胡維崗,黃慶德,郭安民,張 強(qiáng)
(1.新疆農(nóng)墾科學(xué)院農(nóng)產(chǎn)品加研究所,新疆石河子 832000;2.中國(guó)農(nóng)業(yè)科學(xué)院油料作物研究所,湖北武漢 430062)
基于神經(jīng)網(wǎng)絡(luò)遺傳算法優(yōu)化棉粕擠壓膨化脫酚工藝
胡維崗1,黃慶德2,*,郭安民1,張 強(qiáng)1
(1.新疆農(nóng)墾科學(xué)院農(nóng)產(chǎn)品加研究所,新疆石河子 832000;2.中國(guó)農(nóng)業(yè)科學(xué)院油料作物研究所,湖北武漢 430062)
本文應(yīng)用人工神經(jīng)網(wǎng)絡(luò)模擬了棉粕的擠壓膨化脫酚工藝,建立了一個(gè)3層網(wǎng)絡(luò)結(jié)構(gòu)的BP神經(jīng)網(wǎng)絡(luò)模型用以預(yù)測(cè)游離棉酚的降解規(guī)律,采用十折交叉驗(yàn)證表明:選擇隱藏層神經(jīng)元數(shù)為8、網(wǎng)絡(luò)訓(xùn)練函數(shù)為“traingdx”,此網(wǎng)絡(luò)參數(shù)條件下,網(wǎng)絡(luò)預(yù)測(cè)準(zhǔn)確度高,網(wǎng)絡(luò)預(yù)測(cè)輸出與實(shí)驗(yàn)結(jié)果的相關(guān)系數(shù)(R2)為0.9941、均方根誤差為0.4971。基于神經(jīng)網(wǎng)絡(luò)模型利用遺傳算法進(jìn)行全局尋優(yōu)的結(jié)果表明,棉粕擠壓膨化脫酚的最佳工藝條件為膨化溫度131℃、物料水分51%、螺桿轉(zhuǎn)速158r/min、喂料速度136kg/h,在此條件下,游離棉酚的實(shí)際降解率為90.50%,與遺傳算法優(yōu)化預(yù)測(cè)結(jié)果的平均相對(duì)誤差為1.38%,平均相對(duì)誤差較小。本研究表明,神經(jīng)網(wǎng)絡(luò)模擬結(jié)合遺傳算法對(duì)棉粕擠壓膨化脫酚工藝具有較好的優(yōu)化效果。
棉粕,擠壓膨化,脫酚,神經(jīng)網(wǎng)絡(luò),遺傳算法
游離棉酚是當(dāng)前限制棉粕蛋白資源開發(fā)利用的最重要因素,我國(guó)具有豐富的棉籽蛋白資源,年產(chǎn)棉籽達(dá)800余萬(wàn)噸,棉籽榨油后的棉粕中蛋白質(zhì)含量達(dá)36%~44%[1],但因棉粕游離棉酚的限制,使這一豐富的蛋白質(zhì)資源在飼料中的用量和飼用價(jià)值都很低[2-4]。目前,擠壓膨化脫酚法在棉粕飼料加工中得到了較為廣泛的應(yīng)用,短時(shí)高溫、高壓、高剪切力的作用特點(diǎn),使得擠壓膨化脫酚在降低游離棉酚含量方面十分有益[5]。然而,擠壓膨化脫酚是一個(gè)受多種因素影響的復(fù)雜過(guò)程,膨化溫度、螺桿轉(zhuǎn)速、物料水分和喂料速度對(duì)脫酚效果的影響至關(guān)重要。目前有研究采用響應(yīng)面法(RMS)對(duì)棉粕擠壓膨化脫酚工藝進(jìn)行了優(yōu)化[6-7],但由于模型失擬嚴(yán)重未能擬合出最佳的工藝參數(shù)。
人工神經(jīng)網(wǎng)絡(luò)法(ANN)的發(fā)展為處理嘈雜、不完整的數(shù)據(jù)和非線性問(wèn)題提供了新途徑[8]。ANN具有辨識(shí)和逼近任意復(fù)雜非線性系統(tǒng)的能力,可迅速通過(guò)有限的實(shí)驗(yàn)數(shù)據(jù)進(jìn)行數(shù)學(xué)建模和預(yù)測(cè)[9]。ANN比包括響應(yīng)面法在內(nèi)的一般擬合方法具有更高的準(zhǔn)確度和精度[10]。然而,不同的訓(xùn)練方法和隱藏層神經(jīng)元個(gè)數(shù)直接影響著神經(jīng)網(wǎng)絡(luò)的性能[11],研究表明十折交叉驗(yàn)證(10-fold cross-validation)是獲得最好誤差估計(jì)的恰當(dāng)選擇[12]。因此,可通過(guò)十折交叉驗(yàn)證確定神經(jīng)網(wǎng)絡(luò)的訓(xùn)練方法和隱藏層神經(jīng)元個(gè)數(shù)。
遺傳算法(GA)是一種模擬自然選擇和遺傳機(jī)制的自適應(yīng)全局優(yōu)化尋優(yōu)的算法,基于神經(jīng)網(wǎng)絡(luò)通過(guò)遺傳算法自適應(yīng)搜索全局尋優(yōu)算法廣泛應(yīng)用于食品加工工藝的優(yōu)化中[13],但用于優(yōu)化棉粕擠壓膨化脫酚工藝尚未見報(bào)道。
本實(shí)驗(yàn)通過(guò)雙螺桿擠壓膨化機(jī)對(duì)棉粕進(jìn)行擠壓膨化脫酚處理,應(yīng)用人工神經(jīng)網(wǎng)絡(luò)技術(shù),建立擠壓膨化條件和脫酚率之間的非線性擬合關(guān)系,在此基礎(chǔ)上利用GA進(jìn)行全局尋優(yōu),從而獲得最優(yōu)的棉粕擠壓膨化脫酚工藝參數(shù)。
1.1 材料與儀器
棉粕 新疆石河子匯昌油脂有限責(zé)任公司,其游離棉酚含量為900mg/kg。
DS56-Ⅲ型雙螺桿擠壓膨化機(jī) 濟(jì)南賽信膨化機(jī)械有限公司,設(shè)備主要技術(shù)參數(shù)為:螺桿外徑65mm;長(zhǎng)徑比18;兩螺桿中心距56mm,螺桿轉(zhuǎn)速0~250r/min;加熱系統(tǒng)分三個(gè)區(qū)域,每個(gè)區(qū)域有兩個(gè)遠(yuǎn)紅外線加熱圈,每個(gè)加熱圈功率為2kW;圓形模頭,模口孔徑4mm。
1.2 棉粕擠壓膨化脫酚實(shí)驗(yàn)設(shè)計(jì)
棉粕經(jīng)除雜、粉碎后過(guò)100目篩除去棉殼上殘留的少量棉絨,避免擠壓膨化過(guò)程中棉絨堵塞模頭模孔,然后采用雙螺桿膨化機(jī)進(jìn)行擠壓膨化,以游離棉酚降解率為指標(biāo),根據(jù)初步實(shí)驗(yàn)及相關(guān)文獻(xiàn)結(jié)果[6-7],選取對(duì)脫酚率有顯著影響的4個(gè)因素(膨化溫度、棉粕含水率、螺桿轉(zhuǎn)速和喂料速度)采用SAS9.1軟件(SAS Institute Inc.,USA)進(jìn)行中心組合(CCD)實(shí)驗(yàn)方案設(shè)計(jì)。各實(shí)驗(yàn)因子及編碼水平見表1。
1.3 游離棉酚降解率的測(cè)定
采用GB 13086-1991苯胺法測(cè)定游離棉酚含量[14],游離棉酚降解率按以下公式計(jì)算:
式中:P為游離棉酚降解率;ω0為膨化前棉粕游離棉酚含量,單位mg/kg;ω1為膨化后棉粕游離棉酚含量,單位mg/kg。

表1 中心組合設(shè)計(jì)(CCD)實(shí)驗(yàn)設(shè)計(jì)因子編碼水平Table 1 Independent variables and levels in central composite rotatable design(CCD)
1.4 神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)
本研究采用Matlab7.0(The MathWorks,Inc.,USA)以膨化溫度、螺桿轉(zhuǎn)速、物料水分和喂料速度4個(gè)因素為網(wǎng)絡(luò)輸入單元,以游離棉酚降解率為網(wǎng)絡(luò)輸出單元,選擇正切S型傳遞函數(shù)“tansig”函數(shù)為隱藏層傳遞函數(shù),線性函數(shù)“purelin”函數(shù)為作為輸出層傳遞函數(shù),建立一個(gè)三層結(jié)構(gòu)的BP神經(jīng)網(wǎng)絡(luò),其網(wǎng)絡(luò)結(jié)構(gòu)如圖1所示。

圖1 BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)示意圖Fig.1 The structure of BP neural network
1.5 十折交叉驗(yàn)證
本文以中心組合實(shí)驗(yàn)的結(jié)果對(duì)BP神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,選取11種不同的BP網(wǎng)絡(luò)訓(xùn)練函數(shù),1~15個(gè)隱藏層神經(jīng)元個(gè)數(shù),分別采用十折交叉驗(yàn)證確定神經(jīng)網(wǎng)絡(luò)的最佳訓(xùn)練函數(shù)和隱藏層神經(jīng)元數(shù),以測(cè)試集與網(wǎng)絡(luò)預(yù)測(cè)值的均方誤差(MSE)評(píng)估網(wǎng)絡(luò)的預(yù)測(cè)準(zhǔn)確性,為了提高十折交叉驗(yàn)證結(jié)果的穩(wěn)定性和準(zhǔn)確性,每種算法進(jìn)行10次取平均值。測(cè)試集與網(wǎng)絡(luò)預(yù)測(cè)值的均方誤差(MSE)按以下公式計(jì)算:

1.6 神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)準(zhǔn)確度評(píng)價(jià)
以網(wǎng)絡(luò)預(yù)測(cè)輸出與實(shí)驗(yàn)結(jié)果的相關(guān)系數(shù)(R2)和均方根誤差(RMSE)評(píng)價(jià)神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)準(zhǔn)確度。相關(guān)系數(shù)(R2)計(jì)算公式如下:

均方根誤差(RMSE)計(jì)算公式如下:

1.7 遺傳算法尋優(yōu)
本文依據(jù)BP神經(jīng)網(wǎng)絡(luò)建立游離棉酚降解率與膨化溫度、物料水分、螺桿轉(zhuǎn)速和喂料速度的對(duì)應(yīng)關(guān)系,以游離棉酚降解率的網(wǎng)絡(luò)擬合值為遺傳算法的適應(yīng)度函數(shù),采用浮點(diǎn)數(shù)編碼,取初始種群數(shù)為20,交叉變異為0.8,最大遺傳代數(shù)為100,進(jìn)行遺傳算法尋優(yōu)。程序通過(guò)Matlab7.0和遺傳算法工具箱(GAOT)完成。遺傳算法優(yōu)化結(jié)果的準(zhǔn)確度通過(guò)GA預(yù)測(cè)值與驗(yàn)證實(shí)驗(yàn)真實(shí)值之間的相對(duì)誤差進(jìn)行評(píng)估。相對(duì)誤差計(jì)算公式如下:
式中:P′為GA預(yù)測(cè)脫酚率;P為驗(yàn)證實(shí)驗(yàn)實(shí)際脫酚率。
2.1 中心組合實(shí)驗(yàn)結(jié)果
按照表1因子編碼水平進(jìn)行中心組合實(shí)驗(yàn)設(shè)計(jì),實(shí)驗(yàn)設(shè)計(jì)及結(jié)果見表2。
2.2 神經(jīng)網(wǎng)絡(luò)建模結(jié)果
神經(jīng)網(wǎng)絡(luò)的優(yōu)勢(shì)是通過(guò)對(duì)輸出層數(shù)據(jù)和實(shí)際數(shù)據(jù)相似度的計(jì)算,反向調(diào)控輸入層神經(jīng)元的權(quán)值和閥值,最終使總體相對(duì)誤差最低[15],如圖2所示,十折交叉驗(yàn)證的結(jié)果表明,在隱藏層初始神經(jīng)元數(shù)為6條件下,11種BP網(wǎng)絡(luò)訓(xùn)練函數(shù)中自適應(yīng)學(xué)習(xí)速率動(dòng)量梯度下降法(traingdx)測(cè)試集與網(wǎng)絡(luò)預(yù)測(cè)值的均方誤差(MSE)最小,因此選擇“traingdx”為網(wǎng)絡(luò)最佳訓(xùn)練函數(shù)。然后以“traingdx”為訓(xùn)練函數(shù),進(jìn)行十折交叉驗(yàn)證確定隱藏層神經(jīng)元個(gè)數(shù),如圖3所示,測(cè)試集與網(wǎng)絡(luò)預(yù)測(cè)值的均方誤差(MSE)隨隱藏層神經(jīng)元個(gè)數(shù)的增加而逐步降低,當(dāng)隱藏層神經(jīng)元數(shù)超過(guò)8個(gè)后,測(cè)試集與網(wǎng)絡(luò)預(yù)測(cè)值的均方誤差(MSE)不再顯著降低,因此取隱藏層神經(jīng)元數(shù)為8。綜上所述,本文最佳的神經(jīng)網(wǎng)絡(luò)模型為以“traingdx”為訓(xùn)練函數(shù)、網(wǎng)絡(luò)結(jié)構(gòu)為4-8-1構(gòu)架的BP神經(jīng)網(wǎng)絡(luò),此參數(shù)條件下,如表2所示,神經(jīng)網(wǎng)絡(luò)模型的擬合度高(R2=0.9941),網(wǎng)絡(luò)預(yù)測(cè)輸出和實(shí)驗(yàn)實(shí)際結(jié)果的均方根誤差(RMSE)為0.4971,網(wǎng)絡(luò)具有較高的預(yù)測(cè)能力,能夠完成實(shí)驗(yàn)結(jié)果的預(yù)測(cè)。
神經(jīng)網(wǎng)絡(luò)的優(yōu)勢(shì)是通過(guò)對(duì)輸出層數(shù)據(jù)和實(shí)際數(shù)據(jù)相似度的計(jì)算,反向調(diào)控輸入層神經(jīng)元的權(quán)值和閥值,最終使總體相對(duì)誤差最低[15],如圖2所示,十折交叉驗(yàn)證的結(jié)果表明,在隱藏層初始神經(jīng)元數(shù)為6條件下,11種BP網(wǎng)絡(luò)訓(xùn)練函數(shù)中自適應(yīng)學(xué)習(xí)速率動(dòng)量梯度下降法(traingdx)測(cè)試集與網(wǎng)絡(luò)預(yù)測(cè)值的均方誤差(MSE)最小,因此選擇“traingdx”為網(wǎng)絡(luò)最佳訓(xùn)練函數(shù)。然后以“traingdx”為訓(xùn)練函數(shù),進(jìn)行十折交叉驗(yàn)證確定隱藏層神經(jīng)元個(gè)數(shù),如圖3所示,測(cè)試集與網(wǎng)絡(luò)預(yù)測(cè)值的均方誤差(MSE)隨隱藏層神經(jīng)元個(gè)數(shù)的增加而逐步降低,當(dāng)隱藏層神經(jīng)元數(shù)超過(guò)8個(gè)后,測(cè)試集與網(wǎng)絡(luò)預(yù)測(cè)值的均方誤差(MSE)不再顯著降低,因此取隱藏層神經(jīng)元數(shù)為8。綜上所述,本文最佳的神經(jīng)網(wǎng)絡(luò)模型為以“traingdx”為訓(xùn)練函數(shù)、網(wǎng)絡(luò)結(jié)構(gòu)為4-8-1構(gòu)架的BP神經(jīng)網(wǎng)絡(luò),此參數(shù)條件下,如表2所示,神經(jīng)網(wǎng)絡(luò)模型的擬合度高(R2=0.9941),網(wǎng)絡(luò)預(yù)測(cè)輸出和實(shí)驗(yàn)實(shí)際結(jié)果的均方根誤差(RMSE)為0.4971,網(wǎng)絡(luò)具有較高的預(yù)測(cè)能力,能夠完成實(shí)驗(yàn)結(jié)果的預(yù)測(cè)。
表2 中心組合設(shè)計(jì)(CCD)實(shí)驗(yàn)結(jié)果與神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)結(jié)果
Table 2 Result of Central composite rotatable designs(CCD)and predicted of ANN

實(shí)驗(yàn)號(hào)X1X2X3X4游離棉酚降解率P(%)實(shí)驗(yàn)實(shí)際值A(chǔ)NN預(yù)測(cè)值1-1-1-1-175.8075.192-1-1-1175.2175.893-1-11-178.0978.284-1-11180.1180.485-11-1-168.7268.966-11-1166.1266.057-111-169.7869.758-111173.1873.3691-1-1-178.2877.82101-1-1175.3375.64111-11-177.8778.22121-11176.5076.231311-1-185.5285.571411-1182.3382.2415111-186.9986.7816111184.3985.7417-200065.6065.5418200081.0981.27190-20076.6676.7420020076.1376.022100-2075.3275.5622002077.8277.2723000-279.0079.4324000279.3778.5125000086.7686.5426000087.5886.5427000086.0486.5428000086.4686.5429000086.9186.5430000085.9386.5431000087.2186.54R20.9941RMSE0.4971

圖3 隱藏層神經(jīng)元數(shù)與均方誤差的關(guān)系Fig.3 Relationship between number of neurons and MSE
2.3 遺傳算法優(yōu)化擠壓膨化脫酚參數(shù)
遺傳算法全局優(yōu)化尋優(yōu)的結(jié)果如圖4所示,經(jīng)過(guò)15次迭代后,適應(yīng)度函數(shù)值趨向最大值91.75%,此適應(yīng)度函數(shù)值即為游離棉酚的最大降解率,對(duì)應(yīng)的最佳工藝參數(shù)為:膨化溫度131℃,物料水分51%,螺桿轉(zhuǎn)速158r/min,喂料速度136kg/h。

圖4 遺傳算法每代的適應(yīng)度值變化曲線Fig.4 Curve of fitness value of every generation in GA methodology
2.4 遺傳算法優(yōu)化結(jié)果的驗(yàn)證
按照遺傳算法得到的最佳工藝參數(shù)進(jìn)行驗(yàn)證實(shí)驗(yàn),結(jié)果如表3所示。3次重復(fù)實(shí)驗(yàn)的實(shí)際游離棉酚降解率平均為90.50%,與遺傳算法預(yù)測(cè)值的相對(duì)誤差較小,僅為1.38%,說(shuō)明遺傳算法的優(yōu)化結(jié)果真實(shí)有效。

表3 GA預(yù)測(cè)值與實(shí)驗(yàn)真實(shí)值的比較結(jié)果Table 3 Comparison between predicted of GA and experimental
運(yùn)用BP神經(jīng)網(wǎng)絡(luò)對(duì)棉粕擠壓膨化脫酚工藝進(jìn)行非線性擬合,采用4-8-1的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),以“traingdx”函數(shù)作為訓(xùn)練函數(shù),網(wǎng)絡(luò)擬合度高(R2=0.9941),網(wǎng)絡(luò)預(yù)測(cè)輸出和實(shí)驗(yàn)結(jié)果的均方根誤差(RMSE)為0.4971,滿足統(tǒng)計(jì)需要。基于此神經(jīng)網(wǎng)絡(luò)模型遺傳算法優(yōu)化的棉粕最佳脫酚工藝為膨化溫度131℃,物料水分51%,螺桿轉(zhuǎn)速158r/min,喂料速度136kg/h。該工藝條件下,實(shí)際游離棉酚降解率平均為90.50%,與遺傳算法預(yù)測(cè)值的相對(duì)誤差僅為1.38%。因此,基于神經(jīng)網(wǎng)絡(luò)模擬結(jié)合遺傳算法的優(yōu)化方法對(duì)棉粕擠壓膨化脫酚工藝具有較好的優(yōu)化效果。
[1]周磊.蛋白飼料棉籽餅粕的脫毒方法[J].農(nóng)業(yè)技術(shù)與裝備,2010(7):22-23.
[2]Khodwe M S,Bhowmick D N. Separation of gossypol from cottonseed and preparation of gossypol-free cottonseed cake[J]. International Journal of Recent Scientific Research,2013,4(8):1290-1295.
[3]Jalees M M,Khan M Z,Saleemi M K,et al. Effects of Cottonseed Meal on Hematological,Biochemical and Behavioral Alterations in Male Japanese Quail(Coturnixjaponica)[J]. Pakistan Veterinary Journal,2011,31(3):211-214.
[4]陳琪,石劍華.棉籽餅使用脫毒劑和生物發(fā)酵脫毒的營(yíng)養(yǎng)分析[J].當(dāng)代畜禽養(yǎng)殖業(yè),2013(10):6-8.
[5]周建國(guó),王洪武.棉籽粕雙螺桿擠壓脫毒中幾個(gè)工藝參數(shù)的研究[J].農(nóng)業(yè)工程學(xué)報(bào),2000,16(6):110-113.
[6]周建國(guó),吳冬莉.棉籽餅粕雙螺桿擠壓脫毒中的參數(shù)研究[J].中國(guó)油脂,2001,26(1):46-49.
[7]王洪武,周建國(guó).加工參數(shù)對(duì)棉籽餅粕雙螺桿擠壓脫毒的影響[J].中國(guó)糧油學(xué)報(bào),2005,20(3):70-72.
[8]Morris A J,Montague G A,Willis M J. Artificial neural networks:studies in process modeling and control[J]. Trans I Chem Eng,1994,72A:3-19.
[9]Pareek V K,Brungs A A,Sharma R. Artificial neural network modeling of a multiphase photodegradation system[J]. Photochem Photobiol A:Chem,2002,149:139-146.
[10]He L,Xu Y Q,Zhang X H. Medium factors optimization and fermentation kinetics for phenazine-1-carboxylic acid production byPseudomonassp. M18G[J]. Bioteehnology and Bioengineering,2008,100(2):250-259.
[11]Elmolla E S,Chaudhuri M,Eltoukhy M M. The use of artificial neural network(ANN)for modeling of COD removal from antibiotic aqueous solution by the Fenton process[J]. Journal of hazardous materials,2010,179(1):127-134.
[12]Witten I H,Frank E. Data Mining:Practical machine learning tools and techniques[M]. 北京:機(jī)械工業(yè)出版社,2006:286.
[13]Nagata Y,Chu K H. Optimization of a fermentation medium using neural networks and genetic algorithms[J]. Biotechnology Letters,2003,25(21):1837-42.
[14]GB 13086-1991,飼料中游離棉酚的測(cè)定方法[S].
[15]Hagan M T,Demuth H B,Beale M H.神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)[M].北京:機(jī)械工業(yè)出版社,2002:127-128.
全國(guó)中文核心期刊
輕工行業(yè)優(yōu)秀期刊
Optimization of free gossypol removal from cottonseed meal bythe extrusion process based onartificial neural network with genetic algorithm
HU Wei-gang1,HUANG Qing-de2,*,GUO An-min1,ZHANG Qiang1
(1. Institute of Agro-products Processing Science and Technology,Xinjiang Academyof Agricultural and Reclamation Science,Shihezi 832000,China;2. Oil Crops Research Institute of Chinese Academy of Agricultural Sciences,Wuhan 430062,China)
The artificial neural network(ANN)was used for the simulation of the degradation of free gossypol in cottonseed meal by the extrusion process. A three-layer back propagation neural network was optimized to predict the degradation of free gossypol. The result of 10-fold cross validation showed that the model of back propagation neural network giving the smallest mean square error(MSE)was the ANN with the training function as traingdx at hidden layer with 8 neurons. And ANN predicted results were very close to the experimental results with correlation coefficient(R2)of 0.9941 and RMSE of 0.4971. A genetic algorithm(GA)based on an established neural network model was also used to optimizing de-gossypol process.The results of GA obtained showed that the optimal condition of de-gossypol by the extrusion process was temperature 131℃,water ratio 51%,rotational speed 158r/min,and feeding speed 136kg/h,and in this condition the degradation rate of free gossypol was 90.50%,which was close to the result of GA predicted with the small average relative error of 1.38%. These results suggested that the GA based on a neural network model might be an excellent tool for optimizing cottonseed meal de-gossypol process.
cottonseed meal;extrusion;de-gossypol;artificial neural network;genetic algorithm
2014-09-22
胡維崗(1986-),男,碩士,助理研究員,研究方向:糧油加工。
*通訊作者:黃慶德(1964-),男,碩士,研究員,研究方向:糧油加工技術(shù)研究。
新疆農(nóng)墾科學(xué)院引導(dǎo)項(xiàng)目(60YYD201308)。
TS229
B
1002-0306(2015)13-0243-04
10.13386/j.issn1002-0306.2015.13.043