張洪映,崔 紅
(河南農業大學煙草學院,鄭州 450002)
?
煙草重要基因篇 13:
煙草腺毛發生和發育相關基因
張洪映,崔 紅*
(河南農業大學煙草學院,鄭州 450002)
摘 要:煙草(Nicotiana tabacum L.)腺毛豐富、類型多樣、分泌旺盛,對煙株抗性和煙葉香氣品質具有重要影響。對近年來煙草腺毛發生和發育、腺毛分泌物合成相關基因的研究進展進行了綜述,并展望了其在煙草葉面化學定向調控和品種改良中的應用潛力。
關鍵詞:煙草;腺毛;發育;分泌物;基因
植物表皮毛是表皮細胞的特化結構。作為植物與環境間的天然屏障,它具有防止水分蒸發、緩沖日光直射、抵抗病原菌、昆蟲和極端溫度等生理作用[1-2]。煙草(Nicotiana tabacum L.)全株密布表皮毛,形態結構多種多樣,由一個至多個細胞組成。依據分泌腺的有無,可分為保護毛(無腺性細胞)和腺毛(有腺性細胞)。一般來說,只有腺毛具有分泌能力,其分泌物構成了煙草葉面化學的重要組成部分[3-4]。煙草葉片腺毛的密度、類型及分泌物積累與煙株抗性和煙葉香氣品質密切相關[5-6]。因此,煙草腺毛發生及物質代謝調控對研究煙草逆境脅迫和香氣品質具有重要意義。
擬南芥的表皮毛是一種特化的、無腺體的單細胞,可作為一種很好的模式系統來研究表皮毛細胞的分化過程。目前,已經分離到的表皮毛突變體有70多個,包括有無表皮毛、表皮毛簇生、減少、扭曲和玻璃狀等6種突變類型,涉及30多個基因[7-8]。其中3種轉錄因子對于表皮毛的發育啟動是必需的:GL1編碼一種R2R3 MYB類轉錄因子,GL3和EGL3(GL3的增強子)編碼一種bHLH型轉錄因子,TTG1編碼一種含有WD40結構域的蛋白,是一種轉錄共調節子[9,10]。免疫共沉淀結果表明,GL1、GL3和TTG1能夠形成蛋白復合體,該轉錄調控的復合體能夠決定表皮細胞的命運和模式,進而調控表皮毛的發生和發育[11]。
GL1/GL3/TTG1轉錄調控復合體是在原初細胞間發揮相互作用的[12]。研究發現GL3/EGL3直接調控下游的GL2(含有HD2-ZIP結構的轉錄因子),GL1直接調控TTG2(WRKY轉錄因子),而GL1和TTG1之間不存在互作[13-14]。在這個轉錄調控模型中,GL1、GL3和TTG1等作為正向調控因子促進表皮毛發生,同時還存在一些負調控因子,例如一些部分同源的MYB蛋白:CPC、TRY以及TRY的增強子 CPC1(ETC1)和 CPC2 (ETC2)[15-17]。其中CPC和TRY是2個重要的負調節基因,屬于表皮毛特異表達基因,在嫩葉原基和正在發育的表皮毛細胞中表達。酵母的互作實驗表明,CPC或TRY可以通過競爭與bHLH作用進而阻斷“激活的”GL1/GL3/TTG1復合體的功能[18]。粒子轟擊實驗發現,GL1、GL2和GL3均不能在相鄰細胞間移動,而CPC、TRY和TTG1可以移動到相鄰細胞[10,19-20]。這些證據表明,GL1/GL3/TTG1轉錄調控復合體能夠調控表皮毛的發生。
擬南芥葉片表皮毛的發生和發育受到嚴格的時空調控,不同的表皮毛發生和發育階段涉及不同的基因[7-15,21]:影響表皮毛發生及排布的基因包括GL1、GL2、GL3、EGL3、TTG1、MYB23、CPC、TRY、ETC1、ETC2和SAD2;影響表皮毛核內復制的基因包括CPR5、ICK/KRP、HYP6、KAK、RHL2、SIM和SPY;影響表皮毛分支形成的基因包括AN、FRC、STI、TFCC、TFCA和ZWI;影響表皮毛分支生長方向的基因包括BRICK1、CRK、DIS1、DIS2、GRL、KLK、ROP2和WRM。棉花纖維作為一種與單細胞表皮毛類似的結構,其分子調控機制與擬南芥表皮毛相似。
2.1 煙草腺毛發生和發育相關基因
根據微管植物的分類系統,擬南芥和棉花屬于薔薇類,金魚草、番茄和煙草屬于菊類。煙草的腺毛結構不同于擬南芥表皮毛,屬于多細胞結構,由1個基細胞、1~5個柄細胞和1~12頭細胞組成。組織結構的差異決定腺毛的分子遺傳機制具有其特異性。早期的遺傳學研究發現,分泌型腺毛的出現由單一位點的等位基因控制。在純合顯性(TeTe)和雜合基因(Tete)存在時表現為分泌型腺毛,純合隱性時為非分泌型腺毛[22]。Burk等報道有腺型腺毛的出現受3個等位基因控制[23]。目前這些基因的信息尚不清楚。
目前的研究表明,煙草腺毛發生機制與擬南芥有所不同,雖然都受bHLH-WD40調控,但涉及的MYB基因差異很大[24]。有研究發現,煙草自身的R2R3 MYB類轉錄因子GL1過表達后并不能改變煙草表皮毛的表型,但將從金魚草中分離出來的R2R3 MYB類轉錄因子MIXTA和MIXTA LIKE 1,分別在煙草中過表達時,均能導致表皮毛增多,說明煙草中存在MIXTA和MIXTA LIKE 1同源基因,能參與表皮毛發生調控[25-26]。生物信息學分析發現,MIXTA和MIXTA LIKE 1存在幾乎完全相同的結合結構域,但都不存在與bHLH互作的保守結構域,表明煙草腺毛的形成可能不受MYB-bHLH-WD40蛋白復合體的調控[27]。煙草TTG1和TTG2基因均可調控植物防衛反應信號的傳導,但對腺毛發生和發育的影響未見報道[28-29]。
番茄Woolly (Wo)基因與擬南芥中調控表皮分化的PDF2基因具有73%同源性,是番茄多細胞表皮毛形成的關鍵基因,能夠與細胞周期相關基因SlCycB2互作,從而促使細胞從G2期向M期的轉換,最終促進多細胞表皮毛的形成[30]。Wo基因的等位突變體LA1531(WoV)存在2個位點的變異(異亮氨酸-692→精氨酸,天冬氨酸-695→酪氨酸),導致腺毛數量顯著增加。在煙草中表達WoV后,整個煙株密布表皮毛,但會導致植株矮小、生長緩慢和花發育畸形。轉錄組分析結果表明,WoV基因的表達會改變一些重要的代謝途徑,包括脂肪酸代謝、氨基酸的合成與代謝,以及植物激素信號傳遞途徑等[31]。
2.2 煙草腺毛分泌物合成基因
煙草腺毛是煙草香氣物質合成的主要場所。煙草腺毛分泌物中所積累的雙萜烯類(西柏烷類和賴百當類)和糖酯的生物合成主要發生在可分泌腺毛的腺頭細胞中。將煙草腺毛cDNA文庫隨機測序獲得的EST序列點制腺毛cDNA芯片,利用該芯片對煙草 K326腺毛和去腺毛葉片基因表達譜進行比較分析,獲得207個腺毛優勢表達基因,這些基因多與類萜代謝、生物堿代謝、苯丙烷代謝及防御反應相關。其中萜類環化酶、細胞色素 P450加氧酶基因和葉面抗性蛋白基因(T-phylloplanin)均在腺毛特異表達[32]
研究表明,西柏烷二萜的合成反應分為兩步:第一步,香葉基香葉基焦磷酸(geranylgeranyl diphosphate,GGPP0在植物質體代謝途徑中的西柏三烯醇合酶(cembratrienol synthase,CBTS)的催化作用下,發生環化反應,形成α-和β-CBT-ol[5];第二步,CBT-ol在細胞色素 CYPP450加氧酶(cytochrome P450 hydroxylase,CYP450)的催化作用下,第 6位碳發生羥化反應形成 α-和 β-CBT-diol[33]。通過對CBTS 的候選 cDNA 序列進行的基因沉默處理后的轉基因鑒定,在轉基因煙草中發現一些西柏烷二萜含量極低的煙株腺毛中都具有CYC-1 基因缺失的mRNA片段,說明該基因編碼了CBTS,且在西柏烷二萜合成中具有重要作用[34]。有研究表明,在煙草中負責催化CBT-ol發生羥化反應形成CBT-diol 的羥化酶屬于CYP450酶蛋白家族,其編碼基因為CYP71D16,抑制該基因表達會增加CBT-ol的含量,阻止CBT-diol的合成,而且植株的抗蟲性得到了提高[33,35]。
賴百當類雙萜的合成也是通過GGPP發生環化作用而形成的[36]:第一步,GGPP在柯巴基焦磷酸合酶(copalyl diphosphate synthases,CPSs)的作用下形成 8-羥基-柯巴基焦磷酸(8-α-hydroxycopalyl diphosphate,8-OH-CPP)。第二步,8-OHCPP在貝殼杉烯合成酶(kaurene synthase,KS)的催化下轉變為順-冷杉醇或類賴百當二醇。目前的研究發現[37],順-冷杉醇生物合成途徑中的關鍵基因分別為NtCPS2和NtABS (KS-like),兩個基因均在煙草腺毛特異表達。
煙草腺毛的腺頭細胞能直接分泌糖酯,在葉片上形成類樹脂物質。Choi研究室進行煙草的腺毛特異基因的轉錄組分析發現,部分脂轉移蛋白(lipid transfer protein,LTP)基因在煙草腺毛特異或優勢表達[38]。該小組首次克隆4個NtLTP基因,研究發現NtLTP1在長腺毛中特異表達,與腺頭細胞的酯類和蠟質分泌、以及蚜蟲抗性密切相關[39]。
腺毛對于煙草香氣品質和抗性具有重要作用,不同煙草品種腺毛類型、結構、物質代謝及分泌能力各不相同,因而賦予了各自不同的抗性和風味特征。目前,對煙葉腺毛的研究主要集中在形態學觀察和分泌物成分鑒定方面,對于腺毛發生和發育的分子機制和腺毛分泌物的生物代謝途徑知之甚少,使得煙草科技工作者無法根據栽培和烘烤需要對腺毛進行遺傳改良。隨著煙草全基因組測序的完成和功能基因組學的開展,煙草腺毛發生和發育、物質代謝和分泌的分子機制將逐步被闡明,從而奠定煙草葉面化學定向改良的理論基礎。
參考文獻
[1] Johnson H B. Plant pubescence∶ an ecological perspective[J]. Bot Rev,1975,41(3)∶ 233-258.
[2] Mauricio R,Rausher M D. Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense[J]. Evolution,1997,51(5)∶ 1435-1444.
[3] Goodspeed T H. The genus Nicotiana[J]. Chron Bot,1954,16∶ 109-121.
[4] Tanaka M. Leaf hairs in Nicotiana[J]. Hatano Exp Sta Special Bull,1955,6∶ 1-22.
[5] Guo Z,Wagner G J. Biosynthesis of cembratrienols in cell-free extracts from trichomes of Nicotiana tabacum[J]. Plant Sci,1995,110(1)∶ 1-10.
[6] Guo Z H,Serverson R F,Wagner G J. Biosynthesis of the diterpene cis-abienol in cell-free extracts of tobacco trichomes[J]. Arch Biochem Biophys,1994,308(1)∶103-108.
[7] Hulskamp M,Misra S,Jurgens G. Genetic dissection of trichome cell development in Arabidopsis[J]. Cell,1994,76(3)∶ 555-566.
[8] Larkin J C,Oppenheimer D G,Lloyd A M,et al. Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development[J]. Plant Cell,1994,6(8)∶ 1065-1076.
[9] Szymanski D B,Jilk R A,Pollock S M,et al. Control of GL2 expression in Arabidopsis leaves and trichomes[J].Development,1998,125(7)∶ 1161-1171.
[10] Szymanski D B,Lloyd A M,Marks M D. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis[J]. Trends Plant Sci,2000,5(5)∶ 214-219.
[11] Larkin J C,Brown M L,Schiefelbein J. How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis[J]. Annu Rev Plant Biol,2003,54∶ 403-430.
[12] Payne C T,Zhang F,Lloyd A M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1[J]. Genetics,2000,156(3)∶ 1349-1362.
[13] Morohashi K,Zhao M,Yang M,et al. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events[J]. Plant Physiol,2007,145(3)∶ 736-746.
[14] Ishida T,Hattori S,Sano R,et al. Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation[J]. Plant Cell,2007,19(8)∶2531-2543.
[15] Schellmann S,Hulskamp M. Epidermal differentiation∶trichomes in Arabidopsis as a model system[J]. Int J Dev Biol,2005,49(5-6)∶ 579-584.
[16] Kirik V,Grini P E,Mathur J,et al. The Arabidopsis TUBULIN-FOLDING COFACTOR A gene is involved in the control of the alpha/beta-tubulin monomer balance[J]. Plant Cell,2002,14(9)∶ 2265-2276.
[17] Kirik V,Simon M,Huelskamp M,et al. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis[J]. Dev Biol,2004,268(2)∶ 506-513.
[18] Esch J J,Chen M,Sanders M,et al. A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis[J]. Development,2003,130(24)∶ 5885-5894.
[19] Bouyer D,Geier F,Kragler F,et al. Two-dimensional patterning by a trapping/depletion mechanism∶ the role of TTG1 and GL3 in Arabidopsis trichome formation[J]. PLoS Biol,2008,6(6)∶ e141.
[20] Schellmann S,Schnittger A,Kirik V,et al. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis[J]. EMBO J,2002,21(19)∶ 5036-5046.
[21] Marks M D. Molecular genetic analysis of trichome development in Arabidopsis[J]. Annu Rev Plant Physiol Plant Mol Biol,1997,48∶ 137-163.
[22] Nielson M T,Jones G A,Collins G B. Inheritance pattern for secreting and nonsecreting glandular trichomes in tobacco[J]. Crop Sci,1982,22(5)∶ 1051-1055.
[23] Burk L G,Chaplin J F,Jackson D M,et al. Inheritance of the glandless leaf trichome trait in Nicotiana tabacum L[J]. Tob Sci,1982,26∶ 51-53.
[24] Glover B J,Perez-Rodriguez M,Martin C. Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor[J]. Development,1998,125(17)∶ 3497-3508.
[25] Payne T,Clement J,Arnold D,et al. Heterologous myb genes distinct from GL1 enhance trichome production when overexpressed in Nicotiana tabacum[J]. Development,1999,126(4)∶ 671-682.
[26] Perez-Rodriguez M,Jaffe F W,Butelli E,et al. Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers[J]. Development,2005,132(2)∶ 359-370.
[27] Serna L. A network of interacting factors triggering different fates[J]. Plant Cell,2004,16(9)∶ 2258-2263.
[28] Wang Y P,Liu R X,Chen L,et al. Nicotiana tabacum TTG1 contributes to ParA1-induced signalling and cell death in leaf trichomes[J]. J Cell Sci,2009,122(Pt 15)∶2673-2685.
[29] Zhu Q,Li B Y,Mu S Y,et al. TTG2-regulated development is related to expression of putative AUXIN RESPONSE FACTOR genes in tobacco[J]. BMC Genomics,2013,14∶ 806.
[30] Yang C X,Li H X,Zhang J H,et al. A regulatory gene induces trichome formation and embryo lethality in tomato[J]. Proc Natl Acad Sci USA,2011,108(29)∶11836-11841.
[31] Yang C X,Gao Y N,Gao S H,et al. Transcriptome profile analysis of cell proliferation molecular processes during multicellular trichome formation induced by tomato Wov gene in tobacco[J]. BMC Genomics,2015,16(1)∶ 868.
[32] Cui H,Zhang S T,Yang H J,et al. Gene expression profile analysis of tobacco leaf trichomes[J]. BMC Plant Biol,2011,11∶ 76.
[33] Wang E,Wang R,DeParasis J,et al. Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance[J]. Nat Biotechnol,2001,19(4)∶ 371-374.
[34] Wang E,Wagner G J. Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing[J]. Planta,2003,216(4)∶ 686-691.
[35] Ennajdaoui H,Vachon G,Giacalone C,et al. Trichome specific expression of the tobacco (Nicotiana sylvestris)cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions[J]. Plant Mol Biol,2010,73(6)∶ 673-685.
[36] Peters R J. Two rings in them all∶ the labdane-related diterpenoids[J]. Nat Prod Rep,2010,27(11)∶ 1521-1530.
[37] Sallaud C,Giacalone C,Topfer R,et al. Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes[J]. Plant J,2012,72(1)∶1-17.
[38] Harada E,Kim J A,Meyer A J,et al. Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses[J]. Plant Cell Physiol,2010,51(10)∶ 1627-1637.
[39] Choi Y E,Lim S,Kim H J,et al. Tobacco NtLTP1,a glandular-specific lipid transfer protein,is required for lipid secretion from glandular trichomes[J]. Plant J,2012,70(3)∶ 480-491.
Advances in Molecular Mechanism of Tobacco Glandular Trichome Development
ZHANG Hongying,CUI Hong*
(College of Tobacco,Henan Agricultural University,Zhengzhou 450002,China)
Abstract:Tobacco (Nicotiana tabacum L.) is densely covered with various types of glandular trichomes,which secrete a wide range of natural products. Tobacco glandular trichomes play important roles in stress responses and aroma components. Recently,significant progress has been obtained about the molecular mechanism of tobacco glandular trichome development. The paper reviews the current research progress on the tobacco genes involved in trichome development and trichome secretion synthesis. It provided useful information for the molecular regulation of trichome secretions and variety improvement.
Keywords:tobacco;glandular trichome;development;secretion;gene
中圖分類號:S572.03
文章編號:1007-5119(2016)01-0097-04
DOI:10.13496/j.issn.1007-5119.2016.01.017
基金項目:中國煙草總公司基因組重大專項項目[110201301005(JY-05),110201401003(JY-03)]
作者簡介:張洪映(1982-),講師,主要從事煙草腺毛分子調控研究。E-mail:zhangying198215@163.com*通信作者,E-mail∶ cuihonger_13@163.com
收稿日期:2016-02-23