999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

PPC/PBS包膜尿素膜材料降解特征

2015-06-15 19:19:11坤,靜*,
關(guān)鍵詞:研究

張 坤, 徐 靜*, 張 民

(1山東農(nóng)業(yè)大學(xué)化學(xué)與材料科學(xué)學(xué)院,山東泰安 271018; 2 山東農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院,山東泰安 271018)

PPC/PBS包膜尿素膜材料降解特征

張 坤1, 徐 靜1*, 張 民2*

(1山東農(nóng)業(yè)大學(xué)化學(xué)與材料科學(xué)學(xué)院,山東泰安 271018; 2 山東農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院,山東泰安 271018)

包膜材料; 聚碳酸亞丙酯; 聚丁二酸丁二醇酯; 降解

利用不同包膜材料成膜孔徑的大小、化學(xué)或生物分解特點(diǎn)來控制尿素溶解與養(yǎng)分釋放速度,是延長肥效期,提高氮素利用率的有效措施之一。為了減少因普通樹脂包膜所帶來的潛在白色污染,研制生物可降解樹脂包膜控釋肥,已經(jīng)成為世界上控釋肥領(lǐng)域研究的熱點(diǎn)[1-5]。在土壤中,包膜材料的降解速度與特征直接關(guān)系到包膜肥料的施用性能、作用效果和土壤生態(tài)環(huán)境效應(yīng),不同膜材、在不同類型土壤中的降解速度不同,對包膜肥料的應(yīng)用性能影響較大[6-8]。

PPC與PBS樹脂均屬于可降解材料,在堆肥情況下可自行降解,最終完全降解為二氧化碳和水[9-10]。但是包膜肥料是在種植土壤中施用,其殘膜若在土壤中降解太慢,長期施用也會造成土壤污染或影響土壤團(tuán)粒結(jié)構(gòu)[6]。本課題組前期曾經(jīng)研究了兩種生物可降解包膜材料的適宜比例[11], 本研究以PPC/PBS包膜控釋肥料為應(yīng)用模型,采用失重率法、紅外光譜法、熱失重法及顯微觀察法研究了PPC/PBS復(fù)配膜材料在土壤中的降解規(guī)律和特征,為其作為肥料控釋膜材料提供參考數(shù)據(jù)。

1 材料與方法

1.1 材料和設(shè)備參數(shù)

掃描電子顯微鏡(日本電子,JSM6380LV),包膜材料斷面和表面分別噴金處理,加速電壓40 kV, 放大2000 倍。

1.2 試驗(yàn)地點(diǎn)和方法

稱取16 g包膜的尿素肥料,每個(gè)樣品2 g左右,均用0.15 mm孔徑紗網(wǎng)包裹防止漏出。于2013年1月1日一次性埋入6 cm深度的土壤中(未種植作物),每月1日取出一個(gè)樣品,計(jì)算肥料養(yǎng)分釋放量。將肥料搗碎,用蒸餾水洗去膜內(nèi)尿素,將膜放在濾紙上陰干待測。采用FTIR、TG、SEM等分析方法檢測包膜肥料的膜材料降解特征。

設(shè)12個(gè)月為降解的最長周期,以膜材料在普通種植土壤中的質(zhì)量損失率為評價(jià)其在土壤中降解性的重要指標(biāo)之一。將PPC/PBS樹脂(質(zhì)量比7 ∶5)復(fù)配溶液鋪膜,厚度約70 μm,剪成大小為6 cm×6 cm的12個(gè)正方形薄片,精確稱量每一樣品材料的重量、厚度,用0.15 mm孔徑紗網(wǎng)包裹每一片材料,埋入6 cm深度的土壤中,每月取一個(gè)樣品,蒸餾水洗凈,烘干至恒重,稱量,計(jì)算膜材料重量減少量。

膜化合物分子結(jié)構(gòu)和化學(xué)組成采用紅外光譜(FTIR)分析方法[6];將純PPC和PBS樹脂以及所得包膜肥料的膜層洗凈烘干后,利用熱重分析法研究膜材料土埋前后的熱穩(wěn)定性變化[12];采用掃描電鏡(SEM)對降解前后膜表面和包膜肥料壁材的斷面進(jìn)行形貌分析[13]。

2 結(jié)果與分析

2.1 包膜肥料在土壤中的降解

圖1 PPC與PBS樹脂紅外譜圖Fig.1 FTIR spectra of PPC and PBS resins

圖2 不同土埋時(shí)間下PPC/PBS包膜尿素膜FTIR譜圖Fig.2 FTIR spectra of degraded coatings after buried for different months[注(Note): A—降解1、2、3個(gè)月后 After one, two, and three months;B—降解3個(gè)月后放大圖 Enlarged drawing after three months.]

圖3 PPC與PBS樹脂的熱失重圖Fig.3 Thermal gravimetric curves for PPC and PBS resins

圖4 PPC/PBS包膜尿素膜熱失重圖Fig.4 Thermal gravimetric curves of PPC/PBS coatings burried in soil[注(Note): A—降解1、 2、 3個(gè)月后 After one, two, and three months;B—局部放大圖 Partial enlarged detail.]

圖5 埋入土壤之初和1、2、3個(gè)月后包膜表面SEM電鏡圖Fig.5 SEM images of coating surface at initial, one, two and three months later after buried

2.2 樹脂材料的降解

由圖7可以看出,樹脂膜材料在土壤微生物作用下降解,初期降解速度較慢,隨著時(shí)間的延長, 試樣生物降解度逐漸增加,在第5個(gè)月達(dá)到5%失重,之后失重速率明顯增快,顯示出良好的降解性,說明內(nèi)部結(jié)構(gòu)已經(jīng)遭到破壞,開始大幅度降解,隨后降解速度持續(xù)上升, 到10月份已達(dá)到78%的失重率。

圖6 包膜肥料膜降解前后截面SEM電鏡圖Fig.6 SEM images(cross section) of coating membrane before and after buried for different months

圖7 PPC/PBS在土壤中隨時(shí)間的質(zhì)量累積損失率Fig.7 Cumulative weight loss rate of PPC/PBS membrane vs. burring time in soil

10月份后降解開始減緩,據(jù)推測估計(jì)是因?yàn)檫M(jìn)入十月份天氣開始干燥,且氣溫降低,影響微生物對材料進(jìn)一步降解。雖然降解速度減慢,但是到12月份的時(shí)候,由于膜材料破碎程度比較嚴(yán)重,無法將其與土壤分離取樣,所以可將其視為降解完全。因此本研究選擇PPC與PBS作為尿素包膜壁材,一年內(nèi)在土壤中能夠完全降解,不會對土壤造成污染。

3 討論與結(jié)論

全生物降解材料由于能夠在自然條件作用下(生物酶、水、溫、光等)自行降解,并最終轉(zhuǎn)化為二氧化碳和水,環(huán)保無污染,逐漸成為了包膜控釋肥包膜材料發(fā)展和選擇的趨勢[5, 14-15]。而降解材料在種植土壤中表現(xiàn)出的降解特性直接決定了該類材料作為包膜層對肥料養(yǎng)分的控釋效果[6-8, 16]。

熱重分析技術(shù)自60年代起在高聚物性質(zhì)的研究中開始廣泛應(yīng)用,既可以測定聚合物的熱穩(wěn)定性,同時(shí)也可以分析聚合物共混物的組分和含量。聚合物中的支鏈、分子量較小的有機(jī)小分子,在等速升溫的過程中會先行分解,而對于結(jié)構(gòu)相對穩(wěn)定的聚合物主鏈則需要在較高溫度下才會發(fā)生分解。通常采用比較初始分解溫度高低的方法對材料熱穩(wěn)定性進(jìn)行評價(jià)。本實(shí)驗(yàn)中,對降解前后的膜材料進(jìn)行了氮?dú)夥諊碌臒嶂胤治觯鶕?jù)圖譜可以發(fā)現(xiàn),土埋一個(gè)月后膜材料的初始分解溫度略有增加,降解三個(gè)月后,膜材料的熱分解溫度提高了9℃。多項(xiàng)研究表明,多組分復(fù)配的降解材料在降解前后,其初始分解溫度出現(xiàn)略微增高或不變的現(xiàn)象。Weng等研究發(fā)現(xiàn)[12],生物降解樹脂PBAT/PLA不同配比復(fù)合膜材料在土壤中降解后,部分材料熱分解溫度略有增加。周慶海等[9]通過研究生物降解樹脂PPC/PBS共混物的熱穩(wěn)定性,發(fā)現(xiàn)PBS的引入提高了共混物的熱分解溫度,其原因是組分中熱穩(wěn)定相對較高的組分含量增加,能夠抑制熱穩(wěn)定性差的材料的熱分解。本試驗(yàn)結(jié)果證明了這一點(diǎn)。因而我們推斷在種植土壤環(huán)境下膜材料中熱穩(wěn)定性稍差的PPC樹脂先行降解,且隨著降解程度的加深,PBS樹脂在膜材料中所占的比重越來越多,同時(shí)也發(fā)揮了其抑制前者熱降解速率的作用。

[1] 胡樹文, 邱小云, 陶樹明, 任雪芹. 天然高分子改性的包膜控釋肥料及其制備方法[P]. 中國專利: 102295491A, 2011. Hu S W, Qiu X Y, Tao S M, Ren X Q. Preparation of controlled-release fertilizer with modified natural polymer [P]. China patent: 102295491A, 2011.

[2] 李萍, 唐輝. 桐油成膜材料的生物降解性研究[J]. 化肥工業(yè), 2008, 35(2): 33-40. Li P, Tang H. Study of Biodegradation of Tung Oil Film Forming Material[J]. Fertilizer Industry, 2008, 35(2): 33-40.

[3] Chen L, Xie Z G, Zhuang X Letal. Controlled release of urea encapsulated by starch-g-ploy(L-lactide)[J]. Carbohydrate Polymers, 2008, 72(2): 342-348.

[4] 解玉洪, 陳劍秋, 李廣濤, 等. 一種可降解緩釋肥料[P]. 中國專利: 101759498B, 2013. Xie Y H, Chen J Q, Li G Tetal. Degradable controlled release fertilizer [P]. China Patent: 101759498B, 2013.

[5] Han X Z, Chen S S, Hu X G. Controlled-release fertilizer encapsulated by starch/polyvinyl alcohol coating[J]. Desalination, 2009, 240(1-3): 21-26.

[6] 李東坡, 武志杰, 梁成華, 等. 紅外光譜分析醋酸酯淀粉包膜尿素膜降解特征[J]. 光譜學(xué)與光譜分析, 2012, 32(6): 1519-1525. Li D P, Wu Z J, Liang C H,etal. Analysis of the character of film decomposition of starch acetate(SA) coated urea by infrared spectrum[J]. Spectroscopy and Spectral Analysis, 2012, 32(6): 1519-1525.

[7] 戴久蘭, 史衍璽, 楊守祥. 控釋肥殘膜對土壤性質(zhì)和作物生長的影響[J]. 山東農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2002, 33(3): 322-325. Di J L, Shi Y X, Yang S X. Effect of CRFs residual coating on soil property and crop growth[J]. Journal of Shandong Agricultural University(Natural Science), 2002, 33(3): 322-325

[8] 李亞星, 徐秋明, 楊宜斌, 等. 樹脂包衣肥料殘膜對土壤植物的影響及光降解膜肥料的研制[J]. 生態(tài)環(huán)境學(xué)報(bào), 2010, 19(7): 1691-1695. Li Y, Xu Q, Yang Y Betal. Effect of RCF residual coating on soil and plant and development of photodegradable coating of RCF[J]. Ecology and Environmental Sciences, 2010, 19(7): 1691-1695

[9] 周慶海, 高鳳翔, 王獻(xiàn)紅, 等. 聚碳酸1,2-丙二酯/聚琥珀酸丁二酯/鄰苯二甲酸二烯丙酯共混體系的研究[J]. 高分子學(xué)報(bào), 2009,3: 227-232. Zhou Q H, Gao F X, Wang X Hetal. Study on the polyblends of poly(propylene carbonate)/poly(butylene succinate)/diallyl phthalate[J]. Acta Polymerica Sinica. 2009, 3: 227-232.

[10] 張敏, 田小艷, 徐科, 等. 聚丁二酸丁二醇酯(PBS)在兩種微生物環(huán)境中的降解性[J]. 環(huán)境化學(xué), 2011, 30(6): 1102-1107. Zhang M, Tian X Y, Xu Ketal. Studies of the biodegradation of PBS by microorganism in two kinds of soil[J]. Environmental Chemistry, 2011, 30(6): 1102-1107.

[11] 王州, 張坤, 徐靜, 等. 可生物降解樹脂包膜尿素的研制及性能[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2013, 19(6): 1510-1515. Zhao B G, Zhang F S, Liao Z Wetal. Preparation and characterization of biodegradable polymer-coated Urea[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1510-1515.

[12] Weng Y X, Jin Y J, Meng Q Yetal. Biodegradation behavior of poly(butylene adipate-co-terephthalate)(PBAT), poly(lactic acid)(PLA), and their blend under soil conditions[J]. Polymer Testing, 2013, 32(5): 918-926.

[13] Wang E, Mo H, Cui Z, Zhang X. Application of natural wood flour on controlled-release urea[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28: 264-268(5).

[14] Mulder W J, Gosselink R J A, Vingerhoeds M Hetal. Lignin based controlled release coatings[J]. Industrial Crops and Products, 2011, 34(1): 915-920.

[15] Ni B L, Liu M, Lü S Yetal. Environmentally friendly slow-release nitrogen fertilizer[J]. Journal of Agricultural and Food Chemistry, 2011, 59(18): 10169-10175.

[16] 王 星, 李占斌, 李 鵬. 可降解地膜的熱解和紅外光譜特征分析[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào), 2011, 19: 151-160. Wang X, Li Z B, Li P. Analysis of degradable films pyrolysis and infrared spectrum characters[J]. Journal of Basic Science and Engineering, 2011, 19: 151-160.

[17] 張敏, 王和平, 崔春娜, 等. 金屬離子對脂肪族聚酯降解性能的影響[J].合成樹脂及塑料, 2008, 25(4): 23-26. Zhang M, Wang H P, Cui C Netal. Effect of metallic ion on biodegradability of aliphatic polyester[J]. China Synthetic Resin and Plastics, 2008, 25(4): 23-26.

[18] Shah A A, Kato S, Shintani Netal. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters[J]. Applied Microbiology Biotechnology, 2014, 98: 3437-3447.

[19] 鄒洪濤, 韓艷玉, 虞娜, 等. 新型包膜尿素抑制氮素?fù)]發(fā)及其降解性研究[J]. 遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011, 30(4): 542-545. Zou H T, Han Y Y, Yu Netal. Study on nitrogen volatilization and degradation of organic-inorganic complex coated slow-release urea[J]. Journal of Liaoning Technical University(Natural Science), 2011, 30(4): 542-545.

[20] Ni B L, Liu M Z, Lü S Y. Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations[J]. Chemical Engineering Journal, 2009, 155: 892-898.

Degradation behavior of PPC/PBS as urea coating in soil

ZHANG Kun1, XU Jing1*, ZHANG Min2*

(1CollegeofChemistryandMaterialScience,ShandongAgriculturalUniversity,Tai’an,Shandong271018,China;2CollegeofRecoursesandEnvironment,ShandongAgriculturalUniversity,Tai’an,Shandong271018,China)

【Objectives】 Biodegradable resin has been used as coating materials in manufacture of controlled/slow-released fertilizers in order to prevent the persistent polyolefin resin from potential damage to soil. Different coating materials have different degradation behavior in soils, which influence the final application effects of coated fertilizers. Therefore, the study of the degradation characteristics of the coating materials will provide directly support for the correct application of coated fertilizers and the safety of soil ecological environment. 【Methods】 Two kinds of biodegradable polymers, poly(propylene carbonate)(PPC) and poly(butylenes succinate)(PBS)(mass ratio, PPC ∶PBS=7 ∶5) were used as coating materials for urea in a burial soil experiment. Infrared spectroscopy(FTIR), scanning electron microscopy(SEM), and thermo-gravimetric analyses(TGA) were used to investigate the degradation characteristics of the PPC/PBS film. The degradation behavior of the coating material in soil including the weight loss, structure change, thermal properties and the surface morphology of polymer films was simulated. 【Results】 1) The FTIR analysis shows that the absorption strength of -OH around 3480 cm-1increases firstly and then decreases, and the carbonyl absorption peaks are strengthen at 1849-1543 cm-1significantly. The asymmetry stretching vibration absorption peaks of the cumulative double bonds, -C=C=C and -C=C=O, appear at 2363 and 2331 cm-1, respectively, indicating that the molecular chain of the coating materials is broken up firstly and then oxidized, forming new compounds. The random cleavage of the ester bonds are initiated in the biodegradable resin structure. 2) The thermo-gravimetric analysis shows that the thermal decomposition temperature of the degraded membrane moves to higher temperature compared to the initial, which demonstrates that the PPC resin in the membrane is degraded firstly in the soil and then the PBS section with larger proportion plays more inhibitory effect to reduce the further decomposition of PPC. 3) The SEM analysis shows that the PPC/PBS film is found suitable to the rugged surface of urea and combined tightly on the surface of urea. The initial surface is smooth with uniform density and no holes on it. As the buried time elongated, the membrane surface becomes rough and a few of micropores of 3-5 μm appears. With the degree of degradation increasing, the membrane structure becomes loose, and the micropores gradually grow up in the internal surface and then extend into the surrounding structure. The pore size increases to about 20 μm and the thickness of the film is thinned to 40-50 μm. However, the PPC/PBS coating still keeps the original frame, which shows that the degradation process of the membrane material needs a certain time. 4) The tested degradable films have good biological degradabilities with a low initial degradation rate. As the buried time extension, the sample biodegradation degrees increase gradually, about 5% of weight loss is found within five months, after that, the weight loss rate is significantly accelerated and reaches to 78% in October, decomposed completely within 12 months. 【Conclusions】 The degradation behavior of PPC/PBS as urea coating material in soil is initiated on the coating surface caused by the cleavage of chemical structure of film, then followed by biodegradation of the ester bonds at random. The degradation rates of the coating materials are slow within the first five months, then increased dramatically within the following five months, and biodegraded completely in 12 months.

coating material; PPC; PBS; degradation

2014-02-24 接受日期: 2014-10-24 網(wǎng)絡(luò)出版日期: 2015-02-13

國家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(31000938); 山東省教育廳項(xiàng)目(2013GZX20109)資助。

張坤(1978—),男,山東肥城人,博士研究生,講師, 主要從事可生物降解材料在農(nóng)業(yè)領(lǐng)域的應(yīng)用。E-mail: zhangk@sdau.edu.cn * 通信作者 E-mail: jiaxu@sdau.edu.cn; minzhang-2002@163.com

S145.9

A

1008-505X(2015)03-0624-08

猜你喜歡
研究
FMS與YBT相關(guān)性的實(shí)證研究
2020年國內(nèi)翻譯研究述評
遼代千人邑研究述論
視錯(cuò)覺在平面設(shè)計(jì)中的應(yīng)用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
關(guān)于遼朝“一國兩制”研究的回顧與思考
EMA伺服控制系統(tǒng)研究
基于聲、光、磁、觸摸多功能控制的研究
電子制作(2018年11期)2018-08-04 03:26:04
新版C-NCAP側(cè)面碰撞假人損傷研究
關(guān)于反傾銷會計(jì)研究的思考
焊接膜層脫落的攻關(guān)研究
電子制作(2017年23期)2017-02-02 07:17:19
主站蜘蛛池模板: 扒开粉嫩的小缝隙喷白浆视频| 欧美亚洲日韩不卡在线在线观看| 香蕉视频国产精品人| 亚洲区欧美区| 国产肉感大码AV无码| 人人妻人人澡人人爽欧美一区| 欧洲日本亚洲中文字幕| 成人国产免费| 九九线精品视频在线观看| 日韩高清成人| 国产国产人成免费视频77777| 国产亚洲高清视频| 久久精品免费国产大片| 国产成人免费| 尤物精品视频一区二区三区| 久久不卡国产精品无码| 最近最新中文字幕在线第一页| 色吊丝av中文字幕| 亚洲欧美成aⅴ人在线观看| 激情综合网址| 中国精品久久| 在线看国产精品| 国产精品欧美激情| 亚洲Av激情网五月天| 成人久久精品一区二区三区| 久久久精品无码一区二区三区| 在线观看国产精品一区| 国产欧美精品午夜在线播放| 亚洲美女一级毛片| 18禁高潮出水呻吟娇喘蜜芽| 日本人妻一区二区三区不卡影院| 欧美亚洲综合免费精品高清在线观看| 国产亚洲精久久久久久久91| 亚洲欧美不卡| 成人毛片免费观看| 国产精品自拍合集| 国产在线观看成人91| 最新国产高清在线| 久久网综合| 亚洲福利视频网址| 亚洲青涩在线| 国产va在线观看免费| 国产精品 欧美激情 在线播放| 久久国产精品电影| 久久婷婷六月| 亚洲男人在线| 青青久久91| 精品视频一区二区三区在线播| 亚洲一区二区三区国产精品| 久久国产V一级毛多内射| 国产精品午夜福利麻豆| 日韩性网站| 无遮挡国产高潮视频免费观看| 国产精品视频a| 日韩a在线观看免费观看| 成年av福利永久免费观看| 久久精品无码中文字幕| 国产成人做受免费视频| 全午夜免费一级毛片| 亚洲综合极品香蕉久久网| 最近最新中文字幕在线第一页 | 亚洲综合第一区| a色毛片免费视频| 中国美女**毛片录像在线| 中文字幕 91| 亚洲欧美天堂网| 在线观看国产精品一区| 欧美一级在线看| 久久久噜噜噜久久中文字幕色伊伊| 日韩资源站| 亚洲视频在线青青| 日本91在线| 国产女人18毛片水真多1| 亚洲午夜久久久精品电影院| 亚洲人成人无码www| 91久久精品国产| 在线观看91香蕉国产免费| 真实国产乱子伦高清| 国产欧美日韩视频怡春院| 日韩精品一区二区三区中文无码| 国内精品一区二区在线观看| 91蝌蚪视频在线观看|