吳貴云, 劉錫平, 楊 浩
(上海理工大學理學院,上海 200093)
具有微分算子的分數階微分方程邊值問題解的存在性與唯一性
吳貴云, 劉錫平, 楊 浩
(上海理工大學理學院,上海 200093)
研究一類具有分數階線性微分算子的Riemann-Liouville型分數階非線性微分方程兩點邊值問題解的存在性和唯一性.通過求出相應邊值問題的Green函數并證明其性質,建立積分算子方程,應用壓縮映射原理證明了這類邊值問題解的存在性與唯一性定理.運用Krasnoselskii’s不動點理論建立并證明了該邊值問題解的存在性與唯一性定理.最后給出了兩個應用實例,用以說明本文所得結論的有效性.
Riemann-Liouville分數階導數;分數階微分方程;微分算子;邊值問題;存在性與唯一性
由于分數階微分方程在工程技術和科學研究中具有廣泛的應用背景,因此,分數階微分方程理論研究受到了廣泛關注.近年來,有大量關于分數階微分方程邊值及初值問題的研究成果出現,參見文獻[1-10]以及其中的參考文獻.
對于一些較復雜的問題,常常用微分算子方程來描述.文獻[1-2]討論了具有線性微分算子的分數階微分方程初值問題正解的存在性.本文研究一類具有線性微分算子的分數階微分方程兩點邊值問題解的存在性和唯一性.
本文研究具有線性微分算子的分數階微分方程兩點邊值問題

解的存在性和唯一性,其中線性微分算子L(D)= Dα-rtnDβ,n是非負整數,r∈瓗,0<β<1<α<2,且Dα,Dβ是標準的Riemann-Liouville分數階導數.f:[0,1]×瓗→瓗是非線性連續函數.
有關Riemann-Liouville型分數階積分與分數階導數的定義請參考文獻[3].
引理1[4]若x在[0,+∞)上是連續的,且0<β<1,β≤α,那么

引理2 設r∈瓗,n是非負整數,0<β<1<α<2,則邊值問題(1)與積分方程

證明 運用分數階微積分的相關引理可以得出方程L(D)x(t)+f(t,x(t))=0的等價方程為

式中,c1,c2為任意常數.
根據邊界條件可求得

引理3 設r∈瓗,0<β<1<α<2,n為非負整數,則函數G(t,s),Hk(t,s)具有以下性質:
a.G(t,s)連續,并且0≤G(t,s)≤G(s,s),

證明 a.由函數的定義式(2),易得G(t,s)連續,并且G(t,s)≥0.
當s<t時,有




下面應用Krasnoselskii’s不動點定理研究邊值問題(1)解的存在性.


根據Krasnoselskii’s不動點定理[11],可得邊值問題(1)至少有一個解.
以下給出兩個實例,用于說明所得到的主要結論.
例1 考慮具有線性微分算子的分數階微分方程邊值問題


綜上所述,邊值問題(4)滿足了定理1的條件,根據定理1,邊值問題(4)存在唯一解.容易看出x(t)≡0不是邊值問題(4)的解,因此,邊值問題(4)存在唯一非平凡解.
例2 考慮分數階微分方程

容易驗證,邊值問題(5)滿足定理2的條件,根據定理2,邊值問題(5)至少存在一個解,并且該解為非平凡解.
[1] B?leanu D,Mustafa O G.On the global existence of solutions to a class of fractional differential equations [J].Computers&Mathematics with Applications, 2010,59(5):1835-1841.
[2] Babakhani A.Existence and uniqueness of solution for class of fractional order differential equations on an unbounded domain[J].Advances in Difference Equations,2012,41(1):1-8.
[3] Podlubny I.Fractional differential equations[M].New York:Academic Press,1999.
[4] Miller K S,Ross B.An introduction to the fractional calculus and fractional differential equations[M].New York:Wiley,1993.
[5] Bai Z B,Sun W C.Existence and multiplicity of positive solutions for singular fractional boundary value problems[J].Applied Mathematics and Computation,2012,63:1369-1381.
[6] Jia M,Liu X.Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions[J].Applied Mathematics and Computation,2014,232:313-323.
[7] Liu X P,Lin L G,Fang H Q.Existence of positive solutions for nonlocal boundary value problem of fractional differential equation[J].Central European Journal of Physics,2013,11(10):1423-1432.
[8] 劉洪潔,趙俊芳,耿鳳杰,等.一類分數階微分方程正解的存在性[J].數學的實踐與認識,2012,42(2): 241-248.
[9] 竇麗霞,劉錫平,金京福,等.分數階積分微分方程多點邊值問題解的存在性和唯一性[J].上海理工大學學報,2012,34(1):51-55.
[10] 金京福,劉錫平,竇麗霞,等.分數階積分微分方程邊值問題正解的存在性[J].吉林大學學報(理學版), 2011,49(5):823-828.
[11] 郭大鈞,孫經先,劉兆理.非線性常微分方程泛函方法[M].2版.濟南:山東科技大學出版社,2005.
(編輯:丁紅藝)
Existence and Uniqueness of Solutions for Boundary Value Problems of Fractional Differential Equations with Differential Operator
WUGuiyun, LIU Xiping, YANGHao
(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
The existence and uniqueness of solutions for a class of two points boundary value problems of Riemann-Liouville nonlinear fractional differential equation with linear fractional differential operator were considered.Through finding the Green function of the boundary value problem and determining its properties,an integral operator equation was established and some sufficient conditions for the existence and uniqueness of solutions were derived by applying the contraction principle and the fixed point theorem. Some examples were given to illustrate the results.
Riemann-Liouville fractional derivative;fractional differential equation; differential operator;boundary value problem;existence and uniqueness
O 175.8
A
1007-6735(2015)03-0205-05
10.13255/j.cnki.jusst.2015.03.001
2014-03-03
國家自然科學基金資助項目(11171220)
吳貴云(1990-),女,碩士研究生.研究方向:應用微分方程.E-mail:763924848@qq.com
劉錫平(1962-),男,教授.研究方向:應用微分方程.E-mail:xipingliu@usst.edu.cn