鄧新林, 李 春??
(1.中國海洋大學物理海洋實驗室,山東 青島 266100; 2.青島海洋科學與技術協同創新中心,山東 青島 266100;3.海洋-大氣相互作用與氣候山東省高校重點實驗室,山東 青島 266100)
?
鄧新林1,2,3, 李春1,2,3??
(1.中國海洋大學物理海洋實驗室,山東 青島 266100; 2.青島海洋科學與技術協同創新中心,山東 青島 266100;3.海洋-大氣相互作用與氣候山東省高校重點實驗室,山東 青島 266100)
摘要:基于HadISST海表溫度和NCEP/NCAR的海平面氣壓等再分析資料,研究了北太平洋海平面氣壓主模態與Elo的關系。結果發現:阿留申低壓模態是對Elo事件的同期響應,而北太平洋濤動模態可以誘導熱帶太平洋產生類似中部型Elo的海溫異常,且具有提前4~12個月的預報意義。冬春季的北太平洋濤動處于正位相時,阿留申低壓與夏威夷高壓同時減弱,北太平洋背景風場減弱。夏威夷高壓東南側西南風異常減弱北太平洋東北信風,使加利福尼亞海區SST暖異常,在“風-蒸發-SST”機制的作用下,異常暖海溫向熱帶太平洋傳播,使赤道地區海溫升高并產生西風異常,熱帶太平洋產生類似中部型Elo的異常海溫。Elo類型的年代際變化可能受到北太平洋濤動的影響,當北太平洋濤動信號活躍時,中部型Elo事件的發生頻率大。
關鍵詞:Elo;北太平洋濤動;“風-蒸發-SST”機制;年代際變化



北太平洋大氣環流有兩個主模態:阿留申低壓(Aleutian Low,AL)模態和NPO模態,分別是對應著海洋的太平洋年代際振蕩(Pacific Decadal Oscillation,PDO)模態和北太平洋環流振蕩(North Pacific Gyre Oscillation,NPGO)模態。在冬季,NPO可以強迫出一個海溫異常足跡,這個被強迫出來的海溫異常信號能持續到下一年的春夏季,進而產生類似ENSO模態的海溫異常,這種作用機制被稱為“留足跡”機制[12-13]。Di Lorenzo等[13]發現,NPGO通過副熱帶北太平洋的海洋環流使熱帶太平洋中部海溫增暖。
1資料和方法

本文所用的資料已從1948年起去掉了線性趨勢以消除全球變暖對氣候的影響,并對海表面氣壓距平(SLPa)場進行了3個月的時間平滑以消除季節內的變化信號。為得到北太平洋大氣環流的空間模態,對1948—2014年月平均的SLPa進行了EOF分解,分解結果為第一模態的AL和第二模態的NPO,并定義此時的空間模態為AL/NPO正位相,對應的時間序列為AL/NPO指數。用相關和回歸的方法探究了AL/NPO與熱帶太平洋SST的關系,并且通過滑動相關分析其年代際變化。
為分析北太平洋大氣環流的特征,首先對SLPa場進行了EOF分解(見圖1)。由圖1看出,第一模態表現為海盆尺度的異常中心,該異常中心位于阿留申低壓附近,稱之為AL。類似AL模態的大氣強迫能調整PDO的位相,與ENSO的低頻變化相關[14-15]。第一模態對應的時間序列被稱為AL指數。第二模態表現為正負異常中心呈南北偶極分布(見圖1(b)),人們將其定義為NPO模態[15]。第二模態對應的時間序列被稱為NPO指數。NPO可分為正負位相。當NPO為正(負)位相時,南部為異常低壓(高壓)北部為異常高壓(低壓),夏威夷高壓與阿留申低壓同時減弱(增強),南北經向氣壓梯度減弱。NPO型的大氣強迫對應NPGO型的海洋環流[15]。

((a)第一模態;(b)第二模態;(c)第一時間序列(紅色)與第二時間序列(藍色);百分率為該模態的解釋方差。(a) First EOF mode of SLP; (b) Second EOF mode of SLP; (c) Standardized time series of the first (PC1, read) and second principal component (PC2, blue); The percentage represents explain variance.)
圖1北太平洋SLP場的EOF分解結果
Fig.1EOF analysis of North Pacific SLP

(橫坐標<0表示AL/NPO指數超前CP/EP指數的相關;灰色實線表示置信度為90%的臨界相關值。Negative lags imply that the NPO/AL index leads the CP/EP index; Gray line represents the 90% confidence limit(r=±0.204).)
圖2AL指數(紅色)/NPO指數(藍色)與冬季CP(a)及EP(b)指數的超前—滯后相關
Fig.2(a)Lead-lag Correlation of the AL (red)/NPO (blue) index with the CP(a) index and the EP(b) index



從北半球冬、春季起,NPO指數與次年冬季的CP指數有獨立的超置信度為90%的相關性,故在下文的研究中,取12月至次年5月(D(-1)JFMAM(0))平均的AL/NPO指數作為該年的AL/NPO指數(見圖6(a))。
為了驗證NPO能影響熱帶太平洋SST的這一結論,本文用1948—2014年的NPO指數對SST和海平面風場進行回歸(見圖4,5),結果發現,NPO型的大氣環流使北太平洋中緯度產生異常東風,副熱帶東部產生異常的西南風(見圖4(a)),該異常東風與西南風減弱了背景風場。當背景風場減弱后,海表面的水汽蒸發減少,海洋向大氣釋放的熱帶隨之減少,熱量收支平衡被打破,SST升高[5-9]。這種由“風-蒸發-SST”機制產生的異常的暖海溫足跡能夠持續到次年的春季和夏季[8],并延伸至熱帶太平洋中西部(見圖5(a)),此時熱帶太平洋中西部產生異常西風(見圖5(b)),該西風異常減弱了赤道東風,赤道上翻流減弱,熱帶太平洋海水變暖。
厄爾尼諾發展年的夏季,秘魯西岸有暖海溫生成并向熱帶太平洋傳播(見圖4(b))。此時熱帶太平洋的暖海溫起源于兩個地方,一是來自受NPO影響的北太
(陰影部分表示SST經過了信度為90%的回歸檢驗;箭頭表示風場經過了置信度為80%的回歸檢驗。Shaded areas and vector indicate 90% and 80% confidence level for SST and surface wind.)
圖4SST(彩色陰影及等值線,單位:℃)及海平面風場(箭頭,單位:m/s)對NPO指數的回歸
Fig.4Regression maps of SST(shaded and contour, unit: ℃ ) and surface wind (vector, unit: m/s) against to the NPO index
((a)沿(0°,170°W)至(20°N,115°E)線剖面;(b)赤道地區(5°S,5°N)經向平均的緯向-時間剖面。(a)Regression map along the line (0°,170°W)to (20°N,115°E); (b)Regression map in the tropical area(5°S, 5°N) average.)
圖5SST(等值線,單位:℃)、海表面風場(矢量箭頭,單位:m·s-1)及海面凈潛熱通量(彩色陰影,單位:W·m-2)對NPO指數的回歸
Fig.5Regression maps of SST(contour, unit: ℃), surface wind (vector, unit: m·s-1) and latent heat net flux
(shaded, unit: W·m-2) against to the NPO index






4結語


參考文獻:



[4]Kao H Y, Yu J Y. Contrasting eastern-Pacific and central-Pacific types of ENSO [J]. Journal of Climate, 2009, 22(3): 615-632.
[5]Yu J Y, Lu M M, Kim S T. A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990[J]. Environmental Research Letters, 2012, 7(3): 034025.


[8]Wu L, Liu Z Y, Li C, et al. Extratropical control of recent tropical Pacific decadal climate variability: A relay teleconnection [J]. Climate Dynamics, 2007, 28(1): 99-112.
[9]Li C, Wu L X. Dynamic linkage between the north pacific and the tropical pacific: Atmosphere-ocean coupling [J]. Advances in Atmospheric Sciences, 2013, 30(2): 306-314.
[10]Yu J Y, Kao H Y, Lee T. Subtropics-related interannualsea surface temperature variability in the central equatorial Pacific [J]. Journal of Climate, 2010, 3(11): 2869-2884.

[12]Vimont D J, Wallace J M, Battisti D S. The seasonal footprinting mechanism in the Pacific: implications for ENSO[J]. Journal of Climate, 2003, 16(16): 2668-2675.

[14]Di Lorenzo E, Combes V, Keister J E, et al. Synthesis of Pacific Ocean climate and ecosystem dynamics[J]. Oceanography, 2013, 26(4): 68-81.
[15]張立鳳, 呂慶平, 張永垂. 北太平洋渦旋振蕩研究進展[J]. 地球科學進展, 2011, 26(11): 1143-1149.
Zhang Lifeng, Lu Qingping, Zhang Yongchui. Advances in the study of North Pacific gyre oscillation [J]. Advance in Earth Sciences, 2011, 26(11): 1143-1149.
[16]Walker G T, Bliss E W. World weather V[J]. Memoirs of the Royal Metrological Society, 1932, 4: 53-84.
[17]Shukla J, Wallace J M. Numerical simulation of the atmospheric response to equatorial Pacific sea surface temperature anomalies [J]. Journal of the Atmospheric Sciences, 1983, 40(7): 1613-1630.
[18]Anderson B T. Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2003, 108(D23): 1-17.
[19]Vimont D J. The seasonal footprinting mechanism in the CSIRO coupled general circulation models and in observations [D]. Washington: University of Washington, 2002.
[20]Li C, H. Ma. Relationship between ENSO and Winter Rainfall over Southeast China and Its Decadal Variability[J]. Advances in Atmospheric Sciences, 2012, 29(6): 1129-1141.

責任編輯龐旻
Its Decadal Variability
DENG Xin-Lin1,2,3, LI Chun1,2,3
(1.Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; 2.Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao 266100, China; 3.Key Laboratory of Ocean-Atmosphere Interaction and Climate in Universities of Shandong, Qingdao 266100, China)
Abstract:This study used the HadISST and NCEP/NCAR reanalysis dataset to examine the relationship between the North Pacificsea level pressure andtwo types of Elo. It is found that the Aleutian Low mode is the real-time correspond to Elo; the North Pacific Oscillation mode may give rise to central Pacific Elo, which can forecast the Elo for about 4~12 months ahead. When the North Pacific Oscillation is on the positive (negative) phase, the Hawaii High and Aleutian Low is enhanced (weakened), which relaxing (strengthening) the background circulation. The positive phase of North Pacific Oscillation in winter and spring weakens the trade wind, generating positive SST anomaly in the California sea area by the wind-evaporation-SST mechanism. The positive SST anomaly spread to the central tropical Pacific in spring and summer and forces a pattern of atmosphere circulation anomaly includingwesterly wind anomaly along the central and westerntropical Pacific, which contributes to the occurrence of CP Elo. It is interesting that the root mean square of North Pacific Oscillation has significant decadal variability, corresponding to the decadal variability of two type of Elo. From 1950s to 1970s and after 1990s, the North Pacific Oscillation is active, the occurrence of central PacificElo is more frequent; From 1970s to 1990s, the Aleutian Low is more active, the tropical Pacific is dominated by the easternPacificElo.
Key words:Elo; North Pacific oscillation; wind-evaporation-SST mechanism; interdecadal variation
基金項目:? 國家自然科學基金項目(41276002;41130859);國家重大研究計劃發展項目(2012CB955603;2013CB956201);國家自然科學基金—山東海洋科學研究中心聯合基金項目(U1406401)資助
收稿日期:2015-09-21;
修訂日期:2015-12-31
作者簡介:鄧新林(1991-),女,碩士生。E-mail:deng_xinlin@126.com ??通訊作者:E-mail:lichun7603@ouc.edu.cn
中圖法分類號:P732.6
文獻標志碼:A
文章編號:1672-5174(2016)06-042-10
DOI:10.16441/j.cnki.hdxb.20150327
Supported by the National Natural Science Foundation of China (NSFC) (41276002; 41130859); the National Basic Research Program of China (2012CB955603; 2013CB956201); the NSFC-Shandong Joint Fund for Marine Science Research Centers (U1406401)