王亞非,劉麗嫻,高椿明,盧澤宇,周 鷹
·光電子學(xué)工程與應(yīng)用·
石英增強(qiáng)光聲光譜技術(shù)發(fā)展現(xiàn)狀
王亞非,劉麗嫻,高椿明,盧澤宇,周 鷹
(電子科技大學(xué)光電信息學(xué)院 成都 610054)
痕量氣體檢測(cè)技術(shù)在污染監(jiān)測(cè)、工業(yè)生產(chǎn)、國防安全等領(lǐng)域均發(fā)揮了重要的作用。石英增強(qiáng)光聲光譜技術(shù)(QEPAS)具有抗干擾能力強(qiáng)、體積小、靈敏度高(ppb量級(jí))等特點(diǎn),是痕量氣體檢測(cè)技術(shù)的研究熱點(diǎn)之一,實(shí)現(xiàn)了對(duì)多種有毒氣體的高靈敏度檢測(cè)。該文敘述了QEPAS技術(shù)原理,回顧了5種不同結(jié)構(gòu)QEPAS系統(tǒng)的發(fā)展情況及進(jìn)展,并對(duì)該技術(shù)的研究前景進(jìn)行了展望。
歸一化噪聲等效吸收系數(shù); 石英增強(qiáng)光聲光譜; 石英音叉; 痕量氣體檢測(cè)
大氣環(huán)境中存在多種微量氣體,如甲烷(CH4)、臭氧(O3)、一氧化碳(CO)、二氧化硫(SO2)、氮氧化物(NOX)、乙烯(C2H2)、氟化物(HFCS、SF6)等,濃度在ppt~ppm量級(jí)[1-4],它們的含量雖然很低,但是卻對(duì)環(huán)境有很大的影響。如對(duì)流層臭氧是僅次于二氧化碳、甲烷而排在第3位的溫室氣體;SO2排放的增多導(dǎo)致酸雨的形成;CO2等溫室氣體濃度增加會(huì)對(duì)全球性氣候造成影響等。人體的生理狀態(tài)可通過檢測(cè)人體排出的微量氣體來獲取[5],如判斷某人是否有酒后駕車的嫌疑,可通過檢測(cè)其呼出氣體中的乙醇含量[6],判斷某糖尿病人是否有酮酸中毒癥,可檢測(cè)其呼出氣體中的丙酮含量[7]。近年來,各種恐怖爆炸事件層出不窮,據(jù)統(tǒng)計(jì)全球每天都有一起或數(shù)起恐怖爆炸慘案發(fā)生[8],預(yù)防和打擊爆炸活動(dòng)受到世界各國的普遍重視。爆炸物的遠(yuǎn)距離探測(cè)和識(shí)別可使檢測(cè)人員和設(shè)備與檢測(cè)對(duì)象保持在安全距離外[9]。因此,痕量氣體檢測(cè)技術(shù)具有非常廣泛的應(yīng)用前景,開展該技術(shù)的研究具有十分重要的意義。
PAS技術(shù)的出現(xiàn)可以追溯到1880年Bell發(fā)現(xiàn)的光聲效應(yīng)[10]。傳統(tǒng)PAS系統(tǒng)采用光聲池(共振腔或樣品室)隔離噪聲并放大信號(hào)[11-14],其系統(tǒng)噪聲主要來源于光聲池內(nèi)壁和光窗的影響[15]。雖然差分式光聲池被用來降低系統(tǒng)背景噪聲和提高系統(tǒng)信噪比[16],但由于光聲池體積受到聲共振條件的限制,難以實(shí)現(xiàn)微型化。
文獻(xiàn)[17]提出了QEPAS技術(shù),歷經(jīng)十幾年的發(fā)展,現(xiàn)已成為痕量氣體檢測(cè)技術(shù)熱點(diǎn)之一。該技術(shù)利用品質(zhì)因數(shù)Q高達(dá)104的聲共振傳感器石英音叉(QTF)作為光聲信號(hào)增強(qiáng)器件[17],由于QTF獨(dú)特的高共振頻率、窄帶寬、體積小、響應(yīng)靈敏的優(yōu)點(diǎn),使該技術(shù)具有動(dòng)態(tài)范圍大、可靠性好、操作簡(jiǎn)單、無波長(zhǎng)選擇性、體積小、靈敏度高等特點(diǎn)。可實(shí)現(xiàn)對(duì)多種有毒有害氣體(CO、N2O、SO2、NO、NO2、CH4、NH3等)的檢測(cè),并易于實(shí)現(xiàn)系統(tǒng)微型化,能在狹小空間中完成對(duì)氣體的檢測(cè)。
QEPAS技術(shù)采用靈敏的聲共振傳感器QTF代替?zhèn)鹘y(tǒng)PAS系統(tǒng)中的聲學(xué)諧振腔和微音器來積累并檢測(cè)光聲信號(hào),從而消除了聲共振條件對(duì)氣室的限制。同時(shí)應(yīng)用可調(diào)諧激光吸收光譜技術(shù)[18],結(jié)合波長(zhǎng)調(diào)制原理[19],抑制了背景噪聲的影響,是對(duì)傳統(tǒng)PAS技術(shù)的改進(jìn)和提升。

圖1 二倍頻信號(hào)產(chǎn)生過程示意圖
如圖1所示,當(dāng)可調(diào)諧DFB激光器輸出的中心波長(zhǎng)恰好落在氣體吸收譜線的中心,由于在一個(gè)調(diào)制周期內(nèi)入射激光經(jīng)過氣體吸收譜線中心兩次,因此激發(fā)的光聲信號(hào)頻率是調(diào)制頻率的2倍[20]。即入射激光的調(diào)制頻率必須為QTF共振頻率的二分之一,此時(shí)系統(tǒng)在調(diào)制頻率的二次諧頻處共振。由波長(zhǎng)調(diào)制原理可知,信號(hào)偶次階諧波峰值位于吸收線中心,隨著階數(shù)的增加,諧波峰值幅值迅速減少。在QEPAS系統(tǒng)中,背景噪聲主要來自于入射激光與QTF及共振管直接作用產(chǎn)生的非氣體吸收信號(hào),其頻率與光源調(diào)制頻率一致(即一階諧波頻率),通過二階諧波檢測(cè),可以將大部分的背景噪聲過濾消除。所以,二階諧波具有抑制背景噪聲的作用,常用于實(shí)際的氣體測(cè)量。
QEPAS系統(tǒng)如圖2所示[17,21],采用波長(zhǎng)連續(xù)可調(diào)的DFB激光器作為光源,激光器的輸出波長(zhǎng)由激光控制器控制,通過改變激光器的溫度和注入電流實(shí)現(xiàn)。函數(shù)發(fā)生器提供QTF共振頻率的二分之一正弦波長(zhǎng)調(diào)制信號(hào)。激光器輸出光經(jīng)光纖(或準(zhǔn)直會(huì)聚)引至QTF兩叉股間隙的中央產(chǎn)生的光聲信號(hào)二階諧頻的頻率與QTF的共振頻率相同,QTF共振產(chǎn)生電流,由互阻抗放大器放大并轉(zhuǎn)換為電壓信號(hào)后送入鎖相放大器。鎖相放大器接收并解調(diào)信號(hào),以二階諧波信號(hào)作為氣體測(cè)量的參考信號(hào),鎖相放大器的輸出送入計(jì)算機(jī)存儲(chǔ)并進(jìn)行進(jìn)一步的數(shù)據(jù)處理分析。經(jīng)樣品池中氣體吸收后輸出的激光由光電探測(cè)器探測(cè),解調(diào)獲得三階諧波可用于確定吸收線中心(奇次階諧波在吸收線中心處為零[19]),并校正激光器的輸出中心波長(zhǎng)。

圖2 QEPAS系統(tǒng)框圖
該技術(shù)的核心指標(biāo)是歸一化噪聲等效吸收系數(shù)(NNEA),其值越小,系統(tǒng)探測(cè)靈敏度越高,定義為:

式中 α為吸收系數(shù);D*為歸一化探測(cè)精度,單位為Hz1/2/W;P為激光器功率;B為探測(cè)器探測(cè)帶寬;VS/VN為系統(tǒng)輸出信噪比。
隨著PAS技術(shù)的發(fā)展,并為實(shí)現(xiàn)對(duì)環(huán)境背景信號(hào)的免疫,文獻(xiàn)[17]提出了QEPAS技術(shù),應(yīng)用品質(zhì)因數(shù)(8 000~20 000)、體積小(約2 mm3)的QTF作為聲共振探測(cè)器,能夠靈敏探測(cè)弱光聲信號(hào),擁有遠(yuǎn)長(zhǎng)于傳統(tǒng)PAS技術(shù)的聲能量積累周期,且抗干擾能力強(qiáng),易實(shí)現(xiàn)微型,是對(duì)傳統(tǒng)PAS技術(shù)的突破[22]。按照QTF不同的應(yīng)用方式、系統(tǒng)光源的革新和光傳輸方式的改進(jìn),下面具體介紹5種有代表性的QEPAS技術(shù)。
2.1 共軸式QEPAS(on-beam QEPAS)
為了增強(qiáng)QEPAS系統(tǒng)信號(hào),并且對(duì)聲波的參數(shù)和其邊界條件進(jìn)行限制,文獻(xiàn)[23-30]將一種微共振腔(micro-resonator)應(yīng)用于QEPAS系統(tǒng)。該系統(tǒng)要求入射激光穿過共振腔但不能與其壁接觸以避免相互作用產(chǎn)生光熱效應(yīng)。自此共軸式QEPAS技術(shù)被廣泛應(yīng)用,文獻(xiàn)[31]利用電調(diào)激光二極管作為系統(tǒng)光源,檢測(cè)了NH3,NNEA可達(dá)2×10?8cm?1?W?Hz?1/2,檢測(cè)靈敏度為4.4 ppm。文獻(xiàn)[32]利用帶間級(jí)聯(lián)激光器在液氮溫度下對(duì)甲醛氣體進(jìn)行測(cè)試,NNEA為2.2×10?8W?cm?1?Hz?1/2,檢測(cè)靈敏度為0.6 ppm。文獻(xiàn)[33]利用量子級(jí)聯(lián)激光器作為光源進(jìn)行N2O的檢測(cè),檢測(cè)極限為4 ppb。文獻(xiàn)[34]對(duì)紅外區(qū)域內(nèi)氟利昂氣體的探測(cè)系統(tǒng)進(jìn)行了設(shè)計(jì),NNEA分別為2×10?8cm?1?W?Hz?1/2。文獻(xiàn)[35]使用波長(zhǎng)為2 μm的連續(xù)激光器檢測(cè)CO2和NH3,并分別獲得了NNEA為1.4×10?8cm?1?W?Hz?1/2和8.9×10?9cm?1?W?Hz?1/2,檢測(cè)極限分別為18 ppm和3 ppm。
但基于“裸QTF式”或“共軸式QEPAS”結(jié)構(gòu)的系統(tǒng)無法完全達(dá)到共振波條件,共振腔兩端開放引起聲能量的損失;且QTF兩叉間隔僅約300 μm,將限制共振腔的內(nèi)徑和激光的有效半徑[15]。
2.2 離軸式QEPAS(off-beam QEPAS)
針對(duì)共軸式QEPAS系統(tǒng)的不足,文獻(xiàn)[36]首次提出“離軸式QEPAS系統(tǒng)”。并對(duì)空氣中水蒸汽含量進(jìn)行了測(cè)試,NNEA為6.9×10?9cm?1?W?Hz?1/2。文獻(xiàn)[37]對(duì)離軸式共振管的結(jié)構(gòu)進(jìn)行了優(yōu)化,得出最優(yōu)化結(jié)構(gòu)。文獻(xiàn)[38]基于“離軸式QEPAS系統(tǒng)”,對(duì)惰性氣體氦氣進(jìn)行了檢測(cè),檢測(cè)極限為1.27±0.08 ppm,NNEA為3.02×10?8cm?1?W?Hz?1/2。文獻(xiàn)[39]利用峰值功率為40 μW的激光器檢測(cè)甲醛氣體,NNEA為2×10?10cm?1?W?Hz?1/2。文獻(xiàn)[40]結(jié)合廉價(jià)的紫外LED(和量子級(jí)聯(lián)激光器以及半導(dǎo)體激光器相比)探測(cè)臭氧,檢測(cè)極限達(dá)到1.27 ppm,NNEA為3.02×10?8cm?1?W?Hz?1/2。
離軸式QEPAS系統(tǒng)的幾何設(shè)計(jì)比傳統(tǒng)的QEPAS系統(tǒng)更加靈活,更容易進(jìn)行拆卸和組裝。當(dāng)QTF兩叉間距減小時(shí),無需考慮激勵(lì)光束直徑的優(yōu)化[15]。
2.3 波導(dǎo)式QEPAS(core waveguide QEPAS)
上述文獻(xiàn)所報(bào)道的系統(tǒng)中,光源傳輸采用單一空間光傳輸模式或光纖耦合傳輸模式。采用光纖傳輸模式的QEPAS系統(tǒng)的進(jìn)一步發(fā)展受到缺少低損耗、單模光纖的限制。空間光傳輸過程中伴隨邊緣干涉效應(yīng),所產(chǎn)生的背景噪聲經(jīng)常比QTF的熱噪聲大幾個(gè)數(shù)量級(jí),降低了系統(tǒng)的檢測(cè)極限[41-42]。空心波導(dǎo)(hollow core waveguide,HCW)對(duì)中紅外單模激光是一種有效的傳輸方式[43-44],光波導(dǎo)的主要優(yōu)點(diǎn)為閾值高、損耗低、無回波反射、發(fā)散損耗小[45]。文獻(xiàn)[46]應(yīng)用量子級(jí)聯(lián)激光器結(jié)合HCW技術(shù)對(duì)SF6進(jìn)行了檢測(cè),檢測(cè)極限為50 ppt,NNEA為2.7×10?10W?cm?1?Hz?1/2,該結(jié)果刷新了QEPAS技術(shù)對(duì)氣體檢測(cè)極限的新紀(jì)錄。
2.4 倏逝波QEPAS(evanescent-wave QEPAS)
光纖倏逝波基于衰減全內(nèi)反射實(shí)現(xiàn),具有可遠(yuǎn)距離傳感、設(shè)計(jì)簡(jiǎn)單、體積小和成本低的特點(diǎn)[47]。錐形納米光纖可滿足倏逝波條件,包層厚度小且靈敏度高。將該技術(shù)應(yīng)用到QEPAS系統(tǒng)中能夠提高光聲轉(zhuǎn)換效率,錐形納米光纖穿過QTF兩叉間的縫隙,入射光將以很小的光斑半徑沿著光纖方向輻射,產(chǎn)生倏逝波場(chǎng),被錐形納米光纖附近的氣體樣品吸收,產(chǎn)生的聲壓被QTF探測(cè)。文獻(xiàn)[48]利用該技術(shù)應(yīng)用近紅外DFB激光器作用光源,對(duì)C2H2進(jìn)行檢測(cè),檢測(cè)精度為178 ppm,NNEA為1.96×10?6cm?1?W?Hz?1/2。該檢測(cè)極限可通過減小光纖半徑和優(yōu)化QTF進(jìn)一步提高[48]。有限元仿真結(jié)果表明,當(dāng)光纖直徑減小至1 μm以內(nèi),倏逝波場(chǎng)強(qiáng)度將會(huì)大幅度加強(qiáng)。而當(dāng)光纖直徑進(jìn)一步減小至0.6 μm時(shí),入射光將有80%以上轉(zhuǎn)化為倏逝波場(chǎng)強(qiáng)度,這極大地加強(qiáng)了入射光與QTF的相互作用,從而提高了光能利用率[49]。倏逝波QEPAS插入損耗低并且光學(xué)校準(zhǔn)容易,該技術(shù)的發(fā)展為實(shí)現(xiàn)開放式QEPAS技術(shù)奠定了基礎(chǔ)。
2.5 THz QEPAS (Terahertz QEPAS)
THz波段的光子能量能夠激勵(lì)氣體分子的振動(dòng)躍遷(vibrational transition,V-T)和轉(zhuǎn)動(dòng)(rotational transition,R-T),且R-T模式的振動(dòng)強(qiáng)度可達(dá)到中紅外波段V-T模式的3倍以上[50]。在過去的十年中,光子學(xué)的發(fā)展為THz波段量子級(jí)聯(lián)激光器的誕生和完善打下了堅(jiān)實(shí)的基礎(chǔ)。這種光源能夠提供功率高、輸出穩(wěn)定、波長(zhǎng)可連續(xù)改變、單模輻射的THz激勵(lì)光。文獻(xiàn)[51]利用THz QEPAS技術(shù)探測(cè)CH4氣體,檢測(cè)極限可達(dá)7 ppm。該檢測(cè)極限可與在中紅外波段測(cè)得的最佳結(jié)果相比擬[52]。
THz QEPAS檢測(cè)極限的進(jìn)一步提高依賴于THz量子級(jí)聯(lián)激光器輸出能量的增大和THz QTF性能的優(yōu)化。此外,THz QEPAS系統(tǒng)適用于分子吸收強(qiáng)度大于10?19cm/mol的氣體,如分子中包含HF、H2S、NH3、HCN、OH等基團(tuán)的氣體[15]。
綜上所述,隨著人們對(duì)QEPAS技術(shù)的研究探索,研究領(lǐng)域和研究對(duì)象也在不斷的拓寬。應(yīng)用QEPAS技術(shù)在紫外、近紅外、中紅外和太赫茲波段檢測(cè)痕量氣體的檢測(cè)極限如圖3所示[15]。等效噪聲濃度(noise equivalent concentration,NEC)正比于氣體檢測(cè)極限,其與激光功率和氣體吸收強(qiáng)度有關(guān),由于中紅外區(qū)域光源能量可選擇范圍更廣,因此,最佳檢測(cè)極限出現(xiàn)在該區(qū)域。QEPAS技術(shù)已能夠?qū)崿F(xiàn)多種有毒有害氣體高精度檢測(cè),且檢測(cè)極限在光學(xué)檢測(cè)方法中處于領(lǐng)先地位[15]。

圖3 痕量氣體檢測(cè)探測(cè)精度[39]
本文總結(jié)了QEPAS技術(shù)的基本原理和在痕量氣體檢測(cè)領(lǐng)域的研究發(fā)展。QEPAS技術(shù)的發(fā)展經(jīng)歷共軸式QTF到離軸式QTF的改進(jìn),降低了QTF兩叉之間距離對(duì)入射光直徑和共振腔內(nèi)徑的限制;激光傳導(dǎo)方式由光纖傳導(dǎo)到WC方式傳導(dǎo)的改善,應(yīng)用量子級(jí)聯(lián)激光器結(jié)合HWC型QEPAS技術(shù)檢測(cè)極限可達(dá)ppt量級(jí);倏逝波QEPAS技術(shù)的發(fā)展為QEPAS技術(shù)能夠在開放性條件下工作奠定了基礎(chǔ)和指導(dǎo)方向;THz QEPAS技術(shù)的發(fā)展為痕量氣體檢測(cè)靈敏度的進(jìn)一步提高帶來了曙光。
QEPAS系統(tǒng)檢測(cè)靈敏度與其光源能量范圍和QTF聲共振腔響應(yīng)度息息相關(guān),所以光源的發(fā)展和QTF聲共振傳感器性能的提升是QEPAS技術(shù)發(fā)展亟待解決的問題。但目前大多數(shù)研究報(bào)道中都是使用一個(gè)氣室并配合使用壓力控制器,使系統(tǒng)工作在最佳壓強(qiáng)(50~300 Torr)下以獲得最大QEPAS信號(hào)輸出。而實(shí)際痕量氣體檢測(cè)大多數(shù)要求在開放的大氣環(huán)境下(即在常溫常壓下)實(shí)現(xiàn),如何實(shí)現(xiàn)QEPAS常壓化將成為該技術(shù)研究的重要內(nèi)容。
同時(shí),反恐中爆炸氣體檢測(cè)、工業(yè)生產(chǎn)過程監(jiān)控、環(huán)境質(zhì)量監(jiān)測(cè)、醫(yī)學(xué)臨床診斷等眾多領(lǐng)域?qū)ξ⒘繗怏w檢測(cè)的迫切需要,促進(jìn)了QEPAS技術(shù)檢測(cè)向集成化、小型化、實(shí)用化方向發(fā)展。
[1] ZAYAKHANOV A, ZHAMSUEVA G, TSYDYPOV V, et al. Automated system for monitoring asmospheric pollution[J]. Meas Tech, 2008, 51: 1342-1346.
[2] MEYER P L. Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques[J]. Rev Sci Instrum, 1990, 61: 1779-1807.
[3] GEORGOULIAS A K, KIOUTSIOUKIS I, SYMEONIDIS P, et al. AMFIC web data base-asatellite system for the monitoring and forecasting of atmospheric pollution[J]. Journal of Engineering Science and Technology Review, 2008, 1: 58-61.
[4] GüLLüK T, WAGNER H E, SLEMR F. A high-frequency modulated tunable diode laser absorption spectrometer for measurements of CO2, CH4, N2O, and CO in air samples of a few cm3[J]. Rev Sci Instrum, 1997, 68: 230-239.
[5] STATHEROPOULOS M, SIANOS E, AGAPIOU A, et al. Preliminary investigation of using volatile organic compounds from human expired air, blood and urine for locating entrapped people in earthquakes[J]. J Chromatogr B, 2005, 822(1-2): 112-117.
[6] MITSUBAYASHI K, MATSUNAGA H, NISHIO G, et al. Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking[J]. Biosens Bioelectron, 2005, 20(8): 1573-1579.
[7] NAKISIMOVICH N, VOROTYNTSEV V, NIKITINA N, et al. Adsorption semiconductor sensor for diabetic ketoacidosis diagnosis[J]. Sensor Actuat B, 1996, 36: 419-421.
[8] 唐前進(jìn), 邵杰. 遠(yuǎn)距離爆炸物探測(cè)技術(shù)的研究與應(yīng)用[J].中國安防, 2009(9): 40-45. TANG Qian-jin, SHAO Jie. The research and application of remote explosive detection technology[J]. China Security & Protection, 2009(9): 40-45.
[9] PARMETER J E. The challenge of standoff explosives detection[C]//Proc Int Carnahan Conf Secur Technol. [S.l.]: [s.n.], 2005: 355-358.
[10] WEIDMANN D, KOSTEREV A A, TITTLE F K, et al. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2004, 29: 1837-1839.
[11] KERR E L, ATWOOD J G. The laser illuminated absorptivity spectrophone: a method for measurement of weak absorptivity in gases at laser wavelengths[J]. Appl Opt, 1968, 7: 915-921.
[12] HARREN F J M, REUSS J, WOLTERING E J. Photoacoustic measurements of agriculturally interesting gases and detection of C2H4below the ppb level[J]. Appl Spectrosc, 1990, 44: 1360-1368.
[13] BIJNEN F G C, REUSS J, HARREN F J M. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection[J]. Rev Sci Instrum, 1996, 67: 2914-2923.
[14] FINK T, BUESEHER S, GAEBLER R. An improved CO2laser intracavity photoacoustic spectrometer for trace gas analysis[J]. Rev Sci Instrum, 1996, 67: 4000-4004.
[15] PATIMISCO P, SCAMARCIO G, TITTEL F K, et al. Quartz-enhanced photoacoustic spectroscopy: a review[J]. Sensors-Basel, 2014, 14: 6165-6206.
[16] MIKLóS A, HESS P, MOHáSCIá, et al. Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 μm DFB diode laser[C]// Proceedings of the 10th International Conference on Photoacoustic and Photothermal Phenomena. Woodbury, NY, USA: [s.n.], 1999, 463: 126-128.
[17] KOSTEREV A A, BAKHIRKIN Y A, CURL R F, et al. Quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2002, 27(21): 1902-1904.
[18] WERLE P. Tunable diode laser absorption spectroscopy: recent findings and novel approaches[J]. Infrared Physics & Technology, 1996, 37(1): 59-66.
[19] SCHMOHL A, MIKLóS A, HESS P. Effects of adsorption-desorption processes on th response time and accuracy of photoacoustic detection of ammonia[J]. Appl Opt, 2001, 40: 2571-2578.
[20] ARNDT R. Analytical line shapes for Lorentzian signals broadened by modulation[J]. Appl Phys, 1965, 36: 2522-2524.
[21] KOSTEREV A A, TILLEL F K, SEREBRYAKOV D, et al. Applications of quartz tuning fork in spectroscopic gas sensing[J]. Rev Sci Instrum, 2005, 76: 043105:1-043105:9.
[22] LEWICKI R, WYSOCKI G, KOSTEREV A A, et al. QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm[J]. Opt Expr, 2007, 15: 7357-7366.
[23] WOJCIK M D, PHILLIPS M C, CANNON B D, et al. Gas-phase photoacoustic sensor at 8.41 μm using quartz tuning forks and amplitude-modulated quantum cascade lasers[J]. Appl Phys B, 2006, 85: 307-313.
[24] KOSTEREV A A, BUERKI P R, DONG L, et al. QEPAS detector for rapid spectral measurements[J]. Appl Phys B, 2010, 100: 173-180.
[25] WEIDMANN D, KOSTEREV A A, TITTEL F K. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2004, 29: 1837-1839.
[26] HORSTJANN M, BAKHIRKIN Y A, KOSTEREV A A, et al. Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy[J]. Appl Phys B, 2004, 79: 799-803.
[27] KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K. Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region[J]. Appl Phys B, 2005, 80: 133-138.
[28] KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K, et al. Photoacoustic phase shift as a chemically selective spectroscopic parameter[J]. Appl Phys B, 2004, 78: 673-676.
[29] TITTEL F K, WYSOCKI G, KOSTEREV A A, et al. Semiconductor laser based trace gas sensor technology: Recent advances and applications[M]//EBRAHIMZADEH M, SOROKINA I T. Mid-infrared coherent sources and applications. Houten, Netherlands: Springer, 2008: 467-493.
[30] KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K, et al. QEPAS methane sensor performance for humidified gases[J]. Appl Phys B, 2008, 92: 103-109.
[31] WEIDMANN D, KOSTEREV A A, TITTLE F K, et al. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2004, 29: 1837-1839.
[32] HORSTJANN M, BAKHIRKIN Y A, KOSTEREV A A, et al. Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy[J]. Appl Phys B, 2004, 79: 799-803.
[33] KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K. Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region[J]. Appl Phys B, 2005, 80: 133-138.
[34] WOJCIK M D, PHILLIPS M C, CANNON B D. Gas phase photoacoustic spectroscopy in the long-wave IR using quartz tuning forks and amplitude modulated quantum cascade lasers[J]. Proc SPIE, 2008, 6398, 63980S: 1- 63980S:9.
[35] LEWICKI R, WYSOCKIN G, KOSTEREV A A, et al. Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy[J]. Appl Phys B, 2007, 87: 157-162.
[36] LIU K, GUO X Y, YI H M, et al. Off-beam quartzenhanced photoacoustic spectroscopy[J]. Opt Lett, 2009, 34: 1594-1596.
[37] YI H, CHEN W, GUO X, et al. An acoustic model for microresnonator in on-beam quartz-enhanced photoacoustic spectroscopy[J]. Appl Phys B, 2012, 108: 361-367.
[38] BOTTGER S, KOEHRING M, WILLER U, et al. Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs[J]. Appl Phys B, 2013, 113: 227-232.
[39] BORRI S, PATIMISCO P, SAMPAOLO A, et al. Terahertz quartz enhanced photo-acoustic sensor[J]. Appl Phys Lett, 2013, 103: 021105:1-021105:4.
[40] BOTTGER S, KOEHRING M, WILLER U, et al. Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs[J]. Appl Phys B, 2013, 113: 227-232.
[41] SPAGNOLO V, KOSTEREV A A, DONG L, et al. NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser[J]. Appl Phys B, 2010, 100: 125-130.
[42] DONG L, SPAGNOLO V, LEWICKI R, et al. Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor[J]. Opt Expr, 2011, 19: 24037-24045.
[43] PATIMISCO P, SPAGNOLO V, VITIELLO M S, et al. Coupling external cavity mid-IR quantum cascade lasers with low loss hollow metallic/dielectric waveguides[J]. Appl Phys B, 2012, 108: 255-260.
[44] K?HRING M, WILLER U, B?TTGER S, et al. Fiber-coupled ozone sensor based on tuning fork-enhanced interferometric photoacoustic spectroscopy[J]. IEEE J Sel Top Quantum Electron, 2012, 18: 1566-1572.
[45] PATIMISCO P, SPAGNOLO V, VITIELLO M S, et al. Low-loss hollow waveguide fibers for mid-infrared quantum cascade laser sensing applications[J]. Sensors-Basel, 2013, 13: 1329-1340.
[46] SPAGNOLO V, PATIMISCO P, BORRI S, et al. Mid-infrared fiber-coupled QCL-QEPAS sensor[J]. Appl Phys B, 2013, 112: 25-33.
[47] PAUL P H, KYCHAKOFF G. Fiber-optic evanescent field absorption sensor[J]. Appl Phys Lett, 1987, 51(1): 6:12-6: 14.
[48] CAO Y, JIN W, HO L H, et al. Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers[J]. Opt Lett, 2012, 37: 214-216.
[49] CAO Y, JIN W, HO L H. Gas detection with evanescentwave quartz-enhanced photoacoustic spectroscopy[J]. Proc SPIE, 2012, 8351: 835121:1- 835121:6.
[50] FLYGARE W H. Molecular relaxation[J]. Acc Chem Res, 1968, 1: 121-127.
[51] BORRI S, PATIMISCO P, SAMPAOLO A, et al. Terahertz quartz enhanced photo-acoustic sensor[J]. Appl Phys Lett, 2013, 103: 021105:1-021105:4. SPAGNOLO V, PATIMISCO P, BORRI S, et al. Part-pertrillion level SF6detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation[J]. Opt Lett, 2012, 37: 4461-4463.
編 輯 漆 蓉
Review of Quartz Enhanced Photoacoustic Spectroscopy
WANG Ya-fei, LIU Li-xian, GAO Chun-ming, LU Ze-yu, and ZHOU Ying
(School of Optoelectronic Information, University of Electronic Science and Technology of China Chengdu 610054)
Trace gas detection technology is an important approach widely used in the field of air pollution monitoring, industrial production and national security. Quartz enhanced photoacoustic spectroscopy (QEPAS), a highlighted focus of trace gas detection technology, has the potential of toxic and harmful gas detection due to its features of strong anti-interference, small scale and high sensibility. This paper briefly summarizes the fundamentals of QEPAS technology, presents the main performance of QEPAS technology developed in the recent years, and finally discusses the prospects of QEPAS technology according to the current requirement.
normalized noise equivalent absorption coefficient; quartz enhanced photoacoustic spectroscopy (QEPAS); quartz tuning fork (QTF); trace gas detection
O436
A
10.3969/j.issn.1001-0548.2015.06.025
2014 ? 06 ? 19;
2015 ? 01 ? 12
國家自然科學(xué)基金(61379013);中央高校基本科研業(yè)務(wù)費(fèi)(ZYGX2012Z006)
王亞非(1963 ? ),男,博士,教授,主要從事場(chǎng)分析與計(jì)算、光檢測(cè)技術(shù)方面的研究.