周 歡,馮艷麗,姜知明,仇奕沁,張文盛
(上海大學環境與化學工程學院環境污染與健康研究所,上海200444)
?
大氣中二羰基化合物及其生成的二次有機氣溶膠
周歡,馮艷麗,姜知明,仇奕沁,張文盛
(上海大學環境與化學工程學院環境污染與健康研究所,上海200444)
摘要:二次有機氣溶膠(secondary organic aerosol,SOA)對大氣灰霾的貢獻是當前大氣化學研究的熱點.二羰基化合物(乙二醛和甲基乙二醛)是大氣光化學反應的中間產物,可以通過多種途徑形成SOA,對SOA的形成和總量增加有重要的貢獻.大氣中二羰基化合物主要來源于生物源(如異戊二烯)和人為源(如乙炔)等揮發性有機物的氧化.二羰基化合物可通過氣粒分配(可逆過程)形成SOA,也可被云、霧或水相氣溶膠吸收,發生水合、聚合、氧化等反應,生成的低揮發性產物留在顆粒相中生成SOA(不可逆過程).目前常用的二羰基化合物檢測方法是利用衍生化試劑與二羰基化合物反應生成衍生物,經溶劑洗脫后再用氣相色譜-質譜(gas chromatography-mass spectrometry,GC/MS)儀進行分析.
關鍵詞:二羰基化合物;氣粒分配;可逆反應;不可逆反應;二次有機氣溶膠
由于快速工業化和城市化,發展中國家的空氣污染(如光化學煙霧、酸雨、灰霾)程度日益,而有機氣溶膠在全球天氣和氣候變化中起著重要作用,是大氣環境的主要污染物之一.有機氣溶膠可分為一次有機氣溶膠(primary organic aerosol,POA)和二次有機氣溶膠(secondary organic aerosol,SOA).POA通過燃燒被直接排放到大氣中,而SOA通過大氣的揮發性有機化合物(volatile organic compounds,VOCs)的氧化而產生[1].SOA引發了一系列環境問題:形成煙霧,降低能見度;改變云的物化性質,間接影響氣候變化;散射吸收太陽光,影響全球氣溫分布;嚴重危害人體健康等[2-3].Huang等[4]發現嚴重的霾污染在很大程度上是由于SOA的形成導致的,SOA分別占PM2.5和有機氣溶膠含量的30%~77%和44%~71%(北京、上海、廣州和西安4個城市的平均值).可見,空氣污染現狀已引起了人們對SOA的高度重視.SOA來源廣泛,影響其形成過程的因素復雜且在不斷變化,人們對其組成和形成機理的理解是有限的[5].
二羰基化合物,主要是分子量最小的乙二醛和甲基乙二醛,不僅是VOCs與O3,·OH和自由基等發生光化學氧化反應的中間產物[6-8],而且也是光化學煙霧的重要組成成分.由于二羰基化合物具有較強的極性和水溶性[9],容易發生光解或與·OH自由基發生反應形成低聚物[10-11],對SOA的形成和總量增加有很大的貢獻.早期的研究利用可逆的氣粒分配來模擬SOA的形成,如揮發性有機物異戊二烯、萜烯類和芳香族化合物的氧化,但模式結果大大低估了SOA的總量(特別是在偏遠地區)[12-15].Fu等[16]在模式中假設二羰基化合物(乙二醛和甲基乙二醛)在云、霧和氣溶膠水相中不可逆吸收,得出全球生成SOA的總量為5~11 TgC/a,這在數量級上相當于其他氧化產物(包括單萜烯、倍半萜烯、異戊二烯以及芳香烴)形成SOA的總和.
二羰基化合物通過可逆和不可逆的凝結相反應生成低揮發性的產物,如縮醛反應、醇醛縮合反應以及NH+4結合產物(亞胺類,咪唑類),也可以生成有機硫酸鹽以及通過·OH自由基的不可逆氧化反應生成羧酸(如草酸和丙酮酸).Kroll等[17]通過煙霧箱模擬研究發現,乙二醛在水相種子氣溶膠上的有效吸收對顆粒相的增長起著重要作用,但在環境氣溶膠中測得的高濃度乙二醛卻不能用氣粒分配來解釋,表明乙二醛吸收有其他途徑.Zhao等[18]測量了在55%~85%H2SO4,250~298 K溫度條件下的甲基乙二醛的多相反應.結果表明,在酸介質下甲基乙二醛的多相反應有助于SOA的形成,而且在大氣氣溶膠相中,甲基乙二醛的多相反應依賴于氣溶膠的吸濕性而不是酸性.Gomez等[19]測量了在60%~90%H2SO4,253~273 K溫度條件下的乙二醛多相反應.結果表明,在吸濕性顆粒上,乙二醛的有效多相反應有助于SOA的形成.可見,高水溶性的二羰基化合物(乙二醛和甲基乙二醛)在云、霧和氣溶膠相中吸收形成SOA的過程不容忽視,還需更多工作來驗證該機制的可行性.這不僅有利于理解SOA的形成機制,對研究整個大氣化學也具有重要的意義.
本工作通過介紹大氣中二羰基化合物(乙二醛和甲基乙二醛)及其生成SOA的前沿性研究進展,從二羰基化合物的來源、二羰基化合物形成SOA的主要途徑和二羰基化合物采樣分析方法等方面加以闡述,以期為今后在此領域的研究提供借鑒,并對未來的研究方向提出建議.
大氣中二羰基化合物(乙二醛和甲基乙二醛)主要由生物源(如熱帶森林)和人為源(如化石燃料、汽車尾氣)排放的VOCs的光氧化作用產生[20],其中乙二醛和甲基乙二醛的主要來源有生物源揮發性有機物(異戊二烯、萜烯等)和人為源產生的乙炔和芳香族化合物(甲苯、二甲苯和三甲苯等)[21].Fu等[16]總結了乙二醛和甲基乙二醛前體物的排放,對于全球二羰基化合物(乙二醛和甲基乙二醛)的預算有著重要的貢獻.全球乙二醛總量約為45 Tg/a,其中55%來自生物源,20%來自生物質燃燒,17%來自化石燃料燃燒,8%來自其他人為源排放;甲基乙二醛總量約為140 Tg/a,其中87%來自生物源,5%來自生物質燃燒,3%來自化石燃料燃燒,5%來自其他人為源排放.
對于二羰基化合物(乙二醛和甲基乙二醛)來說,最大的來源是異戊二烯,其氧化產生的乙二醛占大氣中乙二醛總量的47%,產生的甲基乙二醛占大氣中甲基乙二醛總量的79%.詳細的異戊二烯氧化生成乙二醛和甲基乙二醛的機制[16]如圖1所示.異戊二烯被NO3氧化直接生成乙二醛和甲基乙二醛;而異戊二烯被·OH氧化生成的乙二醛和甲基乙二醛為第三代產物,是通過中間體乙醇醛(HOCH2CHO)和丙酮醇(HOCH2C(O)CH3)生成的.Guenther等[22]通過MEGAN(the model of emissions of gases and aerosols form nature,來自自然源的氣體和氣溶膠的排放模型)估算全球生物異戊二烯的排放量為410 Tg/a,產生的乙二醛的量為21 Tg/a、甲基乙二醛的量為110 Tg/a,這與Fu等[16]利用GEOS-Chem全球三維化學傳遞模式的估算結果一致.乙炔是乙二醛的第二大來源和最重要的人為前體物[23].來自乙炔的乙二醛產量為8.9 Tg/a,占總乙二醛來源的20%.丙酮是甲基乙二醛的第二大來源[16],來自丙酮的甲基乙二醛的產量為10 Tg/a,占總甲基乙二醛來源的7%.單萜烯(α-蒎烯、?3-蒈烯、香葉醇和檸檬醛)在臭氧氧化條件下也會產生乙二醛和甲基乙二醛[24-25].全球單萜烯的排放量為160 Tg/a,來自單萜烯氧化的乙二醛的平均摩爾收率是2.8%,產生乙二醛的量是1.8 Tg/a,占總乙二醛來源的4%;相應的甲基乙二醛的平均摩爾收率是4.2%,產生甲基乙二醛的量為3.5 Tg/a,占總甲基乙二醛來源的2.5%.

圖1 異戊二烯氧化生成乙二醛和甲基乙二醛Fig.1 Glyoxal and methylglyoxal prodution from the oxidation of isoprene
2.1可逆過程
可逆過程是指羰基化合物特別是二羰基化合物(乙二醛和甲基乙二醛)通過氣粒分配進入顆粒相中,使氣粒分配平衡向顆粒相轉移,促進SOA的生成[27].因此,乙二醛和甲基乙二醛可同時存在于氣相和顆粒相中,通常白天主要以氣相形式存在,而晚上主要以顆粒相形式存在.早期的研究認為,氣粒分配的發生只有當大氣中半揮發性有機物達到飽和濃度時,才能通過凝結成核生成氣溶膠.然而煙霧箱模擬實驗結果表明,即使大氣中的半揮發性物質沒有達到飽和濃度,也可以通過氣粒分配進入顆粒相,只是進入顆粒相的比例取決于該有機物的揮發性和大氣顆粒有機物的濃度[28-29].
氣粒分配是目前使用最廣泛的SOA形成機制的理論,但也不能完全解釋以下這些大氣現象:①此模型不能準確再現有機氣溶膠濃度的高低、分布和動態[30];②在環境氣溶膠中,有些地區的SOA替代物相比有機物質更易與液態水發生反應[31];③即使在高NOx濃度和低煙霧箱產率下,有些地區來自生物源碳氫化合物的SOA與人為示蹤物濃度呈正相關[32].另外,Kawamura等[33]利用濾膜系統對泰山頂部大氣中的氣相和顆粒相羰基化合物進行了采集.結果發現,乙二醛的氣粒分配比具有白天高、晚上低的特點,表明在晚上溫度低和相對濕度高的情況下,氣相乙二醛容易轉移到顆粒相中;不可忽視的是草酸與乙二醛的配比在晚上是增加的,表明氣相乙二醛可通過水相反應氧化生成低揮發性物質草酸,并轉移到顆粒相中[34],而丙酮酸與甲基乙二醛的配比在晚上達到最高,也表明氣相甲基乙二醛可通過水相反應生成低揮發性物質丙酮酸,并轉移到顆粒相中.
可見,二羰基化合物(乙二醛和甲基乙二醛)的氣粒分配是SOA生成的重要理論,對于理解其在大氣中的濃度分布、遷移和轉化規律,研究大氣污染物具有重要的意義.
2.2不可逆過程
不可逆過程是指氣相羰基化合物特別是二羰基化合物(乙二醛和甲基乙二醛)進入懸浮的云、霧和氣溶膠相中液相的質量傳遞.這些吸收的二羰基化合物(乙二醛和甲基乙二醛)與其他溶解的物質和/或水發生反應(包括水合、聚合、氧化等),在云、霧和氣溶膠相蒸發時,反應生成的低揮發性物質留在顆粒相中,從而形成SOA[35-38].二羰基化合物(乙二醛和甲基乙二醛)極易吸收,廣泛存在于云、霧和氣溶膠相中[39].乙二醛在云、霧中的濃度為5~280μmol/L,低于SO2濃度;在25?C下的有效亨利系數Heff>3×105mol/(L·atm),超過SO23個數量級[40],且易被云、霧和水相氣溶膠快速吸收,有著很高的活性[41].甲基乙二醛在云、霧和氣溶膠相蒸發過程中的濃度可達0.7~7.0 mmol/L[42],且在25?C下的有效亨利系數Heff=3.71×103mol/(L·atm),也極易進入云、霧和水相氣溶膠中,并被快速吸收[43].
2.2.1乙二醛和甲基乙二醛水合及聚合反應
乙二醛和甲基乙二醛被快速吸收到云、霧和氣溶膠相后,不僅會通過水合、聚合反應生成二聚物和三聚物,還會使它們在液相中的分配遠遠高于亨利定律的預測值,這對SOA的產率貢獻顯著[44].當相對濕度大于26%時,乙二醛很容易轉移到氣溶膠相中[45-47].乙二醛首先會進行水合反應,總的水合平衡常數為7.22×104[48],極大地促進了乙二醛的水相吸收.氣溶膠質量光譜儀測量結果表明,乙二醛在冷凝相中半縮醛/縮醛形成低聚合物[27].當水相中乙二醛濃度超過1 mol/L時,會形成重要的乙二醛二聚體和三聚體[49],其形成機理[50]如圖2所示.兩個單水合乙二醛在沒有任何干預脫水的條件下,發生分子間親核反應形成半縮醛(見圖2中的式(2));半縮醛分子上的·OH與鄰近的活性羰基發生分子內親核反應,形成含二氧戊環二聚體(見圖2中的式(3),通道2);含二氧戊環二聚體脫掉一分子水,進一步與單水合乙二醛反應,生成含兩個二氧戊環的三聚體(見圖2中的式(4),通道2).值得注意的是,雖然更多的單水合乙二醛可以添加到含兩個二氧戊環的三聚體上,但是通過這種機制沒有顯示出進一步的含二氧戊環的高聚物形成[27].另外,半縮醛分子脫掉一分子水進一步與單水合乙二醛反應,可生成開鏈二聚體(見圖2中的式(5),通道1)[51].

圖2 乙二醛二聚體和三聚體的形成機理Fig.2 Glyoxal formation mechanism of dimers and trimers
甲基乙二醛在水相中易先發生水合反應,但在酸性氣溶膠中,甲基乙二醛以發生水合和聚合反應為主,反應依賴于氣溶膠的吸濕性,而不是氣溶膠的酸性[52].Yasmeen等[53]模擬了云滴中甲基乙二醛生成SOA的過程.研究結果表明,甲基乙二醛會發生不同的反應(見圖3,其中MGly為甲基乙二醛).當pH<3.5時,聚合物的形成主要是通過水合/縮醛反應,其中主要的低聚物是五元環結構,相比其他嚴格的六元環結構,五元環結構因其中心碳碳鍵的自由旋轉而更穩定(見圖3(a)).在高pH值(如pH=4~5)條件下,聚合物的形成主要通過醇醛縮合反應,不斷添加β-羥基酮,形成甲基乙二醛n聚體,進一步脫水反應,最終形成高共軛分子(見圖3(b)和(c)).值得注意的是,這些聚合物的紫外-可見光吸收特性可以改變氣溶膠的光學特性,影響地球輻射預算[42,54],而且它們的親水性提高了其作為云凝結核的能力[55-56].

圖3 甲基乙二醛水相聚合物形成機理Fig.3 Aqueous phase polymer formation mechanism of methylglyoxal
2.2.2乙二醛和甲基乙二醛光氧化反應
在光照和氧化劑存在的條件下,氣相乙二醛和甲基乙二醛通過光氧化反應,在云、霧和濕氣溶膠中發生水相反應形成SOA也是一個重要的途徑[57-58].空氣中常見的氧化劑有O3,·OH和·ONOO-自由基等,其中·OH自由基是大氣中重要的自由基,濃度比O3小5個數量級,但氧化性高于O3[59],且光氧化反應依賴于·OH自由基在云、霧和濕氣溶膠中的可用性[60].在大氣水相中·OH自由基的主要來源是氣相·OH自由基[61].在白天,氣相·OH自由基主要可以利用的濃度大約為2×106mol/cm3(白天平均時長為12 h)[62].水相中·OH自由基主要是通過H2O2的光解和光-芬頓反應(Fe2++H2O2+hv→Fe3++OH-+OH)形成的[63],亞硝酸鹽/硝酸鹽[64]和有機物[65]的光解在水相顆粒中也可以產生·OH自由基.
Volkamer等[66]的煙霧箱實驗結果表明,氣相中乙二醛與·OH自由基的反應不會限制乙二醛吸收到水相中的反應.從氣相中吸收的乙二醛首先在水相中進行水合反應,再與·OH自由基反應生成R?1,而R?1與O2反應生成過氧自由基.生成的過氧自由基一方面分解生成水合乙醛酸,另一方面與另外的過氧自由基反應生成烷氧自由基,并最終分解生成甲酸和水合二氧化碳.同樣,水合乙醛酸與·OH自由基反應生成草酸和二氧化碳.草酸與·OH自由基的反應是打破O-H鍵.根據Monod等[67-68]的估算方法,打破O-H鍵的速度約為打破C-H鍵速度的1/100~1/10,因此最后二氧化碳的形成過程較慢的.
甲基乙二醛在水相中比在氣相中更易與·OH自由基發生反應(甲基乙二醛在水相中的壽命大約是26 min,而在氣相中大約是0.9d)[11].從氣相中吸收的甲基乙二醛首先在水相中進行水合反應,再與·OH自由基和O2反應生成過氧自由基.生成的過氧自由基一方面分解生成丙酮酸,另一方面與另外的過氧自由基反應,最終生成乙酸和二氧化碳.丙酮酸與·OH自由基反應一方面最終分解生成乙酸、C2醛自由基和二氧化碳,另一方面與另外的過氧自由基反應,最終生成草酸和中草酸.值得注意的是,丙酮酸也會與H2O2反應生成乙酸、二氧化碳和水.
目前檢測大氣中二羰基化合物的方法是化學衍生法,常用的衍生劑有2,4-二硝基苯肼(dinitrophenyl,hydrazone,DNPH)[69]、五氟芐基羥胺(pentafluorobenzyl hydroxylamine,PFBHA)[70]和五氟苯肼(pentafluorophenyl hydrazine,PFPH)等[71-72].然后,利用高效液相色譜(high performance liquid chromatography,HPLC)或氣相色譜-質譜(gas chromatographymass spectrometry,GC/MS)進行分析.此類方法具有較高的靈敏度、較好的重現性以及能夠同時定量多種羰基化合物等優點.Kampf等[69]采用DNPH衍生,HPLC-ESI-MS/MS方法定量PM2.5中的乙二醛和甲基乙二醛,其中ESI為電噴霧離子(electrospray ion).結果顯示乙二醛和甲基乙二醛的回收率分別為100%和60%.鄒婷等[70]利用涂布PFBHA的Tenax-TA(一種吸附劑)采集了大氣中的氣相羰基化合物,并在上海市寶山區大氣中檢測到了13種單羰基化合物和2種二羰基化合物(乙二醛和甲基乙二醛).
環形溶蝕器/濾膜(annular denuder/filter pack,AD-FP)系統或者3層以上的濾膜(filter pack,FP)系統可實現對大氣中氣相和顆粒相二羰基化合物的同時采集.馮艷麗等[73]利用涂布DNPH的AD-FP系統對上海市寶山區和徐匯區的二羰基化合物水平進行分析.結果發現,在早高峰時段,乙二醛和甲基乙二醛的濃度較高,寶山區乙二醛的濃度要高于甲基乙二醛的濃度.Temime等[74]通過在環形溶蝕器內壁先涂布XAD-4吸附劑,再涂布PFBHA衍生劑的方法,證明了在采樣時間為10 min,流速為20 L/min的條件下,大多數羰基化合物(包括乙二醛和甲基乙二醛)的采集效率可達到90%以上,但當采樣時間延長時,其采集效率會有所下降.任青青等[75]也建立了涂布固體吸附劑XAD-4和衍生劑PFBHA的AD-FP系統,聯合GC/MS檢測,同時采集和檢測了大氣中氣相和顆粒相的二羰基化合物.王芳等[76]利用涂布PFBHA的FP系統同時采集大氣中顆粒相和氣相羰基化合物,通過GC/MS分析檢測到了13種單羰基化合物和2種二羰基化合物(乙二醛和甲基乙二醛),并對比分析了其他采樣點中乙二醛和甲基乙二醛的濃度,結果如表1所示.可知,乙二醛和甲基乙二醛的夏季濃度與西安市區[77-78]、山東泰山[33]的夏季濃度結果一致,但比日本森林[79]的夏季濃度要高出很多.
雖然上述衍生化方法可用來檢測大氣中氣相和顆粒相中的二羰基化合物(乙二醛和甲基乙二醛),但它們的缺點是需要長時間(大于4 h)采樣,采樣前需要涂布吸附劑和衍生化試劑,采樣后需要手動進行溶劑洗脫得到所需分析的目標物,耗時耗力且需要大量的有機溶劑.而在線檢測技術可以克服這一系列的缺點,因而受到越來越多的關注.

表1 不同采樣點大氣中二羰基化合物平均濃度的比較Table 1 Comparison of average concentration of dicarbonyl compounds in different sampling sites
近年來,在線檢測二羰基化合物(乙二醛和甲基乙二醛)的應用越來越多,其中有質子轉移反應質譜(proton transfer reaction-mass spectrometry,PTR-MS)技術[80]、差分光學吸收光譜(differential optical absorption spectroscope,DOAS)技術[81]、傅里葉轉換紅外光譜(Fourier transform infrared spectroscope,FTIR)技術[82]和固相微萃取-多通道在線氣相-氫火焰離子化檢測(solid phase microextraction-gas chromatography-flame ionization detector,SPME-GC-FID)技術等[83].
PTR-MS是一種軟離子化技術,是基于大氣中VOCs與水合氫離子(H3O+)發生的質子轉移反應.這類方法能夠應用于測量含氧揮發性有機物,如乙二醛和甲基乙二醛[84],但其缺點是對于相同m/z值的揮發性物質之間存在等壓干擾.SPME-GC-FID技術通過PFBHA濾膜衍生,可用6890HP GC-FID來定量乙二醛和甲基乙二醛在SPME濾膜上相應的衍生物.
DOAS技術和FTIR技術用于檢測二羰基化合物還處于實驗階段,目前并沒有商業化的儀器,因此也沒有得到廣泛的應用.
在線分析能明顯縮短采樣到分析的時間,有效減少從樣品采集到儀器分析過程中存在樣品揮發的損失,但在線儀器往往是大型、精密且昂貴的儀器,不適用于常規項目的檢測,也不易推廣.每種采樣分析方法都有其自身的優缺點,研究者應根據自身實驗的需求,進行適當選擇.
灰霾現象的頻繁發生引起了人們對PM2.5的高度關注,而SOA在四大城市的灰霾事件中平均占PM2.5總量的27%,激發了科研人員對SOA形成機理研究的興趣,因此二羰基化合物的研究也受到了越來越多的重視.目前已有的研究發現,二羰基化合物可以被主動吸收到云、霧和水相氣溶膠中,通過可逆、不可逆反應生成SOA,但二羰基化合物被吸收到顆粒相表面后生成的產物還不明確,需要進行更深入的研究.此外,在對大氣中二羰基化合物(乙二醛和甲基乙二醛)的采樣和分析中,如何提高時間分辨率,縮短采樣時間,減少樣品處理流程等還有待進一步的研究,因此在線檢測儀器的開發和研制也非常必要.
參考文獻:
[1]KANAKIDOU M,SEINFELD J H,PANDIs S N,et al.Organic aerosol and global climate modeling:a review[J].Atmospheric Chemistry and Physics,2005,5(4):1053-1123.
[2]ANDREAE M O,CRUTZEN P J.Atmospheric aerosols:biogeochemical sources and role in atmospheric chemistry[J].Science,1997,276:1052-1058.
[3]ZHANG R,SUH I,ZHAO J,et al.Atmospheric new particle formation enhanced by organic acids[J].Science,2004,304:1487-1490.
[4]HUANG R J,ZHANG Y L,BOZZETTI C,et al.High secondary aerosol contribution to particulate pollution during haze events in China[J].Nature,2014,514:218-222.
[5]ZHANG R.Getting to the critical nucleus of aerosol formation[J].Science,2010,328:1366-1367.
[6]ATKINsON R,BAULCH D L,COx R A,et al.Evaluated kinetic and photochemical data for atmospheric chemistry:volumeⅡ—gas phase reaction of organic species[J].Atmospheric Chemistry and Physics,2006,6:3625-4055.
[7]NIsHINO N,AREY J,ATKINsON R.Formation yields of glyoxal and methylglyoxal from the gas phase OH radical-initiated reactions of toluene,xylenes,and trimethylbenzenes as a function of NO2concentration[J].Journal of Physical Chemistry:Atmospheres,2010,114:10140-10147.
[8]SpAULDING R S,SCHADE G W,GOLDsTEIN A H,et al.Characterization of secondary atmospheric photooxidation products:evidence for biogenic and anthropogenic sources[J].Journal of Geophysical Research,2003,DOI:10.1029/2002JD002478.
[9]BETTERTON E A,HOFFMANN M R.Henry’s law constants of some environmentally important aldehydes[J].Environmental Science and Technology,1988,22:1415-1418.
[10]BLANDO J D,TURpIN B J.Secondary organic aerosol formation in cloud and fog droplets:a literature evaluation of plausibility[J].Atmospheric Environment,2000,34:1623-1632.
[11]LIM Y B,TURpIN B J.Chemical insights,explicit chemistry,and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase[J].Atmospheric Chemistry and Physics,2013,13:8651-8667.
[12]HEALD C L,JACOb D J,PARK R J,et al.A large organic aerosol source in the free troposphere missing from current models[J].Geophysical Research Letters,2005,DOI:10.1029/2005GL023831.
[13]VOLKAMER R,JIMENEZ J L,MARTINI F S,et al.Secondary organic aerosol formation from anthropogenic air pollution:rapid and higher than expected[J].Geophysical Research Letters,2006,DOI:10.1029/2006GL026899.
[14]KLEINMAN L I,DAUM P H,LEE Y N,et al.Aircraft observations of aerosol composition and ageing in New England and Mid-Atlantic States during the summer 2002 New England air quality study field campaign[J].Journal of Geophysical Research,2007,DOI:10.1029/2006JD007786.
[15]HEALD C L,JACOb D J,TURQUETY S,et al.Concentrations and sources of organic carbon aerosol in the free troposphere over North America[J].Journal of Geophysical Research,2006,DOI:10.1029/2006JD007705.
[16]FU T M,JACOb D J,WITTROCK F,et al.Global budgets of atmospheric glyoxal and methylglyoxal,and implications for formation of secondary organic aerosols[J].Journal of Geophysical Research:Atmospheres,2008,DOI:10.1029/2007JD009505.
[17]KROLL J H,NG N L,MURpHY S M,et al.Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds[J].Journal of Geophysical Research,2005,110:D23207.
[18]ZHAO J,LEVITT N P,ZHANG R,et al.Heterogeneous reactions of methyglyoxal in acidic media:implications for secondary organic aerosol form[J].Environmental Science and Technology,2006,40(24):7682-7687.
[19]GOMEZ M E,LIN Y,GUO S,et al.Heterogeneous chemistry of glyoxal on acidic solutions:a oligomerization pathway for secondary organic aerosol formation[J].Journal of Physical Chemistry:Atmospheres,2015,119:4457-4463.
[20]LIU W,ZHANG J,ZHANG L,et al.Estimating contribution of indoor and outdoor sources to indoor carbonyl concentration in three urban areas of the United States[J].Atmospheric Environment,2006,40:2202-2214.
[21]KALbERER M,PAULsEN D,SAx M,et al.Identification of polymers as major components of atmospheric organic aerosols[J].Science,2004,303:1659-1662.
[22]GUENTHER A B,KARL P T,HARLEY C,et al.Estimates of global terrestrial isoprene emissions using MEGAN[J].Atmospheric Chemistry and Physics,2006,6:3181-3210.
[23]XIAO Y,JACOb D J,TURQUETY S.Atmospheric acetylene and its relationship with CO as an indicator of air mass age[J].Journal of Geophysical Research,2007,DOI:10.1029/2006JD08268.
[24]YU J,FLAGAN R C,SEINFELD J H.Identification of products containing?COOH,?OH and ?C=O in atmospheric oxidation of hydrocarbons[J].Environmental Science and Technology,1998,32(16):2357-2370.
[25]FICK J,POMMER C L,ANDERssON B.Effect of OH radicals,relative humidity,and time on the composition of the products formed in the ozonolysis of α-pinene[J].Atmospheric Environment,2003,37:4087-4096.
[26]GUENTHER A B,HEwITT C N,ERICKsON D,et al.A global model of natural volatile organic compounds emissions[J].Journal of Geophysical Research,1995,100(D5):8873-8892.
[27]LIGGIO J,LI S M,MCLAREN R,et al.Heterogeneous reactions of glyoxal on particulate matter:identification of acetals and sulfate esters[J].Environmental Science and Technology,2005,391:532-391,541.
[28]PANKOw J F.An absorption model of gas particle partitioning of organic compounds in the atmosphere[J].Atmospheric Environment,1994,28(2):185-188.
[29]PANKOw J F.An absorption model of the gas aerosol partitioning involved in the formation of secondary organic aerosol[J].Atmospheric Environment,1994,28(2):189-193.
[30]TsIGARIDIs K,KANAKIDOU M.Global modeling of secondary organic aerosol in the troposphere:a sensitivity analysis[J].Atmospheric Chemistry and Physics,2003,3:1849-1869.
[31]HENNIGAN C J,BERGIN M H,DIbb J E,et al.Enhanced secondary organic aerosol formation due to water uptake by fine particles[J].Geophysical Research Letters,2008,DOI:10.1029/2008GL035046.
[32]WEbER R,SULLIVAN A P,PELTIER R E,et al.A study of secondary organic aerosol formation in the anthropogenic influenced southeastern United States[J].Journal of Geophysical Research,2007,DOI:10.1029/2007JD008408.
[33]KAwAMURA K,OKUZAwA K,AGGARwAL S G,et al.Determination of gaseous and particulate carbonyls(glycolaldehyde,hydroxyacetone,glyoxal,methylglyoxal,nonanal and decanal)in the atmosphere at Mt.Tai[J].Atmospheric Chemistry and Physics,2013,13:5369-5380.
[34]WARNECK P.In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere[J].Atmospheric Environment,2003,37:2423-2427.
[35]CARLTON A G,WIEDINMYER C,KROLL J H.A review of secondary organic aerosol(SOA)formation from isoprene[J].Atmospheric Chemistry and Physics,2009,9:4987-5005.
[36]CARLTON A G,TURpIN B J,LIM H J,et al.Link between isoprene and secondary organic aerosol (SOA):pyruvic acid oxidation yields low volatility organic acids in clouds[J].Geophysical Research Letters,2006,33:L06822.
[37]ALTIERI K E,CARLTON A G,LIM H J,et al.Evidence for oligomer formations in clouds:reactions of isoprene oxidation products[J].Environmental Science and Technology,2006,40:4956-4960.
[38]LIM H J,CARLTON A G,TURpIN B J.Isoprene forms secondary organic aerosol through cloud processing:model simulations[J].Environmental Science and Technology,2005,39:4441-4446.
[39]MATsUMOTO K,KAwAI S,IGAwA M.Dominant factors controlling concentrations of aldehydes in rain,fog,dew water,and in the gas phase[J].Atmospheric Environment,2005,39:7321-7329.
[40]MUNGER J W,COLLETT J,DAUbE J R,et al.Fog water chemistry at riverside California[J]. Atmospheric Environment,1990,24:185-205.
[41]BUxTON G V,MALONE T N,SALMON G A.Oxidation of glyoxal initiated by·OH in oxygenated aqueous solution[J].Journal of the Chemical Society,Faraday Transactions,1997,93:2889.
[42]SAREEN N,SCHwIER A N,SHApIRO E L,et al.Secondary organic material formed by methylglyoxal in aqueous aerosol mimics[J].Atmospheric Chemistry and Physics,2010,10:997-1016.
[43]ZHOU X,MOppER K.Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater:implications for air-sea exchange[J].Environmental Science and Technology,1990,24:1864-1869.
[44]SCHwIER A N,SAREEN N,MITROO D,et al.Glyoxal-methylglyoxal cross-reactions in secondary organic aerosol formation[J].Environmental Science and Technology,2010,44:6174-6182.
[45]JANG M,KAMENs R M.Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst[J].Environmental Science and Technology,2001,35(24):4758-4766.
[46]JANG M,CZOsCHKE N M,LEE S,et al.Heterogeneous atmospheric aerosol production by acidcatalyzed particle phase reaction[J].Science,2002,298(5594):814-817.
[47]JANG M,CAROLL B,CHANDROMOULI B,et al.Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols[J].Environmental Science and Technology,2003,37(17):3828-3837.
[48]SCHwEITZER F,MAGI L,MIRAbEL P,et al.Uptake rate measurements of methanesulfonic acid and glyoxal by aqueous droplets[J].Journal of Geophysical Research:Atmospheres,1998,102(3):593-600.
[49]HAsTINGs W P,KOEHLER C A,BAILEY E L,et al.Secondary organic aerosol formation by glyoxal hydration and oligomer formation:humidity effects and equilibrium shifts during analysis[J].Environmental Science and Technology,2005,39:8728-8735.
[50]LOEFFLER K W,KOEHLER C A,PAUL N M,et al.Oligomer formation in evaporating aqueous glyoxal and methylglyoxal solutions[J].Environmental Science and Technology,2006,40:6318-6323.
[51]祁騫,周學華,王文興.二次有機氣溶膠的水相形成研究[J].化學進展,2014,26(2/3):458-466.
[52]DE HAAN D O,CORRIGAN A L,TOLbERT M A,et al.Secondary organic aerosol formation by self-reactions of methyglyoxal and glyoxal in evaporating droplets[J].Environmental Science and Technology,2009,43:8184-8190.
[53]YAsMEEN F,SAURET N,GAL J F,et al.Characterization of oligomers from methylglyoxal under dark conditions:a pathway to produce secondary organic aerosol through cloud processing during nighttime[J].Atmospheric Chemistry and Physics,2010,10:3803-3812.
[54]RINCON A G,GUZMAN M I,HOFFMANN M R,et al.Optical absorptivity versus molecular composition of model organic aerosol matter[J].Journal of Physical Chemistry:Atmospheres,2009,113:10512-10520.
[55]ANDRACCHIO A,CAVICCHI C,TONELLI D,et al.A new approach for the fractionation of watersoluble organic carbon in atmospheric aerosols and cloud drops[J].Atmospheric Environment,2002,36:5097-5107.
[56]KERMINEN V M,LIHAVAINEN H,KOMppULA M,et al.Direct observational evidence linking atmospheric aerosol formation and cloud droplet activation[J].Geophysical Research Letters,2005,DOI:10.1029/2005GL023130.
[57]ORTIZ-MONTALVO D L,SCHwIER A N,LIM Y B,et al.Volatility of methyglyoxal cloud SOA formed through OH radical oxidation and droplet evaporation[J].Atmospheric Environment,2016,130:142-152.
[58]MCNEILL V F.Aqueous organic chemistry in the atmosphere:sources and chemical processing of organic aerosols[J].Environmental Science and Technology,2015,49:1237-1244.
[59]HEIINIGAN C J,BERGIN M H,RUssELL A G,et al.Gas/particle partitioning of water-soluble organic aerosol in Atlanta[J].Atmospheric Chemistry and Physics,2009,9(11):3613-3628.
[60]WAxMAN E M,DZEpINA K,ERVENs B,et al.Secondary organic aerosol formation from semiand intermediate-volatility organic compounds and glyoxal:relevance of O/C as a tracer for aqueous multiphase chemistry[J].Geophysical Research Letters,2013,40(5):978-982.
[61]FAUsT B C,ALLEN J M.Aqueous-phase photochemical formation of hydroxyl radical in authentic cloud waters and fog waters[J].Environmental Science and Technology,1993,27:1221-1224.
[62]LIM Y B,TAN Y,PERRI M J,et al.Aqueous chemistry and its role in secondary organic aerosol (SOA)formation[J].Atmospheric Chemistry and Physics,2010,10:10521-10539.
[63]ARAKAKI T,FAUsT B C.Sources,sinks,and mechanisms of hydroxyl radical(OH)photo production and consumption in authentic acidic continental cloud waters from Whiteface Mountain,New York:the role of Fe(r)(r=Ⅱ,Ⅲ)photochemical cycle[J].Journal of Geophysical Research,1998,103:3487-3504.
[64]HULLAR T,ANAsTAsIO C.Yields of hydrogen peroxide from the reaction of hydroxyl radical with organic compounds in solution and ice[J].Atmospheric Chemistry and Physics,2011,11:7209-7222.
[65]DONG M M,ROsARIO-ORTIZ F L.Photochemical formation of hydroxyl radical from effluent organic matter[J].Environmental Science and Technology,2012,46:3788-3794.
[66]VOLKAMER R,ZIEMANN P J,MOLINA M J.Secondary organic aerosol formation from acetylene(C2H2):seed effect on SOA yield due to organic photochemistry in the aerosol aqueous phase[J].Atmospheric Chemistry and Physics,2009,9:1907-1928.
[67]MONOD A,POULAIN L,GRYbERT S,et al.Kinetics of OH-initiated oxidation of oxygenated organic compounds in the aqueous phase:new rate constants,structure-activity relationships and atmospheric implications[J].Atmospheric Environment,2005,39:7667-7688.
[68]MONOD A,DOUssIN J F.Structure-activity relationship for the estimation of OH-oxidation rate constants of aliphatic organic compounds in the aqueous phase:alkanes,alcohols,organic acids and bases[J].Atmospheric Environment,2008,42:7611-7622.
[69]KAMpF C J,BONN B,HOFFMANN T.Development and validation of a selective HPLC-ESIMS/MS method for the quantification of glyoxal and methylglyoxal in atmospheric aerosols (PM2.5)[J].Analytical and Bioanalytical Chemistry,2011,401(10):3115-3124.
[70]鄒婷,馮艷麗,付正茹,等.五氟芐基羥胺衍生與GC/MS聯用分析大氣中的單羰基化合物和多羰基化合物[J].環境科學學報,2012,32(11):2718-2724.
[71]PANG X B,LEwIs A C,HAMILTON J F.Determination of airborne carbonyls via pentafluorophenylhydrazine derivatisation by GC-MS and its comparison with HPLC method[J].Talanta,2011,85:406-414.
[72]HO S S H,YU J Z.Determination of airborne carbonyls:comparison of a thermal desorption/GC method with the standard DNPH/HPLC method[J].Environmental Science and Technology,2004,38:862-870.
[73]馮艷麗,牟翠翠,付正茹,等.涂布2,4-二硝基苯肼的環形溶蝕器/濾膜系統和高效液相色譜法檢測大氣中二羰基化合物[J].分析化學,2011,39(11):1653-1658.
[74]TEMIME B,HEALY R M,WENGER J C,et al.A denuder-filter sampling technique for the detection of gas and particle phase carbonyl compounds[J].Environmental Science and Technology,2007,41:6514-6520.
[75]任青青,馮艷麗,王芳,等.大氣中氣相和顆粒相羰基化合物的AD-FP系統采集和GC-MS分析[J].上海大學學報:自然科學版,2015,21(6):672-684.
[76]王芳,馮艷麗,姜知明,等.上海大氣中氣相和顆粒相羰基化合物研究[J].科技導報,2015,33(6):13-19.
[77]HO S H H,DAI W T,CAO J J,et al.Seasonal variations of mono carbonyl and dicarbonyl in urban and sub-urban sites of Xi’an,China[J].Environ Monit Assess,2014,186:2835-2849.
[78]DAI W T,HO S H H,HO K F,et al.Characterization of particulate-phase high molecular weight monocarbonyls and dicarbonyls in urban atmosphere of Xi’an,China[J].Aerosol and Air Quality Research,2012,12:892-901.
[79]MATsUNAGA S,MOCHIDA M,KAwAMURA K.Variation on the atmospheric concentrations of biogenic carbonyl compounds and their removal processes in the northern forest at Moshiri,Hokkaido Island in Japan[J].Journal of Geophysical Research:Atmosphere,2004,109(D4):1-9.
[80]BLAKE R S,MONKs P S,ELLIs A M.Proton transfer reaction mass spectrometry:principles and applications[J].Chemical Review,2009,109:861-896.
[81]MACDONALD S M,OETJEN H,MAHAJAN A S,et al.DOAS measurements of formaldehyde and glyoxal above a South-East Asian tropical rainforest[J].Atmospheric Chemistry and Physics,2012,12:5949-5962.
[82]PROFETA L T M,SAMs R L,JOHNsON T J,et al.Quantitative infrared intensity studies of vaporphase glyoxal,methylglyoxal,and 2,3-butanedione(diacetyl)with vibrational assignments[J]. Journal of Physical Chemistry:Atmospheres,2012,115:9886-9900.
[83]GOMEZ A E,MORENO M V,GLIGOROVsKI S,et al.Characterization and calibration of active sampling solid phase microextraction applied to sensitive determination of gaseous carbonyls[J].Talanta,2012,88:252-258.
[84]PANG X,LEwIs A C,RICKARD A R,et al.A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques[J]. Atmospheric Measurement Techniques,2014,7:373-389.
中圖分類號:X 511
文獻標志碼:A
文章編號:1007-2861(2016)02-0159-13
DOI:10.3969/j.issn.1007-2861.2016.01.012
收稿日期:2016-01-16
基金項目:國家自然科學基金資助項目(41173098)
通信作者:馮艷麗(1974—),女,研究員,博士,研究方向為大氣中的羰基化合物.E-mail:fengyanli@shu.edu.cn
Dicarbonyl compounds and formation secondary organic aerosol in atmosphere
ZHOU Huan,FENG Yanli,JIANG Zhiming,QIU Yiqin,ZHANG Wensheng
(Institute of Environmental Pollution and Health,School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China)
Abstract:Contribution of secondary organic aerosol(SOA)to atmospheric haze is a hot topic in atmospheric chemistry.Dicarbonyl compounds(glyoxal and methylglyoxal)are intermediate products in atmospheric photochemical reactions,greatly contributing to the formation and growth of SOA.Dicarbonyl compounds in the atmosphere mainly come from biogenic sources such as isoprene and anthropogenic source such as acetylene and other volatile organic compounds oxidation.Dicarbonyl compounds can form SOA by gas particle partitioning,which is a reversible process.Dicarbonyl compounds can produce significant aerosol yields,attributed to hydration,polymerization and oxidation and other reactions to produce low volatile products,which is an irreversible process.A common detection method of dicarbonyl compounds is to use gas chromatography-mass spectrometry (GC/MS)after derivatization.
Key words:dicarbonyl compound;gas particle partitioning;reversible reaction;irreversible reaction;secondary organic aerosol(SOA)