梁冬施, 陳利亞, 洪芳芳, 林 晶, 溫正旺, 李秀翠, 蔡曉紅△
(溫州醫科大學附屬第二醫院育英兒童醫院1兒童急診科,2兒童呼吸科,3兒童感染科,4兒童神經科,浙江溫州325000)
慢性間歇性低氧對幼鼠腦區AMPK通路的影響*
梁冬施1, 陳利亞2, 洪芳芳2, 林 晶2, 溫正旺3, 李秀翠4, 蔡曉紅2△
(溫州醫科大學附屬第二醫院育英兒童醫院1兒童急診科,2兒童呼吸科,3兒童感染科,4兒童神經科,浙江溫州325000)
目的:探討慢性間歇性低氧對幼鼠腦區腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)通路的影響。方法:第一部分:將3~4周齡的SD幼鼠隨機分為4組(n=8):2周空氣模擬對照(2AC)組、2周慢性間歇低氧(2IH)組、4周空氣模擬對照(4AC)組和4周慢性間歇低氧(4IH)組。第二部分:將3~4周齡的SD幼鼠隨機分為2組(n=8):4周慢性間歇性低氧組(4IH)和4周慢性間歇性低氧用藥組(4IHI)。造模結束后行八臂迷宮測試,TUNEL法檢測細胞凋亡,RT-qPCR法了解腺苷A2a受體的mRNA表達,Western blot法測定AMPK及哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)的磷酸化水平。結果:與對照組相比,2IH組和4IH組的參考記憶錯誤(RME)、工作記憶錯誤(WME)和總錯誤(TE)次數明顯增加,差異有統計學顯著性(P<0.01);4IH與2IH組比較,各項錯誤次數亦明顯增加(P<0.01)。4IHI組比4IH組RME、WME和TE次數減少,差異有統計學顯著性(P<0.01)。與對照組相比,2IH組和4IH組海馬和前額皮層區的神經元凋亡增多,以4IH組凋亡明顯(P<0.05);4IHI組凋亡較4IH組減少(P<0.05)。2IH組和4IH組海馬和前額皮層區腺苷受體A2a的mRNA和AMPK磷酸化蛋白的水平升高,mTOR磷酸化蛋白的水平下降,4IH組較2IH組改變明顯(P<0.05)。4IHI組較4IH組海馬和前額皮層區的AMPK磷酸化蛋白水平下降,mTOR磷酸化蛋白水平升高(P<0.05)。結論:慢性間歇性低氧誘導神經元凋亡,從而引起幼鼠學習記憶障礙,呈時間依賴性。慢性間歇性低氧上調腺苷A2a受體,激活海馬和前額皮層區AMPK,抑制mTOR的活性,誘導神經元凋亡,進而影響幼鼠學習記憶能力。
慢性間歇性低氧;腺苷A2a受體;腺苷酸活化蛋白激酶;哺乳動物雷帕霉素靶蛋白;海馬;前額皮層
慢性間歇性低氧是阻塞性睡眠呼吸暫停綜合征(obstructive sleep apnea-hypopnea syndrome,OSAHS)的病理生理過程,類似缺氧-再灌注過程,對身體各器官均有損害作用,特別對神經元,可造成OSAHS兒童認知功能下降[1]。目前國內外研究表明,OSAHS對神經元的損傷主要包括各種氧化應激途徑、凋亡途徑引起神經元凋亡。腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)是能量調控家族中的關鍵蛋白,在神經系統中有廣泛的分布,與神經細胞的存亡密切相關。在神經細胞缺血、低氧時,AMP/ ATP比值改變[2],產生大量細胞因子及相關代謝產物,包括如腺苷、促炎癥、免疫因子,其中腺苷作用較顯著。腺苷通過腺苷受體可誘導多條途徑活化[3-4],特別是腺苷受體A2a誘導的AMPK途徑目前較為受關注。AMPK被激活,轉化為磷酸化 AMPK(p-AMPK),通過 AMPK-哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)途徑控制著細胞凋亡和生長[5-6]。在小鼠腦缺血再灌注模型中,神經元缺血后AMPK含量明顯增高,同時腦梗死面積增大[7]。在體外應用AMPK激動劑后人神經母細胞瘤細胞出現凋亡,提示AMPK可調控神經系統細胞凋亡發生。而腺苷受體-AMPK-mTOR通路是生存、凋亡調節重要途徑,特別在神經元。因此本研究通過建立慢性間歇性低氧幼鼠模型,觀察幼鼠神級行為及相關功能區細胞凋亡情況,采用RT-qPCR了解前額皮層區和海馬區腺苷A2a受體的mRNA表達情況及Western blot法檢測相應腦區p-AMPK和pmTOR蛋白水平的改變,初步探討慢性間歇性低氧對幼鼠前額皮層區和海馬區損害機制。
1 實驗動物
SPF級雄性SD幼鼠48只,體重100~120克,由溫州醫學院實驗動物中心提供。第一部分:按隨機數字表法分為4組(n=8):2周空氣模擬對照組(2AC)、2周慢性間歇低氧組(2IH)、4周空氣模擬對照組(4AC)和4周慢性間歇低氧組(4IH)。第二部分:按隨機數字表法分為2組(n=8):4周慢性間歇低氧組(4IH)和4周給藥組(4IHI)。4IHI組每天進入艙體前0.5 h,予腹腔注射AMPK抑制劑compound C 11.2 mg/kg。
2 OSAHS模型的建立
參照文獻[8]建立OSAHS模型,艙體60 cm×22 cm×16 cm,連接氮氣管道、氧氣管道(或空氣壓縮泵)并由氣體流量控制閥控制。氧艙側壁各有4個單向進氣、排氣閥;艙壁各有4個單向進氣、出氣閥。艙體內有CO2吸附劑,保證CO2濃度<0.01%。艙內壓力始終保持常壓,溫度維持在22~24℃,濕度在40%~50%范圍。O2濃度、CO2濃度、溫度、濕度均可被測量,實時顯示。90 s為1個循環,通氮氣(0.3 kP)30 s,停30 s;通氧氣(25 L/min)12 s,停18 s;氧濃度上升并維持在(21.0±0.5)%約30 s。低氧時艙內氧濃度波動在(10.0±1.5)%,復氧時艙內氧濃度波動在(21.0±0.5)%,見圖1。并行模型驗證,即造模2 h后,在慢性間歇性低氧1個周期內的5個時點,取幼鼠動脈血行動脈血氣分析,檢測氧分壓(oxygen partial pressure,PO2)及氧飽和度(oxygen saturation,SO2)[8]。驗證造模后,4組實驗動物放入對應實驗艙內,艙外用黑色布遮蓋模擬黑夜時間,每天7.5 h,出艙后日光燈照射模擬白天時間,造模時間分別為2周及4周。
3 實驗方法
3.1 八臂迷宮實驗 實驗中保持溫度22~24℃、濕度40%~50%,12 h光照,自由飲水,限制進食。將幼鼠置于迷宮中適應2 d,每次放2只,使其自由活動和攝取飼餌15 min,每日1次。適應后進行每日1次的訓練,每次訓練時,8臂中只有4臂放置餌料(分別為1、2、4和7號臂)。訓練時幼鼠放在迷宮中央區,中央區四周用門關住,15 s后門開放,幼鼠可選擇進入任意一臂攝餌,待吃掉所有臂上餌料或時間超過10 min視為訓練結束。總錯誤(total error,TE)次數:大鼠進入有餌的臂且攝取餌為1次正確選擇,否則為錯誤選擇;工作記憶錯誤(working memory error,WME)次數:重復進入已吃過食物臂的次數;參考記憶錯誤(reference memory error,RME)次數:進入不放餌臂的次數;總時間(total time,TT):完成1次訓練的時間。

Figure 1.The changes of oxygen concentration in chronic intermittent hypoxia chamber.圖1 慢性間歇性低氧氧艙內一個循環氧濃度變化圖
3.2 取材 實驗結束后,隨機取幼鼠每組6只,予10%水合氯醛麻醉,行心臟灌注,并迅速斷頭,取左、右海馬及前額葉皮層,放入凍存管,置液氮保存。隨機取每組幼鼠2只,心臟灌注多聚甲醛,迅速斷頭取腦,取海馬及皮層。
3.3 TUNEL實驗 將組織進行多聚甲醛固定、脫水、透明、浸蠟、包埋、切片后按TUNEL檢測試劑說明書步驟操作,隨機計算6個不同高倍視野(×400)下凋亡細胞數,計算凋亡指數(apoptoic index,AI): AI(%)=凋亡細胞數/計數細胞總數×100%。其中4IH組及4IHI組予DAB復染,觀察凋亡情況。
3.4 RT-qPCR法測定幼鼠海馬和前額葉皮層區腺苷A2a受體的mRNA表達 按照TRIzol提取試劑說明書抽提RNA,并測定RNA濃度,按RNA逆轉錄試劑盒(Fermentas公司)說明書進行逆轉錄,按實時熒光定量PCR操作要求在96孔中加入引物(由上海基康生物工程有限公司合成,序列見表1)、SYBR Green I、模板、水總體積為20 μL,混勻后在Roche LightCycler 480中進行實時定量PCR分析,實驗結束,用LightCycler 480 15.0軟件處理實驗結果。

表1 引物序列Table 1.The sequence of the primers for RT-qPCR
3.5 Western blot法檢測海馬及前額葉皮層組織中p-AMPK和p-mTOR蛋白含量 蛋白裂解液提取蛋白,采用BCA試劑盒(Pierce)進行蛋白濃度測定,按分子大小加入10%(或5%)分離膠、5%(或4%)濃縮膠制膠,電泳、轉膜、封閉、孵育,孵育采用 I抗孵育18~24 h(AMPK和mTOR濃度均為1∶1 000),4℃孵育過夜,加II抗(1∶5 000),2 h后加化學發光檢測試劑(試劑A∶試劑B=1∶1)反應5 min,曝光。采用Gel-Pro凝膠分析軟件分析。蛋白相對表達水平=目的蛋白條帶累積吸光度(IA)/內參照條帶IA。
4 統計學分析
計量資料數據呈正態分布采用均數±標準差(mean±SD)表示,方差齊單因素兩組間比較采用t檢驗;方差齊單因素兩組以上比較采用單因素方差分析;方差齊組間比較采用SNK-q檢驗,方差不齊則采用Tamhane’s T2檢驗。非正態分布數據用中位數表示,兩組間比較用兩獨立樣本Mann-Whitney U檢驗,多組間比較用Kruskal-Wallis H檢驗。所有數據用SPSS 17.0統計軟件處理分析,以P<0.05為差異有統計學意義。
1 模型驗證
慢性間歇性低氧組動脈血氣分析結果顯示,最低PO2為(43±4)mmHg,最低SO2為(76±3)%,慢性間歇性低氧周期內PO2與SO2變化明顯;對照組動脈血氣分析結果顯示,PO2和SO2分別為(96±1) mmHg和(97±4)%,取血時點與慢性間歇性低氧組相同,各時點動脈血氣差異不明顯,見圖2。
2 八臂迷宮測試行為學檢測結果
與2AC組和4AC組相比,2IH組和4IH組的RME、WME和TE次數明顯增加,差異有統計學顯著性(P<0.01)。4IH組各項錯誤次數亦比2IH組明顯增加(P<0.01),見表2。與4IH組比,4IHI組錯誤數明顯減少(P<0.01),見表3。

Figure 2.The effect of chronic intermittent hypoxia on the changes of PO2and SO2in the arterial blood of the rats.Mean±SD.n=5.A:simulated air control group;B: chronic intermittent hypoxia group.圖2 慢性間歇性低氧對動脈血PO2和SO2的影響

表2 各組幼鼠RME、WME和TE的比較Table 2.The changes of RME,WME and TE in the young rats with different treatments(Mean±SD.n=8)

表3 AMPK抑制劑對幼鼠RME、WME和TE的影響Table 3.The changes of RME,WME and TE in the young rats with different treatments between 4IH group and 4IHI group(Mean±SD.n=8)
3 神經元凋亡結果
分別與2AC組和4AC組相比,2IH組和4IH組的海馬和前額皮層區神經元凋亡增多,差異有統計學顯著性(P<0.05);與2IH組比,4IH組海馬和前額皮層區神經元凋亡增多,差異有統計學顯著性(P<0.01);2AC組與4AC組比較,海馬和前額皮層神經元凋亡指數的差異無統計學顯著性,見圖3、表4。與4IH組比,4IHI組海馬和前額皮層區細胞凋亡減少,差異有統計學顯著性(P<0.05),見圖3、表5。

Figure 3.The TUNEL staining in hippocampus and prefrontal cortex.圖3 海馬和皮層TUNEL熒光染色
4 RT-PCR檢測幼鼠腦區腺苷A2a受體mRNA的表達
與對照組相比,2IH組和4IH組海馬和前額皮層區腺苷A2a受體的mRNA表達升高,4IH組較2IH組升高更明顯,差異均有統計學顯著性(P<0.05);2AC組與4AC組比較,海馬和前額皮層區腺苷A2a的mRNA表達差異無統計學顯著性(P>0.05),見表4。

表4 幼鼠海馬及前額皮層的神經元凋亡指數和腺苷A2a受體mRNA表達量的比較Table 4.The apoptotic index(AI)and relative mRNA expression of adenosine A2a receptor(A2aR)in the hippocampal and forehead cortical tissues in the young rats(Mean±SD.n=2~3)

表5 AMPK抑制劑對幼鼠神經元調亡的影響Table 5.The apoptotic index(AI)in the hippocampal and forehead cortical tissues in the young rats between 4IH and 4IHI groups(%.Mean±SD.n=3)
5 Western blot法檢測幼鼠腦區p-AMPK和 pmTOR的蛋白水平
與對照組比,2IH和4IH組海馬和前額皮層區的p-AMPK蛋白含量增加,4IH組較2IH組增加明顯,差異有統計學顯著性(P<0.05),見圖4、表6;與對照組相比,2IH組和4IH組海馬和前額皮層區的pmTOR蛋白含量下降,4IH組較2IH組下降更明顯,差異有統計學顯著性(P<0.05);海馬和前額皮層區的p-AMPK和p-mTOR的蛋白含量在2AC組和4AC組之間的差異無統計學顯著性(P>0.05);與4IH組比,4IHI組海馬和前額皮層區的p-AMPK蛋白含量下降,p-mTOR蛋白含量升高,差異有統計學顯著性(P<0.05),見圖4、表7。

Figure 4.The protein levels of p-AMPK and p-mTOR in the hippocampal and forehead cortical among groups.圖4 各組間海馬和前額皮層區p-AMPK和p-mTOR蛋白的含量

表6 SD幼鼠腦區p-AMPK和p-mTOR蛋白水平的比較Table 6.The protein levels of p-AMPK and p-mTOR in the hippocampal and forehead cortical tissues in the young rats(Mean±SD.n=3)

表7 AMPK抑制劑對幼鼠神經元p-AMPK及p-mTOR的影響Table 7.The protein levels of p-AMPK and p-mTOR in the hippocampal and forehead cortical tissues in the young rats between 4IHI and 4IHI groups(Mean±SD.n=3)
睡眠呼吸暫停綜合征在成人和兒童都是較常見的一種臨床病癥,兒童發病率在1%~3%之間,成人發病率在2%~4%之間[9]。OSAHS的主要致病機制為反復的低氧-復氧循環過程,本模型中可見最低PO2為(43±4)mmHg,最低SO2為(76±3)%,復氧后可見氧分壓及氧飽和度可上升至95%以上,并隨90s的周期波動。與OSAHS患者的血液內氧分壓及氧飽和度變化一致。我們前期實驗[8]驗證了慢性間歇性低氧可模擬OSAHS的病理生理變化。目前認為OSAHS可累及多個系統,如內分泌、心血管、神經系統。在OSAHS患兒神經系統癥狀最為突出,主要表現為認知功能障礙。O’Brien曾對35例OSAHS兒童進行研究,發現OSAHS兒童存在注意力不集中、執行能力下降、語言能力下降、學習能力下降[10],而經過手術或正壓通氣治療后的兒童夜間血氧飽和度下降程度減小,神經系統癥狀改善,說明OSAHS夜間低氧對兒童大腦產生損傷。OSAHS夜間低氧模式即慢性間歇性低氧,更多的臨床資料[11]及實驗模型研究[12]證實,慢性間歇性低氧導致腦結構、功能、生理發生改變[13]。本實驗研究結果顯示慢性間歇性低氧組幼鼠的八臂迷宮實驗錯誤率增加,提示不同程度出現認知功能異常。
慢性間歇低氧造成的腦損傷主要表現為神經元細胞的凋亡,誘發細胞凋亡的確切機制目前尚未完全明確,近20年來研究發現,腺苷也參與啟動細胞凋亡信號。腺苷在體內分解迅速,可與腺苷受體(腺苷A1、A2a或A2b受體)結合產生各種相關代謝反應,而腺苷A2a受體則是其參與凋亡的重要途徑。目前證實的是可以通過使用腺苷 A2a受體拮抗劑[14]和腺苷A2a受體基因敲除[15]的方法來減少腦損傷和神經元凋亡,A2a受體激活PKA途徑可導致神經元損傷。AMPK為PKA重要的下游蛋白,有研究表明運動神經元中腺苷A2a受體可通過激活PKA途徑,抑制AMPK的活性[16],導致人抗原R(HuR)異常分布,從而引起神經元退行性改變。但本實驗結果提示腺苷A2a受體的表達升高,并沒有抑制AMPK的活性,反而AMPK活性蛋白增多,這可能與慢性間歇性低氧導致的改變相關。
AMPK是能量調控家族中的關鍵蛋白,在腦組織低氧等應激改變都可影響AMPK的表達[17],腺苷A2a受體的激活可顯著增加AMPK磷酸化,增加其活性[18]。AMPK處于代謝的中心位置,同時可通過AMPK-mTOR途徑決定細胞代謝發展狀態。但缺氧后腦組織中活化或磷酸化的AMPK作用仍存在爭議。研究顯示在組織缺血時,激活AMPK可起保護作用,AMPK通過改變細胞內AMP水平減少組織凋亡;體外實驗顯示,應用少量 AMPK激動劑激活AMPK,可減少海馬神經元及膠質細胞凋亡,避免低血糖應激、谷氨酸毒性、神經酰胺等對海馬及膠質細胞的損害[19]。但研究得出相反的結論,腦組織缺血、缺氧后過度激活AMPK活性,造成細胞毒性作用,致細胞凋亡[20]。在人神經母細胞瘤SH-SY5Y細胞中,予AMPK激動劑后,發現成纖維細胞凋亡[21],同樣的結果顯示,在腦皮層組織中激活AMPK,皮層神經元發生凋亡[22]。我們研究發現慢性間歇性低氧2IH組和4IH組較對照組海馬、前額皮層區p-AMPK表達增高,4IH組表達增加更為明顯;同時2IH組和4IH組較對照組腦區凋亡細胞增多,4IH組較2IH組增加更為明顯。這說明慢性間歇性低氧后,AMPK激活,致慢性間歇性低氧神經元發生凋亡,影響認知功能。而予AMPK抑制劑后,4IHI組腦區細胞凋亡減少,八臂迷宮試驗錯誤率下降。
mTOR是AMPK重要的下游途徑,是保守的絲氨酸/蘇氨酸蛋白激酶,與AMPK共同調節細胞增殖、凋亡。當周圍環境不利于生長如缺氧、糖含量降低等,通過mTOR調節,合成代謝減少、分解代謝增加[23]。在缺氧條件下,AMPK激活,mTOR活性抑制,蛋白的合成下降,并通過各種途徑轉換信號,比如轉錄更多的低氧誘導因子、4E-BP1,S6K和S6脫磷酸化作用等,從而適應低氧環境。最新研究表明低氧通過mTOR途徑損傷海馬神經干細胞,從而影響幼鼠海馬神經干細胞的增殖發育,進而影響幼鼠認知[24]。我們研究表明2IH組、4IH組較對照組海馬、皮層區AMPK表達升高,mTOR磷酸化蛋白水平減低,4IH組下降更為明顯;說明AMPK升高,mTOR下降,最終導致神經元凋亡,并且導致認知功能下降。而予AMPK抑制劑后AMPK表達下降,p-mTOR水平升高,八臂迷宮錯誤率下降。
本研究只初步觀察了慢性間歇性低氧對幼鼠腦區腺苷A2a受體、AMPK、mTOR mRNA及p-AMPK、p-mTOR蛋白水平的影響及給予AMPK抑制劑后p-AMPK、p-mTOR蛋白水平的變化,說明慢性間歇性低氧可致海馬、皮層區細胞凋亡,通過腺苷A2a受體活化,激活AMPK活性、抑制mTOR活性,我們初步推測腺苷A2a受體-AMPK-mTOR通路激活參與慢性間歇性低氧凋亡過程,進而影響學習記憶過程。
[1] Halbower AC,Degaonkar M,Barker PB,et al.Childhood obstructive sleep apnea associates with neuropsychological deficits and neuronal brain injury[J].PLoS Med,2006,3(8):e301.
[2] Ramamurthy S,Ronnett GV.Developing a head for energy sensing:AMP-activated protein kinase as a multifunctional metabolic sensor in the brain[J].J Physiol,2006,574 (Pt 1):85-93.
[3] Day YJ,Huang L,Mcduffie MJ,et al.Renal protection from ischemia mediated by A2Aadenosine receptors on bone marrow-derived cells[J].J Clin Invest,2003,112 (6):883-891.
[4] Yu L,Huang Z,Mariani J,et al.Selective inactivation or reconstitution of adenosine A2Areceptors in bone marrow cells reveals their significant contribution to the development of ischemic brain injury[J].Nat Med,2004,10 (10):1081-1087.
[5] An HK,Kim KS,Lee JW,et al.Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells[J].PLoS One,2014,9(12): e114607.
[6] Inoki K,Zhu T,Guan KL.TSC2 mediates cellular energy response to control cell growth and survival[J].Cell,2003,115(5):577-590.
[7] Mccullough LD,Zeng Z,Li H,et al.Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke[J].J Biol Chem,2005,280(21): 20493-20502.
[8] 李秀翠,蔡曉紅,溫正旺,等.間歇性低氧動物模型的建立及驗證[J].醫學研究雜志,2012,41(7):57-61.
[9] Sardó O,Pérez-Yarza EG,Aldasoro A,et al.Obstructive sleep apnea-hypopnea syndrome in children is not associated with obesity[J].Arch Bronconeumol,2006,42(11): 583-587.
[10]O'Brien LM,Mervis CB,Holbrook CR,et al.Neurobehavioral implications of habitual snoring in children[J].Pediatrics,2004,114(1):44-49.
[11]Engleman H,Joffe D.Neuropsychological function in obstructive sleep apnoea[J].Sleep Med Rev,1999,3(1): 59-78.
[12]Gozal D,Row BW,Kheirandish L,et al.Increased susceptibility to intermittent hypoxia in aging rats:changes in proteasomal activity,neuronal apoptosis and spatial function[J].J Neurochem,2003,86(6):1545-1552.
[13]Shan X,Chi L,Ke Y,et al.Manganese superoxide dismutase protects mouse cortical neurons from chronic intermittent hypoxia-mediated oxidative damage[J].Neurobiol Dis,2007,28(2):206-215.
[14]Melani A,Gianfriddo M,Vannucchi MG,et al.The selective A2Areceptor antagonist SCH 58261 protects from neurological deficit,brain damage and activation of p38 MAPK in rat focal cerebral ischemia[J].Brain Res,2006,1073-1074(1):470-480.
[15]Chen JF,Huang Z,Ma J,et al.A2Aadenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice[J].J Neurosci,1999,19(21):9192-9200.
[16]Liu YJ,Lee LM,Lai HL,et al.Aberrant activation of AMP-activated protein kinase contributes to the abnormal distribution of HuR in amyotrophic lateral sclerosis[J].FEBS Lett,2015,589(4):432-439.
[17]Li J,Mccullough LD.Effects of AMP-activated protein kinase in cerebral ischemia[J].J Cereb Blood Flow Metab,2010,30(3):480-492.
[18]Godoy V,Banales JM,Medina JF,et al.Functional crosstalk between the adenosine transporter CNT3 and purinergic receptors in the biliary epithelia[J].J Hepatol,2014,61(6):1337-1343.
[19]Culmsee C,Monnig J,Kemp BE,et al.AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation[J].J Mol Neurosci,2001,17(1): 45-58.
[20]Jung JE,Lee J,Ha J,et al.5-Aminoimidazole-4-carboxamide-ribonucleoside enhancesoxidative stress-induced apoptosis through activation of nuclear factor-κB in mouse Neuro 2a neuroblastoma cells[J].Neurosci Lett,2004,354(3):197-200.
[21] Garcia-Gil M,Pesi R,Perna S,et al.5’-aminoimidazole-4-carboxamide riboside induces apoptosis in human neuroblastoma cells[J].Neuroscience,2003,117(4): 811-820.
[22]Nakatsu Y,Kotake Y,Hino A,et al.Activation of AMP-activated protein kinase by tributyltin induces neuronal cell death[J].Toxicol Appl Pharmacol,2008,230(3):358-363.
[23]Wullschleger S,Loewith R,Hall MN.TOR signaling in growth and metabolism[J].Cell,2006,124(3):471-484.
[24]Raman L,Kong X,Kernie SG.Pharmacological inhibition of the mTOR pathway impairs hippocampal development in mice[J].Neurosci Lett,2013,541(9):9-14.
(責任編輯:林白霜,羅 森)
Effect of chronic intermittent hypoxia on AMPK pathway in young rats
LIANG Dong-shi1,CHEN Li-ya2,HONG Fang-fang2,LIN Jing2,WEN Zheng-wang3,LI Xiu-cui4,CAI Xiao-hong2
(1Department of Emergency,2Department of Pneumology,3Department of Infectious Diseases,4Department of Neurology,The Second Affiliated Hospital&Yuying Children’s Hospital,Wenzhou Medical University,Wenzhou 325000,China.E-mail:caixh839@sina.com)
AIM:To investigate the effect of chronic intermittent hypoxia on AMP-activated protein kinase (AMPK)pathway in the brain of young rats.METHODS:Part one:SD mice(3~4 weeks old)were randomly divided into 4 groups(n=8):simulated air control group for 2 weeks(2AC),chronic intermittent hypoxia group for 2 weeks (2IH),simulated air control group for 4 weeks(4AC)and chronic intermittent hypoxia group for 4 weeks(4IH).Part two:SD mice(3~4 weeks old)were randomly divided into 2 groups(n=8):chronic intermittent hypoxia group for 4 weeks(4IH)and chronic intermittent hypoxia group treated with AMPK inhibitor for 4 weeks(4IHI).After modeling,the eight-arm maze test was performed.TUNEL method was used to detect the neuronal apoptosis in the hippocampal and prefrontal cortical tissues.The mRNA expression of adenosine A2a receptor was examined by RT-qPCR,and the protein levels of phosphorylated AMPK(p-AMPK)and mammalian target of rapamycin(p-mTOR)were determined by Western blot.RESULTS:Compared with control group,the numbers of reference memory error(RME),working memory error(WME) and total error(TE)in 2IH group and 4IH group significantly increased(P<0.01).Compared with 2IH group,the numbers of errors in 4IH group also increased significantly(P<0.01).Compared with 4IH group,the values in 4IHI group significantly decreased.Compared with control group,the neuronal apoptosis of hippocampus and prefrontal cortex in 2IH group and 4IH group increased,and that in 4IH group was more evident(P<0.05).In 4IHI group,the neuronal apoptosis decreased.The mRNA expression of adenosine A2a receptor in the hippocampal and cortical tissues in 2IH group and 4IH group was higher than that in control group.The protein level of p-AMPK was higher,and p-mTOR was lower in 2IH group and 4IH group,and those in 4IH group were more evident(P<0.05).Compared with 4IH group,the protein level of p-AMPK was lower,and p-mTOR was higher in 4IHI group.CONCLUSION:Chronic intermittent hypoxia induces neuronal apoptosis,resulting in impairment of learning and memory in a time-dependent manner by upregulating adenosine A2a receptor,activating AMPK activity,and inhibiting mTOR phosphorylation in rats.
Chronic intermittent hypoxia;Adenosine A2a receptor;AMP-activated protein kinase;Mammalian target of rapamycin;Hippocampus;Prefrontal cortex
R714.253;R363.2
A
10.3969/j.issn.1000-4718.2016.07.008
1000-4718(2016)07-1200-08
2015-06-15
2016-06-03
浙江省自然科學基金資助項目(No.Y2110277);浙江省科技廳公益性技術應用研究計劃資助項目(No.2013C33174);溫州市科學技術局科技合作項目(No.H20130001);浙江省醫藥衛生科技計劃(No.2014ZDA014);國家衛計委國家重點臨床專科開放課題(No.20130201)
△Tel:0577-88002125;E-mail:caixh839@sina.com