魏彬萌, 王益權
(西北農林科技大學資源環境學院, 陜西楊凌 712100)
渭北果園土壤物理退化特征及其機理研究
魏彬萌, 王益權*
(西北農林科技大學資源環境學院, 陜西楊凌 712100)

蘋果園土壤; 物理退化; 容重; 緊實度; 飽和導水率
良好的土壤環境是果樹健康生長的基本條件。土壤質地輕、土層深厚、土體疏松、通透性強、酸堿度適宜、保水保肥力強、富含有機質是果樹健康生長對土壤的最基本要求[1],也是渭北地區被作為蘋果優生基地的基本條件,由于該區氣候條件獨特,所生產的蘋果品質優良,優質蘋果生產已成為該地區乃至陜西省發展經濟的支柱產業之一,為促進該區域的經濟發展,解決“三農”問題,改善生態環境做出了巨大的貢獻[2-3]。然而,隨著植果年限的增加,一些果園出現了樹勢衰弱,樹體衰老,抗性降低,腐爛病及早期落葉病頻繁發生,盛果期縮短,果品產量與品質明顯下降及耐儲藏性降低等問題,已嚴重影響著該區果業的健康發展[4]。
對于渭北果樹早期衰老與果品質量退化的原因已有一些報道,但均是從果園土壤養分的遞減與不平衡、土壤有機質含量衰減及重金屬累積等化學質量退化方面進行了研究[2,5],而對渭北果園土壤物理質量的退化問題則少有報道。渭北地區土壤雖有滿足蘋果優生的優勢條件,卻也有自身的缺陷和不足[6]。如該區土壤為壤質土,有機質含量相對欠缺,土壤團聚作用差、“穩定性”不強,屬于結構活躍型土壤,即易結塊和易散碎[4,7]。因土壤團聚體的不穩定性和易散碎,植果期間土壤中分散的粘粒會向下移動,“淀積粘化”過程明顯,在土壤剖面的亞表層發生著明顯的緊實化過程,難以維持其應有的土體疏松狀態[8]。另外也與人為管理不當有一定關系[5,9]。由于果園土壤極少翻耕擾動,導致粘粒累積和土體緊實化程度逐漸增大,不利于果樹根區內水、氣、熱的交換和果樹根系的延伸,從而影響果樹的健康生長。然而,至今人們對渭北果園土壤物理退化問題仍未足夠關注,對其退化機理的研究文獻極其鮮見,很難找到可以借鑒的研究資料和信息。本文以不同園齡段果園土壤為研究對象,以土壤物理性狀指標的變化為切入點,深入分析了果園土壤物理質量退化的部位、退化特征、退化機理及危害程度,以期為揭示果樹衰老機理,為獲取具有可持續性特征的果園土壤管理措施提供科學依據。
1.1 試驗區概況
試驗選在具有較長植果歷史的蘋果主產區之一的陜西省彬縣新民鎮黃土塬區。該地屬渭北旱塬的塬梁溝壑區,海拔約1 108 m,年平均氣溫9.7 ℃,晝夜溫差11.7 ℃,多年平均降水量579 mm,無霜期180 d,屬典型大陸性暖溫帶半干旱氣候特征。地帶性土壤類型為黑壚土(系統分類名稱為堆墊干潤均腐土,Cumuli-Ustic Isohumosols)。具有海拔較高、光照資源充足、晝夜溫差大、氣候較為干燥、環境污染小、土層深厚、土體疏松等優越的自然條件。蘋果種植歷史在整個渭北旱塬果區具有很好的代表性。
1.2 采樣及分析方法

1.3 測定項目與方法
土壤容重用環刀法;含水率用烘干法(105℃烘干12 h)測定[10]。
土壤堅實度用SC-900型土壤堅實度儀測定,在田間按2.5 cm的間距測定0—45 cm內果園土壤堅實度,每個果園布置3個以上點測定。
土壤比重用比重瓶法測定;土壤總孔隙度通過容重和比重計算而得[10]。
土壤飽和導水率用“恒定水頭法”測定[11-12],從飽和水傳導開始第一滴起,每隔5 min記錄一次馬氏瓶水位下降高度,直至馬氏瓶水位下降速率穩定為止,其測定結果換算成10℃下的飽和導水率。
土壤顆粒采用國際粒級分類制,用沉降分析的吸管法測定[10]。
1.4 數據分析
試驗數據采用Excel 2007進行處理,用SPSS 19.0進行LSD0.05差異顯著性檢驗和相關性分析。
2.1 果園土壤物理性狀退化的主要特征及退化趨勢


與當地春播玉米的農田相比,表層(0—20 cm)范圍的果園土壤容重與農田土壤基本相當,具有明顯差異的是在20—60 cm土層處。果園土壤受耕作翻動次數少和深度淺的影響,容重均明顯高于農田(圖1),顯著體現出種植果樹對土壤物理性狀的作用范圍主要在底土層,而影響的趨勢表現為在0—60 cm范圍內果園土壤容重均隨園齡增加顯著增大。目前,表層(0—20 cm)土壤容重雖有增大態勢,但暫未達到威脅果樹生長的程度,而底土層容重極為明顯地規律性增大,已經威脅到果樹根系的延伸。由此可見,渭北果園土壤容重在0—20 cm土層較小,土壤較為疏松,但在20—60 cm底土層明顯增大,亞表層以下土層的緊實化成為渭北果園土壤物理退化的顯著特征,但是在空間上具有很強的隱蔽性,至今仍未被人們所覺察。

圖1 不同園齡段果園土壤容重的變化Fig.1 Soil bulk density in orchards with different planting ages
2.1.2 果園土壤緊實度的變化與評價 緊實度對土壤的水、肥、氣、熱及其物理、化學和生物學過程等都有調控作用[14],進而影響植物對養分的吸收和植株根、葉等器官的生長發育[15]。土壤緊實已被廣泛認為是對農業、林業和園藝生產越來越具有挑戰性的問題[16-17]。許多研究表明,適當緊實的土壤可以增加根和土的密切接觸程度,提高根系對養分的吸收利用率。但土壤過于緊實,一方面可使土壤容重增加,大孔隙減少,水分滲透率和持水能力明顯降低等[18-19]。Singhk等[20]在沙壤土上研究表明,隨容重增加,土壤水分滲透率由12.35 cm/h降為3.46 cm/h。另一方面,土壤機械阻力過大,根系生長受阻,不能在土體中均勻分布,不利于根系吸收土壤中的養分。尚慶文等[21]測定了不同容重土壤中生姜植株的主要生理特性,結果表明緊實土壤加速了生姜植株的衰老。
對于渭北果園土壤管理而言,盡管機械化使用程度并不高,卻同樣存在著土壤緊實度增大的問題,影響了果樹根系的穿插能力,進而減小了根系覓水、覓肥的空間與能力。因此,探討渭北果園土壤緊實度變化規律與影響因子,是評價果園土壤物理退化的重要內容。



圖2 不同園齡段果園土壤含水率變化Fig.2 Soil moisture in orchards withdifferent planting ages

圖3 不同園齡段果園土壤緊實度變化Fig.3 Soil compaction in orchards with different planting ages
2.1.3 果園土壤孔隙度的變化與評價 孔隙度是表征土壤團聚性、透水性、導熱性和疏松程度的重要指標,其大小也說明土壤水分和空氣容量的大小[23-24]。孔隙度是土壤容重和比重共同決定的,對于黑壚土而言,其土壤剖面屬非均質的土層構造,根據本研究土壤剖面容重和比重的結果,得到渭北果園及農田土壤孔隙度的剖面狀況(圖4)。

圖4 不同園齡段果園土壤總孔隙度變化Fig.4 Soil porosity in orchards with different planting ages

果園土壤孔隙度在0—20 cm 土層基本均大于農田土壤,而20 cm以下土層農田土壤孔隙度卻均高于果園土壤。這與農田土壤表層頻繁擾動與壓實以及地面保護條件較差有直接關系,也佐證了該區土壤團聚體的活躍性和不穩定性。果園土壤由于人為耕作擾動次數少及樹冠對降雨的緩沖作用,有效地保護了表層土壤結構,其土壤總孔隙度也較大。
2.1.4 果園土壤飽和導水率的變化與評價 飽和導水率是土壤最為重要的水分動力學參數,可表征土壤的透水性能[25-26]。在旱塬地區關系到自然降水進入土壤水庫的性能和土壤的蓄墑能力。圖5顯示,果園表層(0—10 cm)和緊實層(20—30 cm)的土壤飽和導水率均表現出隨種植園齡的增加而減小的趨勢,且各果園土壤緊實層的飽和導水率小于表層,主要原因是緊實層的土壤容重大,而容重是影響土壤飽和導水率的主導因素[27]。各果園表層土壤的飽和導水率均小于農田,主要是因為農田表層受耕作擾動,土壤中大孔隙比較多,而果園土壤耕作擾動少、土壤大孔隙少;農田底土緊實層的飽和導水率也很小,與農田土壤機械作業以及人為踩踏嚴重使該土層出現緊實化有關。


圖5 不同園齡段果園土壤飽和導水率變化 Fig.5 Soil saturated hydraulic conductivity in orchards with different planting ages


圖6 不同園齡段果園土壤飽和導水率隨時間的變化 Fig.6 The change of soil saturated hydraulic conductivity in orchards with different planting ages
2.2 果園土壤物理性狀退化的原因分析
以上分析表明,底層土壤緊實化是渭北果園土壤物理質量退化的主要特征,探究其土壤緊實化的原因對于評價土壤質量演化趨勢和防止土壤緊實化顯得極為重要。一般土壤緊實化有諸如耕作、交通和灌溉等人為活動與自然因素等方面的作用。對于渭北果園而言,耕作擾動次數很少,幾乎不涉及機械壓實,更無灌溉的影響,可底層土壤緊實化問題仍較為嚴重,這只能是土壤粘粒向下遷移的自然結果。為此,本研究測定了3個園齡段果園土壤剖面的粘粒含量(圖7)。

圖7 不同園齡段果園土壤粘粒含量變化Fig.7 Soil clay content in orchards with different planting ages
從圖7可以看出,供試土壤在剖面50—100 cm處是黑壚土層,其較高的粘粒含量緣于發生學過程,而0—50 cm是黃土的沉積與多年使用土糞形成的覆蓋層,從發生學角度講,該土層應具有基本一致的顆粒組成。但是3個園齡段果園土壤剖面粘粒含量存在明顯的差異,尤其在0—30 cm處土壤粘粒含量隨種植年限的增加而明顯減少, 30 cm以下則隨種植年限的增加而呈增加趨勢,說明植果期間黑壚土覆蓋層因團聚作用差,在降雨期間團聚體分散,“活性粘粒”向深層移動淀積,產生了明顯的淀積粘化作用。并因果園土壤翻耕少,使得粘粒在底土層逐漸積累,并填充了底層土壤孔隙,造成底土層土壤緊實化和堅實化。進一步分析發現,土壤粘粒含量與容重、緊實度以及孔隙度之間呈極顯著的相關關系(表1),再次證明渭北果園土壤物理退化的主要原因在于粘粒的遷移與分化。培肥果園土壤,促進土壤顆粒的團聚化程度是防止土壤物理退化的根本措施。
2.3 果園土壤物理性狀退化程度的評價
壓實密度(packing density)是衡量土壤壓實程度的量化指標,主要在德國和英國等歐洲國家被使用。壓實密度采用公式:PD=BD+0.09C
式中,PD—壓實密度(g/cm3); BD—土壤容重(g/cm3); C—土壤粘粒含量。
壓實密度(PD)在1.40 g/cm3和1.75 g/cm3可視為壓實程度低、中、高閾值[28]。渭北果園在20 cm土層以下土壤壓實密度都已達到了中度壓實的程度,而且在同一土層,果園土壤壓實密度比農田土壤大(表2)。說明渭北土壤團聚體的弱結持性引起的自然壓實是限制該區果業可持續發展的一個重要問題,應該引起人們足夠重視。

表1 土壤物理參數間的相關性分析
注(Note): *—P<0.05; **—P<0.01.
在果園土壤管理方面,增加有機物投入,促進土壤穩定性團聚體的形成,適度地深翻土壤,干擾粘粒在深層的聚集等,將有助于保證疏松土體構造,提高土壤蓄水、透氣和保肥能力等,為果樹健康生長營造最佳的土壤物理條件。同時,疏松的土體也有助于果樹根系的延伸和擴展活動范圍,增加根系吸收功能,有利于維持果樹的健康樹勢,延緩果樹衰老等[29]。

表2 不同園齡段果園土壤壓實密度(g/cm3)

渭北果園土壤物理退化的主要原因是,該區土壤質地為壤質土,有機質含量相對欠缺, 土壤團聚作用差, 團聚體“穩定性”不強,加之果園土壤翻耕擾動少, 對物理退化干預少,在植果期間土壤粘粒逐漸向深層移動與累積,最終造成果園土壤亞表層及其以下土層的緊實化,影響果園的健康、可持續發展。
[1] 陳軍. 果樹生長與土壤條件的關系探析[J]. 現代農業科技, 2010,(9): 155-156. Chen J. Analysis of the relationship between the fruit tree growth and soil conditions[J]. Modern Agricultural Sciences and Technology, 2010,(9): 155-156.
[2] 石宗琳, 王益權, 張露, 等. 渭北果園土壤有機質及酶活性研究[J]. 干旱地區農業研究, 2012, 30(4): 86-91. Shi Z L, Wang Y Q, Zhang Letal. Soil organic matter and enzyme activity in orchards of Weibei[J]. Agricultural Research in the Arid Areas, 2012, 30(4): 86-91.
[3] 李會科, 張廣軍, 趙政陽, 李凱榮. 渭北黃土高原旱地果園生草對土壤物理性質的影響[J]. 中國農業科學, 2008, 41(7): 2070-2076. Li H K, Zhang G J, Zhao Z Y, Li K R. Effects of different herbage on soil quality characteristics of non-irrigated apple orchard in Weibei loess plateau[J]. Scientia Agricultura Sinica, 2008, 41(7): 2070-2076.
[4] 孫蕾, 王益權, 張育林, 等. 種植果樹對土壤物理性狀的雙重效應[J]. 中國生態農業學報, 2011, 19(1): 19-23. Sun L, Wang Y Q, Zhang Y Letal. Dual effect of fruit tree cultivation on soil physical characteristics[J]. Chinese Journal of Eco-Agriculture, 2011, 19(1): 19-23.
[5] 同延安, 王留好, 劉劍. 陜西渭北地區蘋果園土壤有機質現狀評價[J]. 干旱地區農業研究, 2007, 25(6): 189-192. Tong Y A, Wang L H, Liu J. Assessment on current situation of soil organic matter of apple orchards in Weibei areas[J]. Agricultural Research in the Arid Areas, 2007, 25(6): 189-192.
[6] 郭兆元.陜西土壤[M]. 北京: 科學出版社, 1992. Guo Z Y. Shaanxi soil [M]. Beijing: Science Press, 1992.
[7] 胥繼東, 王益權, 劉軍, 等. 渭北旱塬不同樹齡果園土壤營養狀況演化趨勢[J]. 安徽農業科學, 2008, 36(31): 13722-13724, 13752. Xu J D, Wang Y Q, Liu Jetal. Research on the evolution trend of soil nutrient of different tree ages in Weibei dry plateau[J]. Journal of Anhui Agricultural Sciences. 2008, 36(31): 13722-13724, 13752.
[8] 季耿善. 黑壚土的形成環境[J]. 土壤學報, 1992, 29(2): 114-125. Ji G S. Genetic environment of dark loessial soil[J]. Acta Pedologica Sinica, 1992, 29(2): 114-125.
[9] 劉侯俊, 巨曉棠, 同延安, 等. 陜西省主要果樹的施肥現狀及存在問題[J]. 干旱地區農業研究, 2002, 20(1): 39-44. Liu H J, Ju X T, Tong Y Aetal. The status and problems of fertilization of main fruit trees in Shaanxi Province[J]. Agricultural Research in the Arid Areas, 2002, 20(1): 39-44.
[10] 鄭必昭. 土壤分析技術指南[M]. 北京: 中國農業出版社, 2012. Zheng B Z. Analysis method guide for soil [M]. Beijing: China Agriculture Press, 2012.
[11] 劉亞敏, 程林. 滲透桶法測定土壤飽和導水率的改進[J]. 人民黃河, 2011, 33(8): 106-107. Liu Y M, Cheng L. Improvement of saturated soil hydraulic conductivity measured by using method of permeating bucket[J]. Yellow River, 2011, 33(8): 106-107.
[12] GB 7838-1987. 森林土壤滲透性的測定[S]. GB 7838-1987. Determination of forest soil permeability [S].
[13] Шеин Е В, Гончаров В М. агрофизика[M]. Россия, Феникс, 2006. Шеин Е В, Гончаров В М. Agrophysics[M]. Russia, Phoenix, 2006.
[14] 劉晚茍, 山侖, 鄧西平. 植物對土壤緊實度的反應[J]. 植物生理學通訊, 2001, 37(3): 254-260. Liu W G, Shan L, Deng X P. Responses of plant to soil compaction[J]. Plant Physiology Communications, 2001, 37(3): 254-260.
[15] 張國紅, 張振賢, 黃延楠, 梁勇. 土壤緊實程度對其某些相關理化性狀和土壤酶活性的影響[J]. 土壤通報, 2006, 37(6): 1094-1097. Zhang G H, Zhang Z X, Huang Y N, Liang Y. Effect of compaction on soil properties and soil enzyme activities[J]. Chinese Journal of Soil Science, 2006, 37(6): 1094-1097.
[16] 王金貴, 王益權, 徐海, 等.農田土壤緊實度和容重空間變異性研究[J]. 土壤通報, 2012, 43(3): 594-598. Wang J G, Wang Y Q, Xu Hetal. Spatial variability of soil compaction and bulk density in farmland[J]. Chinese Journal of Soil Science, 2012, 43(3): 594-598.
[17] 孫艷, 王益權, 徐偉君, 等. 緊實脅迫對土壤呼吸強度及黃瓜生長和品質的影響[J]. 土壤學報, 2008, 45(6): 1128-1134. Sun Y, Wang Y Q, Xu W Jetal. Effect of soil compaction on soil respiration intensity, plants growth and fruit quality of cucumber[J]. Acta Pedologica Sinica, 2008, 45(6): 1128-1134.
[18] Rao M, Kathavate Y V. Effect of soil compaction on the yield of wheat and maize[J]. Indian Journal of Agronomy, 1972, 17(3): 199-295.
[19] Carman K. Compaction characteristics of wed wheels on clay loam in soil bin[J]. Soil and Tillage Research, 2002, 65(1): 37-43.
[20] Singhk K, Verma G. Effect of soil compaction on physical properties of loamy sand soil and yield of groundnut[J]. Research on Crops, 2001, 2(2): 145-147.
[21] 尚慶文, 孔祥波, 王玉霞, 徐坤. 土壤緊實度對生姜植株衰老的影響[J]. 應用生態學報, 2008, 19(4): 782-786. Shang Q W, Kong X B, Wang Y X, Xu K. Effect of soil compaction on ginger plant senescence[J]. Chinese Journal of Applied Ecology, 2008, 19(4): 782-786.
[22] Shaw B T(馮兆林譯). 土壤物理條件與植物生長[M]. 北京: 科學出版社, 1965. Shaw B T(Translation by Feng Z L) . Soil physical conditions and plant growth [M]. Beijing: Science Press, 1965.
[23] 張揚. 陜西省渭北蘋果園表層土壤物理性質與水分特征研究[D]. 陜西楊凌: 西北農林科技大學碩士學位論文, 2010. Zhang Y. Topsoil physical properties and water characteristics of apple orchards in weibei region Shaanxi province [D]. Yangling, Shaanxi: Ms Thesis of Northwest A&F University, 2010.
[24] 周虎, 李保國, 呂貽忠, 等. 不同耕作措施下土壤孔隙的多重分形特征[J]. 土壤學報, 2010, 47(6): 1094-1100. Zhou H, Li B G, Lü Y Zetal. Multifractal characteristics of soil pore structure under different tillage systems[J]. Acta Pedologica Sinica, 2010, 47(6): 1094-1100.
[25] 方 堃, 陳效民, 張佳寶, 等. 紅壤地區典型農田土壤飽和導水率及其影響因素研究[J]. 灌溉排水學報, 2008, 27(4): 67-69. Fang K, Chen X M, Zhang J Betal. Saturated hydraulic conductivity and its influential factors of typical farmland in red soil region[J]. Journal of Irrigation and Drainage, 2008, 27(4): 67-69.
[26] 姚淑霞, 趙傳成, 張銅會. 科爾沁不同沙地土壤飽和導水率比較研究[J]. 土壤學報, 2013, 42(3): 469-477. Yao S X, Zhao C C, Zhang T H. A comparison of soil saturated hydraulic conductivity(kfs) in different Horqin sand land[J]. Acta Pedologica Sinica, 2013, 42(3): 469-477.
[27] 鄭紀勇, 邵明安, 張興昌. 黃土區坡面表層土壤容重和飽和導水率空間變異特征[J]. 水土保持學報, 2004, 18(3): 53-56. Zheng J Y, Shao M A, Zhang X C. Spatial variation of surface soil’s bulk density and saturated hydraulic conductivity on slope in loess region[J]. Journal of Soil and Water Conservation, 2004, 18(3): 53-56.
[28] 周健民, 沈仁芳. 土壤學大辭典[M]. 北京: 科學出版社, 2013. 212. Zhou J M, Shen R F. Dictionary of soil science [M]. Beijing: Science Press, 2013. 212.
[29] 馬寶焜. 紅富士蘋果—優質果品生產技術[M]. 北京: 農業出版社, 1993. Ma B K. Fuji apple-High quality fruit production technology [M]. Beijing: Agriculture Press, 1993.
Physical degradation characteristics and mechanism of orchard soil in Weibei Region
WEI Bin-meng, WANG Yi-quan*
(CollegeofResourcesandEnvironmentalSciences,NorthwestA&FUniversity,Yangling,Shaanxi712100,China)
【Objectives】 Apple production contributes to the economy in Shaanxi province greatly. But soil quality of the orchard land has degradated greatly after years of fruit production. That may has led to many issues such as trees weakening, fast aging and reduced resilience. Specifically the apple tree valsa canker and leaf defoliation diseases occur more frequently, and fruit yield and quality decreases greatly. The objective of this study was to investigate the characteristics, mechanism and degree of soil physical degradation in different aged orchards, to provide scientific basis for orchard soil management and eventually to improve the yield and quality of apple production. 【Methods】 Four replicates of <10-, 10-20-and >20-year old orchards were selected for the study. Soil samples within two-thirds of the radius of the tree canopy projection to the trunk were taken. Soil samples were used to measure physical properties such as soil bulk density, compaction, porosity, saturated hydraulic conductivity, and clay content. Comparison was conducted between the orchard and adjacent similar farmland soils. 【Results】 Soil bulk density and compaction increased with orchard age and soil depth. Especially at 20 cm soil layer, soil bulk density reached 1.45-1.61 g/cm3, compaction reached 933-2433 KPa. Porosity of the soil profile in 0-20 cm soil layer remained 50%, and the soil structure was in good condition. However, soil porosity reached 40%-46% in the 20-60 cm soil layer, which was in a state of compaction and severe compaction. Soil saturated hydraulic conductivity decreased even in the surface layer as the orchard aged. In the 10-20 and >20-year-old orchards, soil saturated hydraulic conductivity in the subsurface declined to 46.88 and 20.89 cm/d, reducing the infiltration of the rainfall and the capacity of soil water storage. Soil clay content increased with the depth of soil profile. Clay content at the 0-30 cm depth decreased with increasing orchard age but increased below the 30 cm layer. Further analysis found that the clay content was significantly correlated with soil bulk density, compactness, and porosity. Using packing density as index to evaluate the degree of compaction in orchard soil, the result showed that the soil packing density of orchards was above 1.40 g/cm3underneath 20 cm depth in Weibei region. The orchard soils in this area have reached the moderate degree of compaction. 【Conclusions】 The main characteristics of soil physical degradation of orchards in Weibei Region were reduced soil porosity, increased soil bulk density and compaction, and decreased soil saturated hydraulic conductivity. The main processes and mechanism of orchard soil degradation are clay translocation and accumulation of clay at deep soil. Reduced plow and aeration on soils is the main external cause to anabatic dominanted soil degradation. This is reflected with less soil aggregates.
orchard soil; physical degradation; soil bulk density; soil compaction; soil saturated hydraulic conductivity
2014-04-09 接受日期: 2014-11-16 網絡出版日期: 2015-01-27
陜西省農業廳項目“陜西蘋果土壤與施肥標準化管理技術研究”資助。
魏彬萌(1989—), 女, 陜西咸陽人, 碩士研究生, 主要從事土壤質量方面的研究。E-mail: 442516031@qq.com * 通信作者 E-mail: soilphysics@163.com
S152.5; S606+.1
A
1008-505X(2015)03-0694-08