王士強 趙海紅 蕭長亮 趙黎明 顧春梅 那永光 解保勝 程式華
(1沈陽農業大學 農學院, 沈陽 110161;2中國水稻研究所 水稻生物學國家重點實驗室, 杭州 310006;3黑龍江省農墾科學院 水稻研究所, 黑龍江 佳木斯 154007;4黑龍江省農業科學院佳木斯分院, 黑龍江 佳木斯 154007;*通訊聯系人, E-mail: shcheng@mail.hz.zj.cn)
孕穗期冷水脅迫對寒地水稻干物質生產的影響
王士強1,2,3趙海紅4蕭長亮3趙黎明3顧春梅3那永光3解保勝3程式華1,2,*
(1沈陽農業大學 農學院, 沈陽 110161;2中國水稻研究所 水稻生物學國家重點實驗室, 杭州 310006;3黑龍江省農墾科學院 水稻研究所, 黑龍江 佳木斯 154007;4黑龍江省農業科學院佳木斯分院, 黑龍江 佳木斯 154007;*通訊聯系人, E-mail: shcheng@mail.hz.zj.cn)
王士強, 趙海紅, 蕭長亮,等. 孕穗期冷水脅迫對寒地水稻干物質生產的影響. 中國水稻科學, 2016, 30(3): 313-322.
摘要:以黑龍江省30份主栽水稻品種或品系為試材,在孕穗期設置17℃冷水灌溉處理(20 d),以常規栽培管理為對照,分析冷水脅迫對水稻干物質生產的影響。結果表明,冷水脅迫導致所有試材每穴實粒數、結實率、千粒重和產量下降,并根據相對結實率將試材耐冷性分為1、3、5、7和9級,以7和9級最多,1級最少,分別占總材料的30%和10%。在冷水處理下,全部材料抽穗期至成熟期干物質積累量及比例、群體生長率、凈同化率、粒葉比、收獲指數、葉面積指數、劍葉葉基角、劍葉和倒2葉與倒3葉披垂度均下降,但高效葉面積率增加。相關分析表明,冷水處理的相對結實率與收獲指數(r=0.96**)、產量(r=0.91**)、粒葉比(r=0.84**)和干物質積累量(r=0.48**)的冷水反應指數(CRI)呈極顯著正相關,與群體生長率(r=0.44*)、凈同化率(r=0.44*)和干物質積累比例(r=0.43*)的CRI顯著正相關。綜上,孕穗期冷水脅迫對水稻干物質生產的影響在品種間存在很大差異,在冷水脅迫下耐冷性極強品種(系)干物質積累量及比例、群體生長率、凈同化率、粒葉比和收獲指數對冷水反應遲鈍,這是耐冷性極強品種(系)保持較高產量的重要形態特征和生理原因。
關鍵詞:寒地水稻; 產量; 相對結實率; 冷水脅迫; 干物質生產
溫度是影響作物生長發育和產量的重要環境因素,在全球氣候變暖的大趨勢下,近年來氣候變化異常,極端低溫天氣頻繁出現,尤其寒地稻作區特殊的地理位置,冷害更加嚴重。水稻原產于熱帶亞熱帶地區,是喜溫作物,對低溫十分敏感,在水稻生長發育過程中,低溫會導致生長遲緩、分蘗減少[1],在孕穗期若遇上低溫冷害,枝梗及穎花分化不良,每穗粒數減少,結實率大幅下降,容易造成水稻減產,按平均計算,低溫年的產量僅為正常年的50%~80%[2]。同時,溫度變化直接影響光合產物[3]、呼吸作用及碳水化合物的運轉[4],從而影響作物產量。因此,解析孕穗期冷水脅迫對水稻產量構成與干物質生產特性的影響, 對培育耐低溫水稻品種以保障我國糧食高產穩產具有重要現實意義。目前對于水稻的耐冷性研究多集中于產量構成、冷害監測、生理機制、鑒定、代謝物圖譜、基因等多方面[1, 5-9],且在低溫逆境下關于水稻干物質生產特性的研究報道也主要集中在低溫下葉面積、秧苗、葉片干質量和根干質量、籽粒干物質積累等[10-12]方面,而在北方寒地稻作區孕穗期低溫脅迫下,以相對結實率進行耐冷性分級,并對各耐冷性級別干物質生產特性進行比較分析則鮮見報道。因此,本研究以當地主栽的30個粳稻品種和苗頭品系為試驗材料,在相同施肥和管理措施下,設置孕穗期平均17℃的冷水脅迫(20 d)處理,以常規栽培管理為對照,對產量及其構成因素、抽穗期干物質生產與冠層結構、水稻后期干物質生產與輸出特征方面進行了系統的比較研究,以明確孕穗期冷水脅迫下寒地水稻相對結實率與干物質生產的關系,進而為寒地水稻高產、高效栽培提供理論和技術支撐。
1材料與方法
1.1試驗材料
試驗選用黑龍江省30個品種(系)作為供試材料,并于2013年和2014年在黑龍江省農墾科學院徐一戎水稻科技園區耐冷鑒定試驗田進行。 試驗地土壤為草甸白漿土,0~20 cm土層pH為6.2,含堿解氮105.28 mg/kg, 有效磷21.2 mg/kg,速效鉀111.8 mg/kg,有機質38.35 g/kg(表1)。
1.2試驗設計
試驗采用隨機區組設計,其中冷水處理采用恒溫冷水灌溉法,7月1日品種(系)進入減數分裂期開始,于8:00-16:00用(17±1)℃冷水持續處理20 d,水深25 cm,同熟期材料均用隔水板分開,單排單灌,對照區不隔離。17℃左右的冷水為地下井水(出水口水溫8.3℃左右)與曬水池中的水(2013年和2014年分別為22.4℃左右和23.0℃左右)混合形成,冷水處理期間每天6:00和17:30測量各冷水處理區水溫(維持在16℃~18℃)。正常灌溉處理(CK):在冷水處理期間(2013年7月4日-8月14日和2014年7月1日—8月1日),室外晝、夜平均氣溫分別為17.50℃~27.69℃(2013年)和18.16℃~28.48℃(2014年)(圖1),供試品種(系)未受到持續低溫影響,可作為對照。
于4月12日播種,旱育中苗,每盤播芽谷100 g,5月20日插秧,移栽葉齡3.5 葉左右,插秧規格30 cm×12 cm,每穴4苗,每處理占地面積5.4 m2,3次重復,整個生育期均用正常水溫灌溉。孕穗期耐冷性評價指標參照鄒德堂等[13]的方法并加以改進,以相對結實率進行耐冷性分級:1級,結實率≥80%,耐冷性極強(HR);3級,80%>結實率≥60%,耐冷性強(R);5級:60%>結實率≥40%,耐冷性中等(M);7級:40%>結實率≥20%,耐冷性弱(S);9級:結實率<20%,耐冷性極弱(HS)。相對結實率(%)=處理區結實率/對照區結實率×100。施肥水平為mN∶mP2O5∶mK2O=2∶1∶1,尿素250 kg/hm2,N按m基∶m蘗∶m調∶m穗=4∶3∶1∶2比例施入,基肥在插秧前施入,分蘗肥在4.5~5.0葉施入,調節肥在倒5葉期施入,穗肥在倒2葉前期施入,磷酸二銨全部基施,氯化鉀按m基∶m穗=1∶1比例施入。整個生育期水、病、蟲、草正常管理。
1.3樣品采集與測定
1.3.1葉面積和干物質積累
于抽穗期和蠟熟期進行取樣分析,對每小區調查單位面積莖蘗數,算出每穴平均值,按照平均數每小區各取代表性植株3穴,3次重復,用于植株分析,方格法測定植株葉面積[14]。將以上所有樣品于105℃下殺青30 min,80℃烘箱烘48 h至恒重,測定干物質質量。
表1供試水稻品種(系)耐冷性分級
Table 1. Grade of tolerance to chilling of rice cultivars used in this study.

耐冷性級別Gradeoftolerancetochilling品種(系)Variety(Line)相對結實率Relativeseed-settingrate/%20132014生育期Growthduration/d來源Origin極強HR龍粳25Longjing25 80.7880.38130黑龍江省農業科學院HLJAAS空育131Kongyu131 81.8482.02127黑龍江省農墾科學院HLJALRS東農428Dongnong428 85.2884.09133東北農業大學NAU強R龍粳26Longjing26 79.4179.92126黑龍江省農業科學院HLJAAS保糯1號Baonuo1 79.1978.28132^134黑龍江省農墾科學院HLJALRS龍稻8號Longdao8 78.0669.83135黑龍江省農業科學院HLJAAS墾稻10Kendao10 66.9166.50134^136黑龍江省農墾科學院HLJALRS東農427Dongnong427 79.4176.90135東北農業大學NAU中等M墾稻9號Kendao9 44.5744.03125黑龍江省農墾科學院HLJALRS墾稻19Kendao19 41.4741.06125黑龍江省農墾科學院HLJALRS墾稻20Kendao20 46.2641.25127黑龍江省農墾科學院HLJALRS龍粳29Longjing29 48.2847.48127黑龍江省農業科學院HLJAAS龍粳20Longjing20 53.1752.62125^130黑龍江省農業科學院HLJAAS龍粳31Longjing31 56.1755.20130黑龍江省農業科學院HLJAAS墾稻25Kendao25 46.5241.09132黑龍江省農墾科學院HLJALRS龍粳37Longjing37 54.7453.55125黑龍江省農業科學院HLJAAS龍粳21Longjing21 53.4849.89126^132黑龍江省農業科學院HLJAAS弱S龍粳36Longjing36 27.9826.83130黑龍江省農業科學院HLJAAS墾稻17Kendao17 28.1724.70127^129黑龍江省農墾科學院HLJALRS墾系017Kenxi017 28.2827.89133黑龍江省農墾科學院HLJALRS墾粳2號Kenjing2 33.6333.69133黑龍江八一農墾大學HLJBYAU墾稻12Kendao12 37.0933.85130^132黑龍江省農墾科學院HLJALRS墾稻23Kendao23 39.0037.51132黑龍江省農墾科學院HLJALRS墾粳5號Kenjing5 30.0625.61134黑龍江八一農墾大學HLJBYAU龍稻12Longdao12 36.0134.46134黑龍江省農業科學院HLJAAS龍粳27Longjing27 33.1131.98127黑龍江省農業科學院HLJAAS極弱HS墾稻26Kendao26 19.6518.04126黑龍江省農墾科學院HLJALRS墾糯1號Kennuo1 14.4614.18132^134黑龍江省農墾科學院HLJALRS龍稻10Longdao10 12.1111.44135黑龍江省農業科學院HLJAAS墾鑒稻6號Kenjiandao6 8.277.98127^129黑龍江省農墾科學院HLJALRS
HLJAAS, Heilongjiang Academy of Agricultural Sciences; HLJALRS, Heilongjing Academy of Land Reclamation Sciences; NAU, Northeast Agriclutural University; HLJBYAU, Heilongjiang Bayi Agriclutural University. HR, Highly resistant; R, Resistant; M, Moderately resistant; S, Sensitive; HS, Highly sensitive.

DAT2013, Day average temperature in 2013; DAT2014, Day average temperature in 2014; NAT2013, Night average temperature in 2013; NAT2014, Night average temperature in 2014.
圖1黑龍江佳木斯7月1日至8月4日的氣溫變化(2013和2014年)
Fig.1. Changes in air temperature from July 1 to August 4 in Jiamusi, Heilongjiang Province (2013 and 2014).
1.3.2水稻的產量及其構成要素
每小區調查1m2收獲穗數,選擇有代表性的植株,根據平均值每小區取3穴,3次重復,調查每穴粒數、粒重、結實率、千粒重等指標,由產量構成因素計算理論產量。
1.3.3株型性狀
于抽穗期取30株分別測定上3葉葉基角(葉片基部的延長線與莖稈延長線的夾角)及葉開角(葉枕至葉尖的連線與莖稈的夾角)。計算披垂度(葉開角-葉基角)。
1.4數據計算和統計分析
莖鞘物質輸出率(%)=(抽穗期莖鞘干物質質量-成熟期莖鞘干物質質量)/抽穗期莖鞘干物質質量×100;莖鞘物質轉化率(%)=(抽穗期莖鞘干物質質量-成熟期莖鞘干物質質量)/成熟期籽粒干物質質量×100;高效葉面積率(%)=(上3葉葉面積/全葉面積)×100;粒葉比(粒·cm-2)=總實粒數/抽穗期葉面積;群體生長率(g·m-2d-1)=(W2-Wl)/(t2-t1), 式中,W1和W2為前后兩次測定的干物質質量,t1和t2為前后兩次測定的時間(d);凈同化率(g·m-2d-1)=[(ln LAI2-ln LAI1)/(LAI2-LAI1)]×[(W2-W1)/(t2-t1)] ,式中,LAI1和LAI2為前后兩次測定的葉面積指數,t1和t2為前后兩次測定的時間,W1和W2為前后兩次測定的干物質質量;葉面積衰減率(d-1)=(LAI2-LAI1)/(t2-t1),式中LAI1和LAI2為前后兩次測定的葉面積指數,t1和t2為前后兩次測定的時間(d);冷水反應指數(CRI)=(冷水脅迫下性狀值/自然條件下性狀值)×100%。2年數據趨勢基本一致,文中數據以2014年為例。
使用 Microsoft Excel 2003 整理數據和作圖,采用 DPS 7.05數據處理系統,進行顯著性測定和相關分析。
2結果與分析
2.1冷水脅迫下水稻產量、產量構成及分類
以相對結實率(表1)對30份水稻材料進行孕穗期耐冷性分級。材料間相對結實率差異較大,變幅為7.98%~84.09%,變異系數為49.78%,其中5和7級材料最多,均為9份,均占總材料的30%;1級材料包括龍粳25、空育131和東農428,僅占總材料的10%;3級材料為5份,占總材料的17%;墾鑒稻6號等4個材料為9級。
表2表明,冷水處理下,所有材料每穴實粒數、結實率、千粒重和每穴產量均下降,但1、3、5、7和9級材料的每穴實粒數、結實率、千粒重和每穴產量變化存在差異;每穴實粒數、結實率和每穴產量表現為HR>R>M>S>HS,而千粒重表現為R>HR>M>S>HS;其中1、3、5、7和9級處理的結實率和每穴產量與對照間差異均達極顯著水平,每穴實粒數與對照間差異達極顯著或顯著水平。從CRI值可知,每穴實粒數、結實率、千粒重和每穴產量CRI值表現為HR>R>M>S>HS,且每穴實粒數、結實率和每穴產量CRI值均小于千粒重CRI值。說明孕穗期冷水脅迫下,材料耐冷性越弱,每穴實粒數、結實率、千粒重和每穴產量變化越大,每穴實粒數、結實率和每穴產量比千粒重對冷水脅迫越敏感。
2.2 冷水脅迫下不同基因型水稻抽穗期干物質生產與冠層結構的差異
表3表明,冷水處理材料的粒葉比、上3葉和全葉葉面積指數均下降,而高效葉面積率增加,但1、3、5、7和9級材料的粒葉比、高效葉面積率、上3葉和全葉葉面積指數變化不同;粒葉比表現為HR>R>M>S>HS,而1、3、5、7和9級材料高效葉面積率、上3葉和全葉葉面積指數規律不明顯;其中,3、5、7和9級材料處理的粒葉比,3、5和7級材料處理的高效葉面積率,1、5和7級材料處理的全葉葉面積指數與對照差異達顯著或極顯著水平。從CRI值可以看出,粒葉比CRI 值表現為HR>R>M>S>HS;全葉葉面積指數CRI值均小于90%,高效葉面積率CRI值均大于110%,而上3葉葉面積指數CRI值為93.51%~99.56%。說明材料耐冷性越弱,粒葉比對孕穗期冷水脅迫越敏感;冷水脅迫下,全葉葉面積指數和高效葉面積率的變化大于上3葉葉面積指數。
從表4可知,冷水處理材料的劍葉葉基角與劍葉、倒2和倒3葉披垂度減小,而倒2、3葉葉基角變化不穩定,但1、3、5、7和9級材料的劍葉、倒2葉、倒3葉葉基角和披垂度變化不同;劍葉葉基角和倒3葉披垂度表現為HR>R>M>S>HS,倒2葉葉基角和劍葉披垂度表現為HR>S>R>M>HS,倒2葉披垂度表現為HR>M>R>S>HS。從CRI值可以看出,9級材料劍葉、倒2、倒3葉披垂度CRI值均小于1級和3級材料,7級材料劍葉葉基角與倒2和倒3葉披垂度CRI值均小于1級和3級材料。說明在冷水處理條件下,耐冷性弱和極弱的品種(系)劍葉和倒3葉葉基角略有減小,上3葉披垂度減幅大,葉片挺立。
表2冷水灌溉處理與正常水溫灌溉處理水稻產量及其構成因素比較
Table 2. Comparison of grain yield and its components of rice under cold water irrigation and normal water temperature treatment.

耐冷性級別Gradeoftolerancetochilling處理Treatment每穴實粒數FGNH千粒重1000-GW/g結實率SSR/%每穴產量YPH/gHRLT849.28±62.27b23.91±1.63a76.62±0.79bB21.42±1.61bBCK1160.00±95.45a26.11±1.13a93.26±0.48aA32.30±1.74aACRI/%73.3291.5682.1666.18RLT684.97±66.49bB24.49±0.73b69.30±2.78bB17.55±1.77bBCK1273.63±61.41aA27.02±0.40a93.23±0.83aA35.08±1.46aACRI/%54.5790.6074.2950.48MLT499.96±27.28bB23.74±0.43bB43.65±1.75bB12.46±0.69bBCK1171.65±44.69aA27.42±0.56aA92.22±0.83aA32.46±1.28aACRI/%42.6786.6947.3538.41SLT283.23±32.77bB22.27±0.59bB28.05±1.59bB6.58±0.71bBCK1192.61±74.08aA27.15±0.45aA91.07±1.12aA32.77±1.60aACRI/%23.9281.9630.7320.27HSLT181.42±64.69bB21.59±0.66bB11.46±1.76bB3.89±1.40bBCK1325.42±78.55aA26.37±0.53aA89.37±1.50aA35.46±1.76aACRI/%12.9981.8712.9110.48
數據后跟不同大小寫字母分別表示在1%和5%水平上差異顯著(新復極差法,HR、R、M、S、HS的n=3、5、9、9和4)。LT-冷水處理; CK-對照,正常水溫處理; FGNH-每穴實粒數; 1000-GW-千粒重; SSR-結實率;YPH-每穴產量; CRI-冷水反應指數。下同。
Values followed by different letters are significantly different at 5% (lowercase) and 1% (uppercase) levels, respectively (by Duncan’s test,n=3,5,9,9,4). LT, Cold water irrigation; CK, Normal water temperature; FGNH, Filled grain number per hill; 1000-GW, 1000-grain weight; SSR, Seed-setting rate; YPH, Yield per hill; CRI, Cold water response index. The same as below.
表3 冷水灌溉處理與正常水溫灌溉處理水稻粒葉比、葉面積指數和葉面積率的比較
Table 3. Difference in grain-leaf ratio, leaf area index and ratio of leaf area under cold water irrigation and normal water temperature treatment.

耐冷性級別Gradeoftolerancetochilling處理Treatment上3葉葉面積指數LAITTL全葉葉面積指數LAIAL高效葉面積率RLATTL/%粒葉比GLR/(grain·cm-2)HRLT3.37±0.11a3.74±0.25b91.13±3.33a0.58±0.05aCK3.59±0.08a4.44±0.28a82.07±7.18a0.72±0.05aCRI/%93.9484.18112.1981.17RLT3.44±0.23a3.75±0.15a90.89±3.20a0.50±0.05bCK3.50±0.11a4.77±0.32a75.49±5.73b0.76±0.09aCRI/%99.3980.37122.1968.68MLT3.33±0.07a3.68±0.10b91.06±1.70aA0.38±0.03bBCK3.40±0.17a4.22±0.23a81.39±2.11bB0.80±0.05aACRI/%99.5688.63112.1649.12SLT3.37±0.06a3.75±0.07bB91.14±1.15aA0.21±0.03bBCK3.48±0.12a4.36±0.16aA79.90±1.20bB0.77±0.04aACRI/%97.5986.62114.2127.47HSLT3.41±0.17a3.83±0.18a89.48±0.90a0.12±0.04bBCK3.71±0.32a4.67±0.47a81.87±3.99a0.83±0.07aACRI/%93.5184.0111014.94
LAITTL, Leaf area index of top three leaves; LAIAL, Leaf area index of all leaves; RLATTL, Ratio of leaf area of top three leaves; GLR, Grain-leaf ratio. The same as below.
表4冷水灌溉處理與正常水溫灌溉處理水稻上3葉受光姿態比較
Table 4. Comparison of basic angle, drooping angle of top three leaves in rice under cold water irrigation and normal water temperature treatment.

性狀 Trait 處理TreatmentHRRMSHS劍葉葉基角D1LBA/°LT34.58±7.98a31.25±6.55a29.31±5.19a29.22±3.13a18.81±7.33aCK36.75±7.88a32.55±2.34a33.22±4.62a34.33±4.81a19.81±4.84aCRI/%94.1096.0188.2385.1294.95倒2葉葉基角D2LBA/°LT26.75±1.28a21.20±1.91a18.47±1.70a20.53±1.83b17.38±3.23aCK21.08±0.74b20.50±3.42a18.72±1.08a24.36±2.07a16.94±1.35aCRI/%126.90103.4198.6684.28102.60倒3葉葉基角D3LBA/°LT27.64±2.36a27.60±1.66a24.25±1.70a25.42±1.71a22.25±4.36aCK28.17±1.60a25.70±2.05a25.03±1.39a28.58±1.62a25.50±1.49aCRI/%98.12107.3996.8888.9487.25劍葉披垂度D1DA/°LT16.67±7.48a10.95±4.89a10.25±2.97a11.00±2.23a6.40±1.85aCK26.17±9.34a18.45±3.41a12.25±2.91a13.75±2.49a14.30±3.58aCRI/%63.7059.3583.6780.0044.76倒2葉披垂度D2DA/°LT13.33±1.34a9.20±2.00a10.61±1.64a9.14±1.28b6.50±2.46aCK17.92±5.68a14.80±3.23a16.97±3.73a18.67±3.48a12.44±3.14aCRI/%74.3962.1662.5248.9652.25倒3葉披垂度D3DA/°LT16.28±3.64a14.95±4.00a13.36±1.43a12.06±2.46a8.63±1.55bCK16.50±0.88a15.90±2.60a18.69±3.47a22.78±4.27a18.38±1.22aCRI/%98.6794.0371.4852.9446.95
D1LBA, Basic angle of flag leaf; D2LBA, Basic angle of second leaf from top; D3LBA, Basic angle of third leaf from top; D1DA, Drooping angle of flag leaf; D2DA, Drooping angle of second leaf from top; D3DA, Drooping angle of third leaf from top.
2.3冷水脅迫下,不同基因型水稻后期干物質生產與輸出特征的差異
表5表明,冷水處理的材料生育后期(抽穗至成熟期)干物質積累量、干物質積累量比例、群體生長率、凈同化率、葉面積衰減率和收獲指數均下降,干物質積累量、干物質積累比例、凈同化率和收獲指數表現為HR>R>M>S>HS,群體生長率表現為HR>R>M>HS>S。其中5級和7級材料生育后期干物質積累量、干物質積累量比例、群體生長率、凈同化率和收獲指數與對照間差異極顯著,9級材料干物質積累量占生物產量的比例、群體生長率和凈同化率與對照間差異顯著。從CRI值可以看出,除葉面積衰減率以外,其他干物質生產特性CRI值表現為HR>R>M>S>HS。可見,冷水處理下,耐冷性越弱的品種(系)抽穗至成熟期干物質積累量、干物質積累比例、群體生長率、凈同化率和收獲指數變化越大。抽穗前莖鞘所儲藏的光合產物向穗部輸出與轉換特性直接影響著水稻產量形成。從圖2可知,冷水處理的1、5、7和9級材料莖鞘物質輸出率均下降,3級材料莖鞘物質輸出率變化不大,其中7級和9級材料莖鞘物質輸出率小于1,且5、7和9級材料均顯著低于對照;冷水處理的1、3和5 級材料莖鞘物質轉化率均增加,7和9 級材料莖鞘物質轉化率小于1。因此,冷水處理下耐冷性弱和極弱的品種(系)成熟期莖鞘干物質量大于抽穗期,且莖鞘輸出率和轉化率更敏感。
2.4相關性分析
冷水處理下,與相對結實率組成的19對性狀間有7對達極顯著或顯著相關(表6), 其中,相對結實率分別與收獲指數(0.96**)、產量(0.91**)、粒葉比(0.84**)和抽穗到成熟期干物質積累量(0.48**)CRI值均呈極顯著正相關;相對結實率分別與群體生長率(0.44*)、凈同化率(0.44*)和干物質積累比例(0.43*)CRI值均呈顯著正相關。說明在冷水脅迫下,收獲指數、產量、粒葉比、抽穗到成熟期干物質積累量、干物質積累比例、群體生長率和凈同化率CRI值對相對結實率影響較大,均是正向的。相對結實率分別與劍葉、倒2葉、倒3葉葉基角和披垂度正相關,與莖鞘物質輸出率和轉化率正相關,與葉面積衰減率呈負相關。冷水脅迫對耐冷性弱的品種(系)冠層結構和莖鞘物質轉運的影響大于耐冷性強的品種(系)。
表5冷水灌溉處理與正常水溫灌溉處理水稻抽穗后干物質生產的差異
Table 5. Difference in dry matter production in rice after heading under cold water irrigation and normal water temperature treatment.

性狀與處理TraitandtreatmentHRRMSHS干物質積累量DAR/(g·m-2) LT409.97±41.27a307.44±61.55b279.98±20.05bB257.43±28.09bB255.24±67.34bB CK526.81±58.19a530.65±38.06a586.89±49.23aA573.56±49.77aA658.28±49.28aA CRI/%80.0959.0349.4347.6538.40干物質積累比例DMAR/% LT29.94±4.32a24.49±4.77b21.96±1.52bB19.57±2.13bB19.33±4.50b CK36.01±4.69a34.92±3.82a38.30±2.39aA36.19±2.55aA38.40±0.85a CRI/%84.9070.1258.1355.9150.36群體生長率CGR/(g·m-2d-1) LT7.92±0.42a6.54±0.99a5.76±0.44bB5.25±0.60bB5.26±1.42b CK9.72±0.85a11.17±1.35a10.58±0.81aA10.50±0.85aA12.49±1.21a CRI/%83.4163.3056.0152.9241.96凈同化率NAR/(g·m-2d-1) LT2.95±0.17a2.40±0.34a2.19±0.17bB1.95±0.23bB1.94±0.56b CK3.35±0.19a3.44±0.30a3.57±0.25aA3.42±0.29aA3.77±0.34a CRI/%88.7171.9763.0659.3749.38葉面積衰減率DRLA/(d-1) LT0.037±0.01a0.042±0.00a0.038±0.00a0.038±0.00a0.039±0.00a CK0.050±0.01a0.056±0.01a0.041±0.01a0.042±0.00a0.044±0.01a CRI/%75.3478.4498.6893.9091.05收獲指數HI LT0.48±3.17a0.44±2.75bB0.35±1.20bB0.25±1.25bB0.18±1.03bB CK0.55±1.39a0.55±1.18aA0.58±1.88aA0.55±1.32aA0.58±0.92aA CRI/%86.5479.7260.4646.1831.70
DAR, Dry matter accumulation; DMAR, Dry matter accumulation ratio after heading; CGR, Crop growth rate; NAR, Net assimilation rate; DRLA, Decreasing rate of leaf area; HI, Harvest index. The same as below.

ERMSS-莖鞘物質輸出率; TRMSS-莖鞘物質轉化率。下同。
ERMSS, Export rate of dry matter in stem-sheath; TRMSS, Translocation rate of dry matter in stem-sheath. The same as below.
圖2 冷水灌溉處理與正常水溫灌溉處理水稻的莖鞘物質輸出率和莖鞘物質轉化率
Fig. 2. Difference in export rate and translocation rate of dry matter in stem-sheath under cold water irrigation and normal water temperature treatment.
表6孕穗期冷水脅迫下相對結實率與產量、冠層結構和物質生產特性CRI的關系
Table 6. Correlation coefficients between relative seed setting rate(RSR) and cold water response indices of rice grain yield, canopy structure and dry matter production at booting stage under cold water irrigation.

指標IndexYPHD1LBAD2LBAD3LBAD1DAD2DAD3DALAITTLLAIALRLATTLRSR0.91**0.080.280.290.290.200.290.02-0.100.20指標IndexGLRERMSSTRMSSDARDMARCGRNARDRLAHIRSR0.84**0.030.250.48**0.43*0.44*0.44*-0.320.96**
*和**分別表示在0.05 和 0.01 水平上顯著相關。RSR-相對結實率。
*and**mean significant correlation at 0.05 and 0.01 levels,respectively. RSR, Relative seed setting rate.
3討論
眾所周知,水稻的生長發育與氣象條件密切相關,其中溫度是最重要的影響因子之一[15,16]。 相關研究[17-22]表明,水稻孕穗期葉片光合作用和穗分化受氣溫影響較大,低溫脅迫降低光合作用速率,而東北寒地稻區孕穗期冷水脅迫對群體光合生產能力和粒(重)葉比研究較少。葉面積、群體生長率、凈同化率等都是表征群體光合生產能力的重要指標,在一定的范圍內,作物的產量隨葉面積指數的增大而提高。本研究設置孕穗期17℃冷水處理,抽穗期葉面積指數(CRI值小于90%)、粒葉比和光合速率降低,品種(系)間群體生長率和凈同化率差異明顯。相對結實率與群體生長率CRI值(r=0.44*)、凈同化率CRI值(r=0.44*)和粒葉比CRI值(r=0.84*)均顯著或極顯著正相關,說明耐冷性弱的品種(系)抽穗至成熟期群體生長率、凈同化率及抽穗期粒葉比對冷水脅迫更敏感,單位葉面積供給的物質量少,葉面積質量低,產量也低。
迄今為止,低溫脅迫對小麥葉片結構和形態特征的研究報道較多,如葉片厚度、冠層結構、維管束、葉綠體和基粒片層,葉肉細胞的形態結構,葉脈的間距和橫截面積[23-25];而對水稻葉片結構和形態特征研究報道較少,只有劍葉、倒2葉、倒3葉長和寬[26]方面的研究。筆者認為水稻孕穗期倒2、3葉的長和寬變化已經定型,冷水處理無本質影響,因此,試驗僅對劍葉、倒2葉以及倒3葉的葉基角和披垂度進行了調查分析。其中,葉角是影響葉片空間態勢的主要因子。本研究表明,冷水處理后劍葉葉基角與劍葉、倒2葉和倒3葉披垂度減小,這與趙國珍等[27]研究結果一致。我們還觀察到,冷水處理后劍葉、倒2葉和倒3葉葉基角CRI值與相對結實率正相關,相關性大小為倒3葉葉基角>倒2葉葉基角>劍葉葉基角。究其原因,可能是因為在孕穗期冷水脅迫下,各葉位干物質分配受到影響而導致葉片葉基角發生變化。
水稻籽粒的產量一部分來自抽穗后的光合產物,另外一部分來自葉與莖鞘貯藏物質的再分配。前人研究[10-12]表明,秧苗期低溫脅迫下,水稻秧苗隨著生長時間的延長,不但沒有干物質積累,其干質量反而下降;分蘗期低溫處理也會降低單株的干物質累積量;孕穗期冷水灌溉持續時間越長籽粒干物質積累量降幅越大。然而,在東北寒地稻區關于孕穗期冷水脅迫對抽穗至成熟期干物質生產研究較少。我們發現,一方面,冷水處理后干物質生產特性存在明顯差異,相對結實率與抽穗至成熟期干物質積累量CRI值(r=0.48**)及干物質積累比例CRI值(r=0.43*)分別呈極顯著和顯著正相關,說明耐冷性弱的品種(系)抽穗至成熟期干物質積累量及比例對冷水脅迫更敏感;另一方面,不同耐冷性品種(系)經冷水處理后,抽穗后的光合生產能力及莖鞘干物質的轉化與輸出對結實率的貢獻不同,其中相對結實率與莖鞘物質輸出率(r=0.03)和轉化率(r=0.25)呈正相關,說明耐冷性弱的品種(系)抽穗至成熟期群體生長率、凈同化率、抽穗期粒葉比、莖鞘物質輸出率和轉化率對冷水脅迫更敏感。
以上說明,在孕穗期冷水脅迫條件下,東北寒地水稻抽穗到成熟期干物質生產顯著減少,同時改變了干物質在各器官的輸出特征。籽粒產量受干物質生產的控制,干物質生產又取決于作物進行光合作用的潛在能力和穎花接受光合產物的能力。因此,關于東北寒地稻區孕穗期冷水脅迫對光合作用影響研究還有待于進一步深入。
參考文獻:
[1]趙秀琴, 張婷, 王文生, 等. 水稻低溫脅迫不同時間的代謝物譜圖分析. 作物學報, 2013, 39(4): 720-726.
Zhao X Q, Zhang T, Wang W S, et al. Time-course metabolic profiling in rice under low temperature treatment.ActaAgronSin, 2013, 39(4): 720-726.(in Chinese with English abstract)
[2]程式華,李建.現代中國水稻.北京:金盾出版社,2007:94-96.
Cheng S H, Li J. Modern Chinese Rice. Beijing:Golden Shield Press, 2007, 94-96.(in Chinese)
[3]Zhang Y P, Xiang J, Chen H Z, et al. Physiological characterization of green turning of rice seedlings at different temperatures.AgricSci&Technol, 2015,16(7):1390-1394,1513. (in Chinese with English abstract)
[4]王艷春,王士強,趙海紅.寒地水稻冷害減產原因與生理機制的研究進展.現代化農業,2009(9):7-8.
Wang Y C, Wang S Q, Zhao H H. Progress in research on the reason of yield reduce and the physiological mechanism of cold injury of rice in cold regions.ModAgric, 2009,(9):7-8. (in Chinese)
[5]張榮萍, 馬均, 蔡光澤, 等.開花期低溫脅迫對四川攀西稻區水稻開花結實的影響. 作物學報, 2012, 38(9):1734-1742.
Zhang R P, Ma Y, Cai G Z, et al. Effects of low temperature stress during flowering stage on flowering and seed setting of rice in Panxi Region, Sichuan Province.ActaAgronSin, 2012, 38(9):1734-1742. (in Chinese with English abstract)
[6]李健陵, 霍治國, 吳麗姬, 等. 孕穗期低溫對水稻產量的影響及其生理機制. 中國水稻科學, 2014, 28(3): 277-288.
Li J L, Huo Z G, Wu L J, et al. Effects of low temperature on grain yield of rice and its physiological mechanism at the booting stage.ChinJRiceSci, 2014, 28(3): 277-288. (in Chinese with English abstract)
[7]李廣旭, 陳華民, 吳茂森, 等.OsBTF3過量表達和RNAi轉基因水稻抗鹽和抗低溫脅迫鑒定. 中國水稻科學, 2012, 26(1): 5-8.
Li G X, Chen H M, Wu R S. et al. Resistance to high salt and cold stress of transgenic rice seedings with over-expressed and RNAi-silencedOsBTF3.ChinJRiceSci, 2012, 26(1):5-8.(in Chinese with English abstract)
[8]周玲艷,姜大剛,李靜,等.逆境處理下水稻葉角質層蠟質積累及其與蠟質合成相關基因OsGL1表達的關系.作物學報,2012,38(6):1115-1120.
Zhou L Y, Jiang D G, Li J, et al. Effect of stresses on leaf cuticular wax accumulation and its relationship to expression of OsGL1-Homologous genes in rice.ActaAgronSin, 2012, 38(6):1115-1120. (in Chinese with English abstract)
[9]謝勇武,楊樹明,曾亞文,等.粳稻02428×02428c重組自交系孕穗期耐冷性QTL分析.中國水稻科學,2011,25(6):681-684.
Xie Y W, Yang S M, Zheng Y W, et al. QTL analysis of cold tolerance in japonica rice using reconbinant inbred lines from 02428×02428c at booting stage.ChinJRiceSci,2011, 25(6): 681-684. (in Chinese with English abstract)
[10]張金恩,李迎春,陸魁東,等.溫度脅迫對早稻分蘗期生長和分蘗能力影響研究.第32屆中國氣象學會年會S15提升氣象為農服務能力,保障農業提質增效.北京: 中國氣象學會, 2015.
Zhang J N, Lin Y C, Lu K D, et al. Effect of temperature stress on growth and tillering ability of super hybrid early race at tillering stage. The 32nd Session of the Chinese Meteorological Society Annual Meeting S15 Improving the Capacity of Meteorological Service for the Agriculture, to Ensure Agricultural Quality Efficiency. Beijing: China Meteorological Society, 2015. (in Chinese with English abstract)
[11]周新橋,陳達剛,李麗君,等.秧苗期低溫脅迫對華南主推雙季水稻生長的影響.西南農業學報,2013,26(3):936-941.
Zhou X Q, Chen D G, Li L J, et al. Effects of chilling stress on growth of double cropping rice in south China at seeding stage.SouthwestChinaJAgricSci, 2013,26(3):936-941.(in Chinese with English abstract)
[12]賈琰,沈陽,鄒德堂,等.孕穗期冷水灌溉對寒地粳稻籽粒灌漿及其氮素積累的影響.中國水稻科學,2015,29(3):259-272.
Jia Y, Shen Y, Zou D T, et al. Effect of cold-water irrigation at booting stage on grain filling an nitrogen accumulation of rice in cold-region.ChinJRiceSci, 2015, 29(3):259-272. (in Chinese with English abstract)
[13]鄒德堂,劉化龍.寒地水稻耐冷性研究.北京:氣象出版社,2013:22-23
Zou D T, Liu H L. Studies on rice cold tolerant and sensitive lines to low temperaturestress in cold area of northeastern China. Beijing: China Meteorological Press,2013: 22-23.(in Chinese)
[14]趙黎明,李明,鄭殿峰,等.灌溉方式與種植密度對寒地水稻產量及光合物質生產特性的影響. 農業工程學報,2015,6(31):159-169.
Zhao L M, Li M, Zheng D F, et al. Effects of irrigation methods and rice planting densities on yield and photosynthetic characteristics of matter production in cold area.TranChinSociAgricEngin, 2015, 6(31):159-169. (in Chinese with English abstract)
[15]陳金,田云錄,董文軍,等.東北水稻生長發育和產量對夜間升溫的響應.中國水稻科學,2013,27(1):84-90.
Chen J, Tian Y L, Dong W J, et al. Responses of rice growth and grain yeild to nighttime warming in northeast China.ChinJRiceSci, 2013, 27(1): 84-90. (in Chinese with English abstract)
[16]楊曉光,李茂松,霍治國.農業氣象災害及其減災技術.北京:化學工業出版社,2010:43
Yang X G, Li M S, Huo Z G. Agrometeorological Disaster and Disaster Reduction Technology. Beijing: Chemical Industry Press, 2010: 43. (in Chinese)
[17]李健陵,霍治國,吳麗姬,等.孕穗期低溫對水稻產量的影響及其生理機制.中國水稻科學,2014,28(3):277-288.
Li J L, Huo Z G, Wu L J, et al. Effects of low temperature on grain yield of rice and its physiological mechanism at the booting stage..ChinJRiceSci, 2014, 28(3): 277-288.(in Chinese with English abstract)
[18]孫擎,楊再強,高麗娜,等.低溫對早稻幼穗分化期葉片生理特性的影響及其與產量的關系.中國生態農業學報,2014,22(11):1326-1333.
Sun Q, Yang Z Q, Gao L N, et al. Effect of low temperature stress on physiological characteristics of flag leaf and its relationship with grain yield during panicle primordium differentiation stage of early rice.ChinJEco-Agric, 2014, 22(11):1326-1333. (in Chinese with English abstract)
[19]劉濤,趙娟,孫婷,等.低溫脅迫下水稻傳統品種與現代品種不同的響應機制.分子植物育種,2015,13(2):269-275.
Liu T, Zhao J, Sun T, et al. The different response mechanisms of traditional and modern rice varieties under low temperature.MolPlantBreeding, 2015, 13(2):269-275. (in Chinese with English abstract)
[20]孫磊,陳國祥,呂川根,等.殼聚糖對低溫處理下水稻劍葉光合特性的影響.南京師大學報:自然科學版,2010,33(4):75-79.
Sun L, Chen G X, Lü C G, et al. Effects of chitosan on photosyn thetic characteristics of flag leaf in rice under low temperature.JNanjingNorUniv:NatSciEd), 2010, 33(4):75-79. (in Chinese with English abstract)
[21]苗微,王國驕,馬殿榮,等.遼寧省雜草稻幼苗對低溫脅迫的生理響應.中國水稻科學,2011,25(6):639-644.
Miao W, Wang G J, Ma D R, et al. Physiological responses of weedy rice to cold stress at seedling stage in Liaoning Province, China.ChinJRiceSci, 2011, 25(6):639-644.(in Chinese with English abstract)
[22]張金恩,聶秋生,李迎春,等.穎花分化期低溫處理對早稻葉片光合能力和產量的影響.中國農業氣象,2014,35(4):410-416.
Zhang J E, Nie Q S, Li Y C, et al. Effects of low temperature stress on the photosynthetic capacity and yield components of early rice at the spikelet differentiation stage.ChinJAgrom, 2014, 35(4):410-416.(in Chinese with English abstract)
[23]苗芳, 張嵩午, 王長發, 等. 低溫小麥種質葉片結構及某些生理特性. 應用生態學報,2006,17(3):408-412.
Miao F, Zhang S W, Wang C F, et al. Leaf structure and some physiologic characteristics of low temperature wheat germplasm.ChinJApplEcol, 2006,17(3):408-412.(in Chinese with English abstract)
[24]王樹剛, 王振林, 王平, 等. 不同小麥品種對低溫脅迫的反應及抗凍性評價. 生態學報, 2011, 31(4): 1064-1072.
Wang S G, Wang Z L, Wang P, et al. Evaluation of wheat freezing resistance based on the responses of the physiological indices to low temperature stress.ActaEcolSin. 2011, 31(4):1064-1072.(in Chinese with English abstract)
[25]徐海成, 尹燕枰, 蔡鐵, 等. 冬小麥拔節期不同莖蘗對低溫脅迫的反應及抗凍性評價. 應用生態學報,2013,24(8):2197-2204.
Xu H C, Yin Y P, Cai T, et al. Responses of winter wheat tillers at different positions to low temperature stress at stem elongation stage and their freezing resistance evaluation.ChinJApplEcol, 2013,24(8):2197-2204.(in Chinese with English abstract)
[26]劉鳳艷.寒地早粳稻耐冷害農藝性狀調查.農業災害研究,2013,3(6):24-28.
Liu F Y. Investigation on cold tolerance agronomic traits of early japonica rice in cold region.JAgricCatastrophol, 2013, 3(6):24-28. (in Chinese with English abstract)
[27]趙國珍,Yang S J,Yea J D,等.冷水脅迫對云南粳稻育成品種農藝性狀的影響.云南農業大學學報,2010,25(2):158-165.
Zhao G Z, Yang S J, Yea J D, et al. Effect of cold water irrigation on agronomic traits of improved japonica rice cultivars from Yunnan Province, China.JYunnanAgricUniv, 2010, 25(2):158-165. (in Chinese with English abstract)
Effects of Cold Stress During Booting Stage on Dry Matter Production of Rice in Cold Region
WANG Shi-qiang1,2,3, ZHAO Hai-hong4, XIAO Chang-liang3, ZHAO Li-ming3, GU Chun-mei3, NA Yong-guang3, XIE Bao-sheng3, CHENG Shi-hua1,2,*
(1College of Agronomy, Shenyang Agricultural University, Shenyang 110161, China;2State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;3Rice Research Institute of Helongjiang Academy of Land Reclamation Sciences, Jiamusi 154007, China;4Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154007, China;
Abstract:To reveal the effects of chilling at the booting stage on rice dry matter production, 30 main rice cultivars (lines) in Heilongjiang Province were selected and subjected to chilling stress (17°C cold water irrigation) for 20 days. The results showed that the filled grain number per hill, seed setting rate, 1000-grain weight, and grain yield of all cultivars decreased under cold water irrigation at booting stage. The materials were classified as grades 1, 3, 5, 7 and 9 according to relative seed setting rate. Most of them belonged to grades 7 and 9, accounting for 30% of the total, while the fewest cultivars belonged to grade 1, occupying 10%. The cold water stress decreased dry matter accumulation from heading to maturity and its ratio, crop growth rate, net assimilation rate, filled grain number per square centimeter leaf area, harvest index, leaf area index, leaf basic angle of flag leaf, drooping angle of flag leaf, drooping angle of second leaf from top, drooping angle of third leaf from top. However, the cold water stress increased the ratio of leaf area of top three leaves. The correlation analysis results showed that the relative seed setting rate was significantly positively correlated with the cold water response indices(CRI) of harvest index after heading(r=0.96**), grain yield(r=0.91**),filled grain number per square centimeter leaf area(r=0.84**), and dry matter accumulation(r=0.48**); this rate was also positively correlated with the CRI of crop growth rate(r=0.44*), net assimilation rate(r=0.44*), and ratio of dry matter accumulation from heading to maturity(r=0.43*). In conclusion, the reduction of rice dry matter production under cold water stress during early grain filling largely varied with rice cultivar. The cold tolerant germplasm was insensitive to cold water stress in dry matter accumulation, ratio of dry matter accumulation from heading to maturity, crop growth rate, net assimilation, filled grain number per square centimeter leaf area, harvest index after heading, which might be attributed to its important morphological specificity and physiological mechanism in maintaining grain yield under cold water stress at the booting stage.
Key words:rice in cold area; yield; relative seed setting rate; cold water stress; dry matter production
DOI:10.16819/j.1001-7216.2016.5187
收稿日期:2015-12-18; 修改稿收到日期: 2016-04-04。
基金項目:公益性(農業)行業科研專項(201403002,201303102);國家科技支撐計劃資助項目(2012BAD04B0102,2012BAD04B0105)。
*Corresponding author, E-mail: shcheng@mail.hz.zj.cn)
WANG Shiqiang, ZHAO Haihong, XIAO Changliang, et al. Effects of cold stress during booting stage on dry matter production of rice in cold region. Chin J Rice Sci, 2016, 30(3): 313-322.
中圖分類號:Q948.112+.2:S511.01
文獻標識碼:A
文章編號:1001-7216(2016)03-0313-10
中國水稻科學(Chin J Rice Sci),2016,30(3):313-322
http://www.ricesci.cn