6期
關(guān)鍵詞:催化劑

黃旦翔,夏 萌,彭雄偉,黎太浩,程曉紅

(云南大學(xué)化學(xué)科學(xué)與工程學(xué)院,云南昆明 650091)

·專論與綜述·

苯并噻二唑共軛有機(jī)分子合成研究進(jìn)展

黃旦翔,夏 萌,彭雄偉,黎太浩,程曉紅

(云南大學(xué)化學(xué)科學(xué)與工程學(xué)院,云南昆明 650091)

2,1,3-苯并噻二唑(BTD)共軛有機(jī)分子具有優(yōu)異的光電特性,廣泛應(yīng)用于有機(jī)發(fā)光二極管、太陽能電池、液晶、熒光探針、光電管等方面。綜述了以金屬催化的偶聯(lián)反應(yīng)為關(guān)鍵步驟的2,1,3-苯并噻二唑(BTD)共軛有機(jī)分子的合成方法,包括Suzuki偶聯(lián)反應(yīng),Stille偶合反應(yīng),Heck偶聯(lián)反應(yīng),Sonogashir偶聯(lián)反應(yīng),Nigishi偶聯(lián)反應(yīng),Ullmann偶聯(lián)反應(yīng)等。

2,1,3-苯并噻二唑;偶聯(lián)反應(yīng);合成

2,1,3-苯并噻二唑(BTD)具有較強(qiáng)的電子親和勢、共平面性和對化合物能隙較好的調(diào)節(jié)性,被廣泛用于構(gòu)建共軛有機(jī)分子,在有機(jī)發(fā)光二極管、太陽能電池、液晶、熒光探針、離子識別材料等領(lǐng)域有著廣泛的應(yīng)用[1-3],對這類共軛有機(jī)分子的合成方法的研究將對基于BTD新型光電材料的研發(fā)意義重大。文獻(xiàn)[1]已經(jīng)介紹了這類化合物在液晶材料研究方面的最新進(jìn)展,本文重點對2,1,3-苯并噻二唑(BTD)共軛有機(jī)分子的合成研究進(jìn)展作綜述性的介紹。

1 4,7-二溴-2,1,3-苯并噻二唑的合成

4,7-二溴-2,1,3-苯并噻二唑(2)是用來制備苯并噻二唑(BTD)共軛有機(jī)分子的關(guān)鍵中間體之一[4],這一中間體可以從鄰苯二胺及二氯亞砜出發(fā),在堿性條件下先生成苯并噻二唑(1),1再經(jīng)溴代得到2(見圖1)[4-6]。當(dāng)然,5,6位,4,5位-二溴-2,1,3-苯并噻二唑及單溴代的-2,1,3-苯并噻二唑也是制備2,1,3-苯并噻二唑(BTD)共軛有機(jī)分子的中間體。

圖1 4,7-二溴-2,1,3-苯并噻二唑的合成Fig.1 The synthesis of 4,7-dib romo-2,1,3-benzothiadiazole

圖2 用于合成BTD共軛有機(jī)分子的偶合反應(yīng)Fig.2 Coupling reactions used for the synthesis of BTD conjugated compounds

2 2,1,3-苯并噻二唑共軛有機(jī)分子的合成

通過過渡金屬催化的偶合反應(yīng),如4,7-二溴-2,1,3-苯并噻二唑2與芳香硼酸間的Suzuki偶合反應(yīng),與三丁基錫化合物間的Stille偶合反應(yīng),與苯乙烯間的Heck反應(yīng),與芳香端炔間的Sonogashira反應(yīng),與芳香鹵代物間的Nigishi反應(yīng),與氮雜環(huán)間的Ullmann反應(yīng)等等,可以實現(xiàn)在2,1,3-苯并噻二唑(2)的4,7位以碳碳單鍵,碳碳雙鍵,碳碳三鍵,雜碳鍵為連接單元的共軛延長,獲取共軛有機(jī)分子,見圖2。

2.1 Suzuki偶合反應(yīng)

Suzuki偶聯(lián)反應(yīng)是構(gòu)造2,1,3-苯并噻二唑共軛有機(jī)分子的最常見的方法,國內(nèi)外多個小組都展開過這方面的研究。圖3中列了通過該反應(yīng)為關(guān)鍵步驟得到的一系列2,1,3-苯并噻二唑共軛有機(jī)分子3-11。合成這些化合物的Suzuki反應(yīng)條件及其應(yīng)用見表1。由表1可見,化合物3[7]、4、5[8]、6[9]、7[10]、8[11]、9[12]都是以Pd[PPh3]4做催化劑,Na2CO3為堿來制備;而Neto[13]報道的化合物10則采用了NCP-Pd做催化劑,CsF為堿性制備而得,CsF的堿性較Na2CO3強(qiáng),所以說,堿性環(huán)境對于不同的Suzuki反應(yīng)有較大的影響。Operamolla等采用Pd(OAc)2與S-Phos為催化劑,體積比為10∶1的四氫呋喃:水的異構(gòu)介質(zhì)為溶劑,通過Suzuki偶聯(lián)反應(yīng)得到聚合物11。因此Suzuki反應(yīng)是構(gòu)筑2,1,3-苯并噻二唑共軛有機(jī)分子最常見的途徑。

圖3 化合物3~11Fig.3 Com pounds of 3-11

表1 制備化合物3-11的Suzuki反應(yīng)條件及其應(yīng)用Tab.1 Suzuki reaction conditions and the applications of compounds 3-11

2.2 Stille偶聯(lián)反應(yīng)

通過Stille偶聯(lián)反應(yīng)同樣可以構(gòu)筑2,1,3-苯并噻二唑共軛有機(jī)分子,圖4中化合物12-22均是以Stille偶聯(lián)反應(yīng)為關(guān)鍵步驟合成而得。制備這些化合物的Stille反應(yīng)條件及其應(yīng)用列于表2中。13[15]、14[16]、15[17]、16[18]、17[19]的Stille偶聯(lián)反應(yīng)采用了甲苯為溶劑,Pd[PPh3]4為催化劑。Stille偶聯(lián)反應(yīng)除了采用甲苯為溶劑外,還可采用其他的溶劑,如化合物18[20]用了DMF,化合物20[12]用到了四氫呋喃,化合物21[21]用到了氯苯,化合物22[22]用到了鄰二甲苯做溶劑;催化劑也可采用其他的,如化合物12[23],20用到了Pd[PPh3]2Cl2,化合物19[24]用到了原位Pd[As-Ph3]4,化合物22用到了Pd2(dba)3。反應(yīng)條件可以不斷完善,如化合物21,22還使用了微波來完成反應(yīng),大大縮短了反應(yīng)時間。

圖4 化合物12~22Fig.4 The compounds of 12-22

表2 化合物12-22的Stille偶聯(lián)反應(yīng)條件及其應(yīng)用Tab.2 The Stille coupling reaction conditions and the applications of compounds12-22

2.3 Heck偶聯(lián)反應(yīng)

Heck偶聯(lián)反應(yīng)也能構(gòu)造2,1,3-苯并噻二唑共軛有機(jī)分子,圖5中,化合物23-26均是采用Heck偶聯(lián)反應(yīng)為關(guān)鍵步驟合成。Heck反應(yīng)的反應(yīng)條件及產(chǎn)物的應(yīng)用總結(jié)于表3中。Heck偶聯(lián)反應(yīng)的溶劑都均采用DMF,催化劑為Pd[OAc]2,但是合成23[25]和26[26]的Heck偶聯(lián)反應(yīng)的鈀配體采用P(o-tolyl)3,NEt3為堿;24[27]和25[28]的Heck偶聯(lián)反應(yīng)的鈀配體采用NaOAc,堿性環(huán)境采用TBAB營造。在合成化合物25之前,李永舫等還用同樣的條件[29]合成了有3條手臂的化合物。

表3 化合物23-26的Heck反應(yīng)條件及其應(yīng)用Tab.3 The Heck coupling reaction conditions and the applications of compounds 23-26

圖5 化合物23~26Fig.5 Compounds of 23-26

2.4 Sonogashira偶聯(lián)反應(yīng)

圖5中列了Sonogashira偶聯(lián)反應(yīng)來構(gòu)造2,1,3-苯并噻二唑共軛有機(jī)分子27~32。Sonogashira偶聯(lián)反應(yīng)的反應(yīng)條件及產(chǎn)物的應(yīng)用列于表4中。由表可見,Sonogashira反應(yīng)的一般條件為:三乙胺為溶劑,Pd[PPh3]2Cl2和CuI為催化劑[30]。制備化合物27[31]時,催化劑變成CuBr;制備化合物28[32]時將溶劑換成三甲胺;制備化合物29[33]時將溶劑換成甲苯和i-Pr2NH的混合溶劑,催化劑Pd[PPh3]2Cl2換成Pd[PPh3]4;制備化合物31[34]時將催化劑Pd[PPh3]2Cl2換成Pd2(dba)3。制備化合物31時,還將溶劑換成i-Pr2NH后,發(fā)現(xiàn)產(chǎn)率略增但需要更多反應(yīng)時間。此外,末端炔烴易快速分解,需要很快用于下一步的CuAAc點擊反應(yīng)形成化合物32。化合物32就是疊氮化糖與BTD-炔,用二價銅催化,在Na-抗壞血酸鹽和TBAF的存在下,高產(chǎn)率得到的點擊產(chǎn)物。

表4 化合物27~31的Sonogashira反應(yīng)條件及其應(yīng)用Tab.4 Sonogashira coupling reaction conditions and the applications of compounds27-31

圖6 化合物27~32Fig.6 Compounds of 27-32

2.5 Nigishi反應(yīng)

Bijleveld等[35]用Nigishi反應(yīng)合成了雙苯并噻二唑衍生物35?;衔?5的進(jìn)一步反應(yīng)得到的聚合物可以應(yīng)用于制備太陽能電池,能量轉(zhuǎn)換效率達(dá)到了2.5%。

圖7 化合物35的合成Fig.7 Synthesis of compound 35

圖8 化合物36~43Fig.8 Compounds of 36-43

2.6 其他反應(yīng)類型

還可以采用其他一些偶聯(lián)反應(yīng)來構(gòu)建2,1,3-苯并噻二唑共軛有機(jī)分子,圖8中列出了一些產(chǎn)物例子36~43。反應(yīng)類型及反應(yīng)條件及合成產(chǎn)物的的應(yīng)用見表5。采用Ullmann反應(yīng)合成化合物36[36]時,也有單邊取代的副產(chǎn)物存在,改變2和咔唑單元的比例對于單,雙取代產(chǎn)物的產(chǎn)率無明顯影響?;衔?8、39、40[37]都是同一個Mcmurry反應(yīng)的產(chǎn)物,產(chǎn)率非常低?;衔?[38]和42[39]均采用honer-wittig反應(yīng)制備,但是堿性環(huán)境不一樣,化合物41用的堿是NaH,化合物42用的堿是t-BuOK?;衔?7[40]是用親核取代反應(yīng),而化合物43[41]使用親核加成反應(yīng)。

表5 化合物36-43的反應(yīng)類型,條件及其應(yīng)用Tab.5 Reaction types,conditions and the applications of compounds 36-43

3 其他方法

圖9列出了一種新穎的合成含萘多氟代衍生物47的溫和反應(yīng)線路[42],芳基噻唑氨基化合物的分子內(nèi)親核環(huán)化提供了鄰位取代2,1,3-苯并噻二唑共軛有機(jī)分子的新穎合成思路。

圖9 BTD環(huán)的新合成Fig.9 New synthesis of BTD ring

4 結(jié)語

具有苯并噻二唑結(jié)構(gòu)單元的化合物是一類非常重要的化合物,它擁有優(yōu)良的光電性質(zhì)和廣泛的應(yīng)用前景,因此,苯并噻二唑衍生物的合成已成為一個重要的研究課題。本文綜述了最近發(fā)表的關(guān)于苯并噻二唑衍生物的合成方法。最有效的是從4,7-二溴-2,1,3-苯并噻二唑這個中間體開始,Pd催化的偶聯(lián)反應(yīng),例如Suzuki反應(yīng),Stille反應(yīng),Heck反應(yīng)及Sonogashira反應(yīng)等。當(dāng)然還有一些其他方法。以Pd為催化劑制備的方法仍然存在成本較高的缺憾,所以仍需要不斷優(yōu)化反應(yīng)條件和探索更好的合成苯并噻二唑衍生物的高效途徑,為這類功能材料的應(yīng)用不斷拓展新天地。

[1]高紅飛,黃旦翔,程曉紅,等.基于苯并噻二唑液晶化合物的研究[J].云南化工,2014,41(4):20-25.

[2]a)Lin P.Fluorescence of Organic Molecules in Chiral Recognition[J].Chem.Rev.,2004,104(3):1687-1716;b)Sun SS,Lees A J.Self-assembly triangular and square rhenium(I)tricarbonyl comp lexes:a comprehensive study of their preparation,electrochemistry,photophysics,photochemistry,and host-guest properties[J].J.Am.Chem.Soc.,2000,122(37):8956 -8967.

[3]Neto B A D,Lapis A A M,Dupont J,et al.2,1,3-Benzothiadiazole and derivatives:synthesis,properties,reactions,and applications in light technology of smallmolecules[J].Eur.J.Org.Chem.,2013,2013(2):228-255.

[4]a)Suzuki T.Regulation of crystal structure in organic redox systems by using intermolecular interactions induced by annelation of heterocycles[J].Asahi Garasu Zaidan JoseiKenkyu Seika Hokoku,1994,149-153;b)Tomura M,Akhtaruzzaman M,Suzuki K,et al.4,7-Diiodo-2,1,3-benzothiadiazole and 7,7'-diiodo-4,4'-bi(2,1,3-benzothiadiazole)[J].Acta. Cryst.,2002,58(7):373-375.

[5]Weinstock LM,Davis P,Handelsman B,et al.General synthetic system for 1,2,5-thiadiazoles[J].J. Org.Chem.,1967,32(7):2823-2829;b)Kom im A P,Street RW,Carmack M,Chemistry of 1,2,5-thiadiazoles.III.[1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole[J].J.Org.Chem.,1975,40(19):2749-2752;c)Bryce M R,Use of piperidine-1-sulfenyl chloride as a sulfur-transfer reagent in reactions with diamines:the preparation of sulfur-nitrogen heterocycles[J].J.Chem.Soc.,1984,11:2591-2593.

[6]Pilgram K,Zupan M,Skiles R.Bromination of2,1,3-benzothiadiazoles[J].J.Heterocycl.Chem.,1970,7(3):629-633.

[7]Raimundo JM,Blanchard P,et al.Proquinoid acceptors as building blocks for the design of efficient pconjugated fluorophoreswith high electron affinity[J]. Chem.Commun.,2000,11:939-940.

[8]ZhuW H,Meng X L,Tian H,et al.Bisthienylethenes containing a benzothiadiazole unit as a bridge:photochromic performance dependence on substitution position[J].Chem.Eur.J.,2010,16(3):899-906.

[9]Hou Q,Xu X,Yang L T,et al.Synthesis and photovoltaic properties of fluorene-based copolymerswith narrow band-gap units on the side chain[J].Eur. Polym.J.,2010,46(12):2365-2371.

[10]Yasuda T,Shinohara Y,Ishi-i T,etal.Synthesis and photovoltaic properties of amorphous polymers based on dithienyl-benzothiadiazole-triphenyl-amine with hexyl side chains on different positions of thienyl groups[J].Ploym.Chem.,2013,51(12):2536 -2544.

[11]Aldred M P,Contoret A E A,Vlachos P,etal.Organic electroluminescence using polymer networks from smectic liquid crystals[J].Liquid Crystals.,2006,4(33):459-467.

[12]Zeng SH,Yin L X,Li K C,et al.D-A-D low band gap molecule containing triphenylamine and benzoxadiazole/benzothiadiazole units:synthesis and photophysical properties[J].Dyes and Pigments,2012,95(2):229-235.

[13]Neto B A D,Lopes A S A,Dupont J,et al.Photophysical and electrochemical properties of p-extended molecular 2,1,3-benzothiadiazoles[J].Tetrahedron,2005,61(46):10975-10982.

[14]Operamolla A,Colella S,Babudri F,et al.Low band gap poly(1,4-arylene-2,5-thienylene)s with benzothiadiazole units:Synthesis,characterization and application in polymer solar cells[J].Sol.Energ. Mat.Sol.C.,2011,95(12):3490-3503.

[15]Liu J,Guo X,Jing X B,et al.White electroluminescence from a single-polymer system with simultaneous two-color emission:polyfluorene as blue host and 2,1,3-benzothiadiazole derivatives as orange dopants on the side chain[J].Adv.Funct.Mater.,2007,17(12):1917-1925.

[16]Ranjith K,Swathi SK,Kumar P,et al.Dithienylcyclopentadienone derivative-co-benzothiadiazole:an alternating copolymer for organic photovoltaics[J].Sol. Energ.Mat.Sol.C.,2012,98:448-454.

[17]Ranjith K,Swathi SK,Malavika A,et al.Random copolymers consisting of dithienylcyclopentadienone,thiophene and benzothiadiazole for bulk heterojunction solar cells[J].Sol.Energ.Mat.Sol.C.,2012,105:263-271.

[18]Shang H X,Li Y F,Zhan XW,et al.Solution processable D-A-D molecules based on triphenylamine for efficient organic solar cells[J].Sol.Energ.Mat. Sol.C.,2010,94(3):457-464.

[19]Misra R,Mobin SM,Thaksen J,et al.Donor acceptor ferrocenyl-substituted benzothiadiazoles:synthesis,structure,and properties[J].J.Org.Chem.,2013,78(10):4940-4948.

[20]Wang B,Tao Y,Wong M S,et al.Naphthodithiophene-2,1,3-benzothiadiazole copolymers for bulk heterojunction solar cells[J]Chem.Commun.,2011,47(33):9471-9473.

[21]Jheng JF,Lai Y Y,Hsu C S,et al.Influences of the non-covalent interaction strength on reaching high solid-state order and device performance of a low bandgap polymer with axisymmetrical structural units[J].Adv.Mater.,2013,25(17):2445-2451.

[22]Zhou H X,Yang L Q,You W,et al.Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7%efficiency[J].Angew. Chem.Int.Ed.,2011,50(13):2995-2998.

[23]Lin L Y,Chen Y H,Wong K T,et al.A low-energy-gap organic dye for high-performance smallmolecule organic solar cells[J].J.Am.Chem.Soc.,2011,133(40):15822-15825.

[24]Crivillers N,MelucciM,Zanelli A,et al.Self-assembly and electrical propertiesof a novel heptameric thiophene-benzothiadiazole based architectures[J]. Chem.Commun.,2012,48(100):12162-12164.

[25]Kato S I,Matsumoto T,Mataka S,et al.Novel 2,1,3-benzothiadiazole-based red-fluorescent dyes with enhanced two-photon absorption cross-sections[J].Chem.Eur.J.,2006,12(8):2303 -2317.

[26]Ishi-i T,Sakai M,Shinoda C.Benzothiadiazolebased dyes that emit red light in solution,solid and liquid state[J].Tetrahedron,2013,69(45):9475-9480.

[27]He Q G,He C,Li Y F,et al.Amorphous molecular material containing bisthiophenyl-benzothiadiazole and triphenylamine with bipolar and low-bandgap characteristics for solar cells[J].Thin Solid Films,2008,516(18):5935-5940.

[28]Yang Y,Zhang J,Li Y F,et al.Solution-processable organic molecule with triphenylamine core and two benzothiadiazole-thiophene arms for photovoltaic application[J].J.Phys.Chem.C.,2010,114(8):3701 -3706.

[29]Zhang J,Yang Y,Li Y F,etal.Solution-processable star-shaped photovoltaic organic molecule with triphenylamine core and benzothiadiazole-thiophene arms[J].Macromolecules,2009,42(20):7619 -7622.

[30]Gallardo H,Conte G,Molin F,et al.New luminescent liquid crystals based on 2,1,3-benzothiadiazole and bent five-membered N-h(huán)eterocyclic cores[J]. Liquid Crystals.,2012,39(9):1099-1111.

[31]Akhtaruzzaman M,Tomura M,Zaman M B.Synthesis and characterization of new linearπ-conjugatedmolecules containing bis(ethynylpyridine)units with a benzothiadiazole spacer[J].J.Org.Chem.,2002,67(22):7813-7818.

[32]Behramand B,Molin F,Gallardo H.2,1,3-Benzoxadiazole and 2,1,3-benzothiadiazole-based fluorescent compounds:synthesis,characterization and photophysical/electrochemical properties[J].Dyes and Pigments,2012,95(3):600-605.

[33]Silvestri F,Marrocchi A,Taticchi A,et al.Solutionprocessable low-molecular weight extended arylacetylenes:versatile p-type semiconductors for fieldeffect transistors and bulk heterojunction solar cells[J].J.Am.Chem.Soc.,2010,132(17):6108 -6123.

[34]Tanaka D,Ohshita J,Harima Y,et al.Synthesis of disilanylene polymers with donor-acceptor-type p-conjugated units and applications to dye-sensitized solar cells[J].Journal of Organometallic Chemistry,2012,719:30-35.

[35]Bijleveld JC,Shahid M,Janssen R A J,et al.Copolymers of cyclopentadithiophene and electron-deficient aromatic units designed for photovoltaic applications[J].Adv.Funct.Mater.,2009,19(20):3262 -3270.

[36]TaoY M,LiH Y,You Z X,et al.Synthesis and characterization of efficient luminescent materials based on 2,1,3-benzothiadiazole with carbazole moieties[J].Synthetic Metals.,2011,161(9-10):718 -723.

[37]Chu CW,Horie M.Synthesis and characterization of cyclic conjugated architectures composed of thiophene and benzothiadiazole units[J].Asian J.Org.Chem.,2013,2(10):838-842.

[38]Liu Y M,Lai H,F(xiàn)ang Q,et al.New low bandgap molecules based on ethylene-separated benzothiadiazoles:synthesis and bandgap comparison[J].Tetrahedron Lett.,2010,51:4462-4465

[39]Wang J L,Xiao Q,Pei J.Benzothiadiazole-based D-π-A-π-D organic dyeswith tunable band gap:synthesis and photophysical properties[J].Org. Lett.,2010,12(18):4164-4167.

[40]Zou Q,Tian H.Chemodosimeters formercury(II)and methylmercury(I)based on 2,1,3-benzothiadiazole[J].Sensors and Actuators B.,2010,149(1):20 -27.

[41]Suresh P,Mikroyannidis JA,Stylianakis M M,et al. Effect of the incorporation of a low-band-gap small molecule in a conjugated vinylene copolymer:PCBM blend for organic photovoltaic devices[J].Appl.Mater.Interfaces.,2009,1(7):1370-1374.

[42]Lork E,Mews R,Zibarev A V,et al.Reactions of arylthiazylamides with internal and external fluoro electrophiles-formation of products with unusual structures[J].Eur.J.Inorg.Chem.,2001,8:2123-2134.

Advance in Syntheses of 2,1,3-Benzothiadiazole conjugated compounds

HUANG Dan-xiang,XIA M eng,PENG Xiong-wei,LI Tai-h(huán)ao,CHENG X iao-h(huán)ong

(School of Chemical Science and Technology,Yunnan University,Kunming 650091,China)

2,1,3-Benzothiadiazole conjugated compounds are one of themost active research area in the optoelectronicmaterials due to their outstanding optical and electrical properties and have great potentials as organic light-emitting diodes,solar cells,liquid crystals,fluorescent sensors and photovoltaic cells ect. This review covers the various synthetic methods reported for 2,1,3-Benzothiadiazole(BTD)conjugated compounds in recent years.Including Suzuki coupling reaction,Stille coupling reaction,Heck coupling reaction,Sonogashira coupling reaction,Nigishi coupling reaction,Ullmann coupling reaction ect.

synthesis;2,1,3-Benzothiadiazole;coupling reaction

TN104.3

A

1004-275X(2015)06-0028-08

10.3969/j.issn.1004-275X.2015.06.007

收稿:2015-09-14

國家自然科學(xué)基金(No.21274119,NO.21364017);云南省自然科學(xué)基金(2013FA007),云南省教育廳科學(xué)基金(ZD2015001)。

黃旦翔(1990-),男,碩士研究生;研究方向:超分子液晶化學(xué)。

猜你喜歡
催化劑
走近諾貝爾獎 第三種催化劑
大自然探索(2023年7期)2023-11-14 13:08:06
直接轉(zhuǎn)化CO2和H2為甲醇的新催化劑
鋁鎳加氫催化劑在BDO裝置運(yùn)行周期的探討
如何在開停產(chǎn)期間保護(hù)克勞斯催化劑
智富時代(2018年3期)2018-06-11 16:10:44
新型釩基催化劑催化降解氣相二噁英
掌握情欲催化劑
Coco薇(2016年2期)2016-03-22 02:45:06
碳包覆鐵納米催化劑的制備及其表征
V2O5-WO3/TiO2脫硝催化劑回收研究進(jìn)展
負(fù)載型催化劑(CuO/TUD-1,CuO/MCM-41)的制備及其在一步法氧化苯合成苯酚中的應(yīng)用
復(fù)合固體超強(qiáng)酸/Fe2O3/AI2O3/ZnO/ZrO2催化劑的制備及其催化性能
主站蜘蛛池模板: 免费一级毛片不卡在线播放 | 美女被操黄色视频网站| 亚洲综合二区| 伊人久久综在合线亚洲91| 亚洲国内精品自在自线官| 无码免费试看| 国产AV无码专区亚洲A∨毛片| 69av免费视频| 一区二区日韩国产精久久| 精品一区二区三区波多野结衣| 成人午夜亚洲影视在线观看| 亚州AV秘 一区二区三区| 中文纯内无码H| 日本欧美中文字幕精品亚洲| 先锋资源久久| 人人艹人人爽| AV不卡在线永久免费观看| 华人在线亚洲欧美精品| 久久9966精品国产免费| 欧美国产日本高清不卡| 国产丝袜无码精品| 国产精品久久国产精麻豆99网站| 欧美在线精品怡红院| 日本少妇又色又爽又高潮| 538精品在线观看| 天天躁狠狠躁| 乱系列中文字幕在线视频| 亚洲精品色AV无码看| 制服丝袜在线视频香蕉| 99热这里只有免费国产精品| 亚洲av无码专区久久蜜芽| 亚洲va精品中文字幕| 免费A∨中文乱码专区| 中文字幕亚洲电影| 午夜国产小视频| 国产成人调教在线视频| 国产亚洲精| 无码AV日韩一二三区| 亚洲一区免费看| 91精品国产情侣高潮露脸| 国产欧美日韩专区发布| 99热国产这里只有精品无卡顿"| 天天综合网站| 不卡无码h在线观看| 日韩中文欧美| 99久久国产综合精品女同| 精品免费在线视频| 国产JIZzJIzz视频全部免费| 国产91av在线| 国产手机在线小视频免费观看| 久久99久久无码毛片一区二区| 国产成人免费手机在线观看视频| 中文字幕在线视频免费| 四虎精品国产AV二区| 成年女人a毛片免费视频| 成人免费黄色小视频| 国产成人高清精品免费5388| 国产精品妖精视频| 免费一级无码在线网站| 亚洲成av人无码综合在线观看| 免费无码在线观看| 91麻豆国产精品91久久久| 国产成人盗摄精品| 国产一级妓女av网站| 欧美国产菊爆免费观看| 欧美精品1区2区| 99久久这里只精品麻豆| 日本三区视频| 中文精品久久久久国产网址| 日本在线视频免费| 欧美日韩91| 日韩精品欧美国产在线| 成人91在线| 2021国产v亚洲v天堂无码| a欧美在线| 亚洲欧美另类色图| 亚洲一区二区三区在线视频| 亚洲无卡视频| 精品国产www| 久无码久无码av无码| 萌白酱国产一区二区| 亚洲国产精品不卡在线|