劉曉艷,閔勇,黃大野,張薇,王開梅,萬中義,楊自文
(1.國家生物農藥工程技術研究中心,湖北省生物農藥工程研究中心,湖北省農業科學院,武漢,430064;2.湖北生物科技職業學院,園藝園林學院)
根結線蟲病害的發生與土壤微生物群落的關系研究進展
劉曉艷1,閔勇1,黃大野1,張薇2,王開梅1,萬中義1,楊自文1
(1.國家生物農藥工程技術研究中心,湖北省生物農藥工程研究中心,湖北省農業科學院,武漢,430064;2.湖北生物科技職業學院,園藝園林學院)
通過對根結線蟲病害的發生與土壤微生物群落之間的關系進行介紹,從根際微生物對根結線蟲的影響、根結線蟲對土壤微生物的作用、根際微生物區系分析方法及根結線蟲生防資源4個方面進行了綜述,探討了土壤微生物的變化影響根結線蟲病害發生的程度,通過可持續性生物防治手段減輕該蟲害的發生。
根結線蟲;根際微生物;可持續性生物防治
蔬菜根結線蟲病害是蔬菜生產中導致作物減產的很重要的病害。根結線蟲寄主廣泛,如茄果類、瓜類、豆類等蔬菜,平均產量損失30%~50%,病害嚴重時減產60%以上乃至絕收。蔬菜根結線蟲病害發生的同時經常會伴隨枯萎病、根腐病等土傳性病害的發生[1]。全世界已發現對植物造成為害的根結線蟲有3 000多種,我國發現的有南方根結線蟲(M. incognita)、北方根結線蟲(M.hapala)、花生根結線蟲(M.arenaria)、爪哇根結線蟲(M.javanica)等[2]。蔬菜根結線蟲病的發生與土壤微生物群落的變化有著非常重要的關系。
土壤中存在著各種各樣的微生物群體,它們對土壤健康以及整個生態系統的平衡都起到了關鍵的調節作用。土壤微生物中細菌的數量和種類排名第1,約占土壤微生物總量的3/4。不同種類細菌具有不同的調節作用,有的能夠降解土壤中的重金屬如鉻和銅,有的能夠降解有機質如解磷解鉀,有的能夠固定空氣中的氮元素,還有的能夠分解秸稈。除細菌以外,放線菌(抗生素的主要產生菌)的數量在土壤中排名第2,土壤的土腥味便是由放線菌產生的。排名第3的是真菌,真菌的種類很多,包括巨型真菌如食用菌,以及微型真菌如青霉,真菌也可以產生多種代謝產物。土壤中藻類和原生動物等種類較少。此外土壤微生物還是構成土壤肥力的重要因素[3]。

表1 酶與根結線蟲的關系
Orion等[4]研究了膠質對根結線蟲卵的保護作用,將卵囊及單個胞子置于土壤和膠質中,土壤中的單個胞子很快被各種微生物分解,而膠質中的單個胞子則受到保護,避免被分解;卵囊無論在土壤還是膠質中,受到微生物的破壞作用都極大降低。
根結線蟲在入侵寄主的過程中,有很多酶基因是來源于微生物,如分解植物細胞壁的β-1,4-內切葡聚糖酶,見下表1。此外可能還需要根際微生物中的一些物質來完成寄生的過程[17]。
EI-Hadad等[18]通過溫室盆栽試驗發現,一些防治線蟲病害的生物肥含有多粘芽胞桿菌(Paenibacillus polymyxa)、巨大芽胞桿菌 (Bacillus megaterium)、環狀芽胞桿菌(B.circulans)等,能夠降低根結線蟲的蟲口數量,如每1 kg土壤中能降低95.8%二齡幼蟲、63.75%雌蟲以及57.8%雄蟲。Mohamed等[19]通過接種滅過菌和不滅菌的土壤根結線蟲,發現不滅菌的土壤里根結線蟲比滅過菌的土壤少且小,根結線蟲卵的數量少了93%。PCR變性梯度凝膠電泳分析顯示,很多微生物種類附著在根結線蟲身上,從而影響了雌蟲的繁殖能力。
根際細菌對根結線蟲的作用機理目前還在研究之中。郭榮君等[20,21]針對已經報道的研究結果進行了整理,總結為3個方面:一是根際細菌能夠產生具有殺線蟲活性的物質,如揮發性的NH3和NO2,Jataia等[22]認為這些細菌易產生對根結線蟲有毒的活性物質,因此是防治線蟲生物的重要天敵;二是根際細菌能夠改變根的分泌物,從而影響根結線蟲卵的孵化,Gheysen[23]和Sikora[24]認為從根的特定部位分泌出來的分泌物是影響線蟲生活史中特定發育階段的重要因子,其會影響線蟲卵的孵化、線蟲趨向性、線蟲與寄主的識別以及在根上的寄生等;三是根際細菌能夠誘導植物產生系統性抗線蟲能力,Adam等[25]認為根際細菌能夠誘導寄主植物對根結線蟲產生系統抗性,而這種抗性發揮的作用可能遠遠大于細菌本身對線蟲的作用。
植物寄生線蟲會在根系中造成空隙,而這些空隙會影響根系中的碳轉移,從而可以養活很多微生物。線蟲的存在不會影響微生物的生物量,但會影響根系中光合產物的分配。碳的轉移對微生物的影響取決于線蟲與植物的互作以及線蟲在寄主體內的發育階段[26]。通過構建保護地根結線蟲土壤細菌和放線菌的系統發育樹,劉瑋琦等[27]分析出根結線蟲保護地土壤細菌種群主要包括放線菌門、α、β、γ變形細菌亞群、擬桿菌門等類群,其中能引起植物根癌病的根癌農桿菌所占數量較多。人工接種不同數量的根結線蟲蟲卵,黃瓜植株根際土壤微生物的數量也出現了變化,表現為隨接種數量的增加,根際土壤厭氣性細菌數量、好氣性細菌數量、細菌總數及細菌/真菌(B/F)逐漸降低;放線菌數量在接種量為2 000個/株時顯著升高,之后隨著接種量的增加逐漸降低;真菌數量卻逐漸升高;放線菌/真菌(A/F)在接種量為2 000個/株時略有升高,之后隨著接種量的增加逐漸降低[28]。根結線蟲侵染黃瓜植株導致根際土壤發生“真菌化”,顯示土壤質量下降[29]。
微生物群落多樣性是指群落中的微生物種群類型和數量、種的豐富度和均勻度、種的分布情況等。傳統的土壤微生物群落多樣性解析技術是指純培養分離法,包括平板計數法[30]、形態分析法[31]以及群落水平生理學指紋法[32]。后來,出現了多樣性評價較為客觀的生物標記法,包括磷脂脂肪酸法[33]和呼吸醌指紋法[34]。如今的現代分子生物學技術包括:(G+C)%含量法[35]、DNA復性動力學[36]、核酸雜交法[37]、DNA Microarrays[38]、DNA指紋圖譜技術[39]以及土壤宏基因組學[40]等。
目前應用土壤宏蛋白質組學技術研究植物根際生物學特性及其分子機理成為當前科學研究的熱點。Wang等[41]通過土壤蛋白質組學技術分析水稻、甘蔗、煙草等作物根際生物學特性,隨機挑取189個蛋白質,發現其中107個來源于植物、72個來源于微生物、10個來源于動物。此外利用T-RFLP技術對根際微生物群落結構進行分析,發現土壤蛋白質組學技術不能取代T-RFLP技術,兩者相互補充。Wu等[42]通過研究連作模式下地黃根際土壤蛋白質表達譜的變化,發現發生差異表達的土壤蛋白質功能涉及能量、核酸代謝、氨基酸、脅迫防御、信號傳遞、次級代謝等,這些差異蛋白在微生物與植物的相互作用中發揮著重要功能。Lin等[43]通過分析新種植與宿根甘蔗根際土壤的宏蛋白質表達譜,也發現了很多介導微生物與植物互作的關鍵蛋白。
根結線蟲生物防治資源主要指根結線蟲在自然界的天敵生物,包括捕食性線蟲、根際細菌、食線蟲真菌、專性寄生細菌、病毒、放線菌等[21]。
4.1 食線蟲菌物
食線蟲菌物是對植物寄生線蟲具有拮抗作用菌物的統稱。目前國內外報道根結線蟲食線蟲菌物約30個屬,至少79種,如淡紫擬青霉[44]和厚垣孢輪枝孢[45]等。
4.2 線蟲天敵細菌
主要是巴氏桿菌屬(Pasteuria)和根際細菌兩大類,如穿刺巴氏桿菌(Pasteuria penetrans)[46]。穿刺巴氏桿菌為專性寄生,難于人工培養,大量生產受到限制。根際細菌是指從根際分離所得,如蘇云金芽胞桿菌(Bacillus thuringiensis)[47]、解淀粉芽胞桿菌(Bacillus amyloliquefaciens)[48]、 枯草芽抱桿菌(Bacillus sublilis)[49]、熒光假單胞桿菌(Pseudomonas fluorescens)[50]、放射形土壤桿菌(Agrobacterium radiobacter)[51]等。
土壤是構成農業生態系統的主要組成部分,土壤微生物則在土壤有機質分解、養分循環、改善土壤結構、影響健康和植物演替中具有重要的作用,因此土壤微生物的變化可以作為衡量土壤生態系統是否遭到破壞的關鍵指標。而當土壤微生物群落失去平衡時,即會引起有害微生物種群占據優勢群體,導致各種病蟲害的發生,如根結線蟲病害。只有研究清楚這其中的相互關系,對癥下藥,通過篩選強勢的有益微生物,減少有害微生物的種群數量,降低根結線蟲蟲口,重新恢復土壤微生物群落的平衡,才能最終實現可持續性生物防治的最佳效果。
[1]呂令華.根際促生菌防治蔬菜根結線蟲的研究[J].蔬菜,2014(3):57-60.
[2]張春奇,李愛芳,查素娥,等.番茄根結線蟲病的研究概況[J].長江蔬菜,2003(8):41-43.
[3]Kennedy A C.Bacterial diverslty in agroeosystems[J].Agriculture Ecosystems and Environment,1999,74:65-76.
[4]Orion D,Kritzman G,Meyer S L,et al.A role of the gelatinous matrix in the resistance of root-knot nematode(Meloidogynespp.)eggs to microorganisms[J].J Nematol,2001,33(4):203-207.
[5]Goellner M,Smant G,De Boer J M,et al Isolation of beta-1,4 endoglucanase genes from Globodera tabacum and their expression during parasitism[J].J Nematol 2000,32:154-165.
[6]Smant G,Stokkermans J P,Yan Y,et al.Endogenous cellulases in animals:isolation of beta-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes[J].Proc Nat Acad Sci USA,1998,95:4 906-4 911.
[7]de Muetter J,Vanholme B,Bauw G,et al.Preparation and sequencing of secreted proteins from the pharyngeal glands of the plant parasitic nematodeHeterodera schachtii[J].Mol Plant Pathol 2001,2:297-301.
[8]Rosso M-N,Favery B,Piotte C,et al.Isolation of a cDNA encoding a beta-1,4-endoglucanase in the root-knot nematodeMeloidogyne incognitaand expression analysis during plant parasitism[J].Mol Plant Microbe Interact,1999,12:585-591.
[9]Yan Y,Smant G,Davis E.Functional screening yields a new beta-1,4-endoglucanase gene from Heterodera glycinesthat may be the product of recent gene duplication[J].Mol Plant Microbe Interact,2001,14:63-71.
[10]Gao B,Allen R,Maier T,et al.Identification of a new beta-1,4-endoglucanase gene expressed in the esophageal subventral gland cells ofHeterodera glycines[J].J Nematol,2002,34:12-15.
[11]Doyle E A,Lambert K N.Cloning and characterization of an esophageal-gland-specific pectate lyase from the rootknot nematodeMeloidogyne javanica[J].Mol Plant Microbe Interact,2002,15:549-556.
[12]De Boer J M,McDermott J P,Wang X,et al.The use of DNA microarrays for the developmental expression analysis of cDNAs from the oesophageal gland cell region of Heterodera glycines[J].Mol Plant Pathol,2002,3:261-270.
[13]Popeijus H,Overmars H A,Jones J,et al.Degradation of plant cell walls by nematode[J].Nature,2000,406:36-37.
[14]Doyle E A,Lambert K N.Meloidogyne javanica chorismate mutase 1 alters plant cell development[J].Mol Plant Microbe Interact,2003,16:123-131.
[15]Bekal S,Niblack T L,Lambert K N.A chorismate mutase from the soybean cyst nematodeHeterodera glycines shows polymorphisms that correlate with virulence[J].Mol Plant Microbe Interact,2003,16:439-446.
[16]Popeijus H,Blok V C,Cardle L,et al.Analysis of genes expressed in second stage juveniles of the potato cyst nematodesGlobodera rostochiensisandGlobodera pallida using the expressed sequence tag approach[J].Nematol,2000,2:567-574.
[17]Bird D M.Signaling between nematodes and plants[J]. Curr Opin Plant Biol,2004,7(4):372-376.
[18]EI-Hadad M E,Mustafa M I,Selim S M,et al.The nematicidaleffectofsome bacterialbiofertilizers on Meloidogyne incognitain sandy soil[J].Braz J Microbiol,2011,42(1):105-13.
[19]Adam M1,Westphal A,Hallmann J,et al.Specific microbial attachment to root knot nematodes in suppressive soil[J].Appl Environ Microbiol,2014,80(9):2 679-2 686.
[20]郭榮君,劉杏忠.應用根際細菌防治植物寄生線蟲的研究[J].中國生物防治,1996,12(3):134-137.
[21]祝明亮,李天飛,張克勤,等.根結線蟲生防資源概況及進展[J].微生物學通報,2004,31(l):100-104.
[22]Jatala P,Jensen H J.Histopathology of Beta vulgaris to individual and concomitant infections byMeloidogyne hapla andHeterodera schachtii[J].J Nematol,1976,8(4):336-341.[23]Gheysen G,Mitchum M G.How nematodes manipulate plant development pathways for infection[J].Curr Opin Plant Biol,2011,14(4):415-421.
[24]Sikora E J,Noel G R.Hatch and emergence ofHeterodera glycinesin root leachate from resistant and susceptible soybean cultivars[J].J Nematol,1996,28(4):501-509.
[25]Adam M,Heuer H,Hallmann J.Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants[J].PLoS One,2014,9(2):e90402.
[26]Poll J,Marhan S,Haase S,et al.Low amounts of herbivory by root-knot nematodes affect microbial community dynamics and carbon allocation in the rhizosphere[J].FEMS Microbiol Ecol,2007,62(3):268-279.
[27]劉瑋琦,茆振川,楊宇紅,等.保護地根結線蟲發生地土壤微生物群落多樣性的研究 [J].中國生物防治,2008(4):318-324.
[28]許華,阮維斌,高玉葆,等.根結線蟲接種對黃瓜植株根際土壤pH和微生物的影響 [J].中國生態農業學報,2010,18(5):1 041-1 045.
[29]吳林坤,林向民,林文雄.根系分泌物介導下植物-土壤-微生物互作關系研究進展與展望 [J].植物生態學報,2014,38(3):298-310.
[30]Harris R F,Sommers L E.Plate-dilution frequency technique for assay of microbial ecology[J].Appl Microbiol,1968,16(2):330-334.
[31]Kirk J L,Beaudette L A,Hart M,et al.Methods of studying soil microbial diversity[J].Journal of Microbiological Methods,2004,58(2):169-188.
[32]Garland J L,Mills A L.Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level-sole-carbon-source utilization[J].Applied and Environmental Microbiology,1991,57(8):2 351-2 359.
[33]Murata T,Takagi K,Yokoyama K.Relationship between soil bacterial community structure based on composition of fatty acid methyl esters and the amount of bacterial biomass in Japanese lowland rice fields[J].Soil Biology and Biochemistry,2002,34(6):885-888.
[34]Saitou K,Nagasaki K,Yamakawa H,et al.Linear relation between the amount of respiratory quinones and the microbial biomass in soil[J].Soil Science and Plant Nutrition,1999,45(3):775-778.
[35]Nusslein K,Tiedje J M.Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil[J].Applied and Environmental Microbiology,1999,65(8):3 622-3 626.
[36]Torsvik V,Sorheim R,,Goksoyr J.Total bacterial diversity in soil and sediment communities-a review[J].Journal of Industrial Microbiology and Biotechnology,1996,17(3): 170-178.
[37]Clegg C D,Ritz K,Griffiths B S.%G+C profiling and cross hybridisation of microbial DNA reveals great variation in below-ground community structure in UK upland grasslands[J].Applied Soil Ecology,2000,14(2):125-134.
[38]Liebner S,Harder J,Wagner D.Bacterial diversity and community structure in polygonaltundra soilsfrom Samoylov Island,Lena Delta,Siberia[J].International Microbiology,2008,11(3):195-202.
[39]Ding J,Zhang Y,Deng Y,et al.Integrated metagenomics and network analysis of soil microbial community of the forest timberline[J].Sci Rep,2015,5:7 994.
[40]Anderson P N,Hume M E,Byrd J A,et al.Evaluation of repetitive extragenic palindromic-polymerase chain reaction and denatured gradient gel electrophoresis in identifying Salmonella serotypes isolated from processed turkeys[J].Poult Sci,2010,89(6):1 293-1 300.
[41]Wang H B,Zhang Z X,Li H,et al.Characterization of metaproteomics in crop rhizospheric soil[J].J Proteome Res,2010,10:932-940.
[42]Wu L K,Wang H B,Zhang Z X,et al.Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil[J].PLoS One,2011,6,e20611.
[43]Lin W X,Wu L K,Lin S,et al.Metaproteomic analysis of ratoon sugarcane rhizospheric soil[J].BMC Microbiology,2013,13,135.
[44]陳品三,彭德良.淡紫擬青霉防治南方根結線蟲1號生理小種和花生北方根結線蟲試驗初報 [J].中國油料,1989(3):45-48.
[45]盧明科,潘滄桑,李舟.厚垣輪枝孢菌(Verticillium chlamydosporium)防治植物線蟲研究進展[J].西北農林科技大學學報,2004,32(4):103-107.
[46]Timper P.Population dynamics of Meloidogyne arenaria and Pasteuria penetrans in a long-term crop rotation study[J].J Nematol,2009,41(4):291-299.
[47]Yu Z,Xiong J,Zhou Q,et al.The diverse nematicidal properties and biocontrol efficacy ofBacillus thuringiensis Cry6A against the root-knot nematodeMeloidogyne hapla[J].J Invertebr Pathol,2014,125:73-80.
[48]Liu Z,Budiharjo A,Wang P,et al.The highly modified microcin peptide plantazolicin is associated with nematicidal activity ofBacillus amyloliquefaciensFZB42[J].Appl Microbiol Biotechnol,2013,97(23):10 081-10 090.
[49]Xia Y,Xie S,Ma X,et al.ThepurLgene ofBacillus subtilisis associated with nematicidal activity[J].FEMS Microbiol Lett,2011,322(2):99-107.
[50]Timper P,Kone D,Yin J,et al.Evaluation of an antibiotic-producing strain of Pseudomonas fluorescens for suppression of plant-parasitic nematodes[J].J Nematol.2009,41(3):234-240.
[51]El-Sherif A G,Elwakil M A.Interaction between Meloidogyne incognita andAgrobacterium tumefaciensor Fusarium oxysporumf.sp.lycopersici on tomato[J].J Nematol,1991,23(2):239-242.
Research Progress on Relationships between Occurrence of Root Knot Nematode Disease and Soil Microbial Community
LIU Xiaoyan1,MIN Yong1,HUANG Daye1,ZHANG Wei2,WANG Kaimei1,WAN Zhongyi1,YANG Ziwen1
(1.National Biopesticide Engineering Technology Research Center,Hubei Biopesticide Engineering Research Center,Hubei Academy of Agricultural Sciences,Wuhan 430064;2.Department of Horticulture,Hubei Vocational College of Biotechnology)
We introduced relationships between root knot nematode disease occurrence and soil microbial community,and summrized from four aspects,including interaction between rhizospheric microorganisms and root knot nematode,effects of root knot nematode on soil microorganisms,analysis methods of rhizospheric microflora and biocontrol resources of root knot nematode.In addition,we discussed that variation of soil microbial biomass affected occurrence degree of root knot nematode disease,ane pointed out that sustainable biological control means could reduce occurrence of root knot nematode.
Root knot nematode;Rhizospheric microorganisms;Sustainable biological control
S432.4+5
A
1001-3547(2015)24-0032-05
10.3865/j.issn.1001-3547.2015.24.014
劉曉艷(1979-),女,博士,主要從事植物病理學及生物農藥分子生物學研究,電話:027-59101919
2015-10-14