?
一道帶電小球問題的簡潔解法
■張郁林
在一堂物理習題課中,有同學提出了一個關于帶電小球的問題,我經過思考給出了相對簡潔的回答。問題是這樣的:

圖1
如圖1,兩個小球A、B所帶的電荷量分別為q1、q2(同種電荷),其質量分別為m1、m2,并且小球在同一水平面上,已知兩個小球相碰后電荷重新分布(不一定均勻,兩小球不要求相同)。求兩個小球依然位于同一水平面上的條件。
解:設接觸后l1、l2與豎直線夾角為α′、β′,A、B電荷的分布為q1′、q2′。
由力平衡得:





cosα=acosβ。
(1)
sinα=bsinβ。
(2)
(1)2+(2)2得a2cos2β+b2sin2β=1。
同理可得:a2cos2β′+b2sin2β′=1。


圖2
由圖2可以直觀看出(也可以嚴格證明),圓和橢圓在第一象限至多有一個交點,所以必有:



從上面的結果可以看出,小球相碰后仍處于同一水平線上的充要條件是兩小球電荷分布不變(前者)或兩小球電荷量互換(后者)。特別地,若兩小球完全相同,即碰撞后電荷平均分布,則兩球原來的電荷量必定相等。
附錄:
下面簡要給出l1=l2時的討論和圓與橢圓在第一象限至多有一個交點的嚴格證明。


作者單位:山東日照一中高二Ⅲ部8班