劉姜裔,鐘美娥,高 權
(1 湖南農業大學東方科技學院,湖南 長沙 410128;2 湖南農業大學理學院,湖南 長沙 410128)
?
Fe2+活化過硫酸鉀降解2,4,6-三氯苯酚的研究*
劉姜裔1,鐘美娥2,高權2
(1 湖南農業大學東方科技學院,湖南長沙410128;2 湖南農業大學理學院,湖南長沙410128)
以Fe2+為活化劑,K2S2O8為氧化劑,對水中2,4,6-三氯苯酚進行降解處理。首先研究K2S2O8濃度和FeSO4濃度等因素對2,4,6-三氯苯酚降解的影響,發現在K2S2O8濃度為3.75 mmol/L和FeSO4濃度為1.25 mmol/L,即K2S2O8/Fe2+=75:25的條件下,2,4,6-三氯苯酚的降解率達到最大值,為91%。動力學研究表明,Fe2+活化K2S2O8降解2,4,6-三氯苯酚的過程可分為兩個階段,其中第一階段反應速度較快,第二階段為慢速反應,并且第二階段符合一級反應動力學規律。
2,4,6-三氯苯酚;硫酸根自由基;過硫酸鉀;Fe2+
2,4,6-三氯苯酚作為染料中間體、殺菌劑、防腐劑,在染料、農藥和化工等領域被廣泛使用[1-2]。其化學性質穩定,自然條件下很難降解,具有脂溶性,可以通過食物鏈富集。據報道,2,4,6-三氯苯酚對人類神經系統、呼吸系統有不良影響,會帶來許多健康問題[3]。因此,處理含2,4,6-三氯苯酚的廢水和修復被其污染的土壤已成為環境領域的研究熱點。


1.1主要試劑與儀器
試劑:2,4,6-三氯苯酚(2,4,6-TCP,江蘇天容,96%),甲純(色譜純),過硫酸鉀(K2S2O8,PDS)、七水合硫酸亞鐵(FeSO4·7H2O)、冰乙酸均為分析純。
儀器:HPLC高效液相色譜,Agilent1260);SPH-2102C恒溫震蕩器,上海世平實驗設備有限公司;FA2400精密天平,上海民橋精密科學儀器有限公司。
1.2實驗方法
向25 mL的比色管中依次加入一定濃度的2,4,6-三氯苯酚溶液和PDS溶液,最后加入一定量的FeSO4溶液開始反應并計時,實驗中均未調節pH值。實驗在150 r/min恒溫振蕩箱中進行,于25 ℃振蕩反應,按照一定時間間隔取樣1 mL,然后加入1 mL甲醇進行淬滅,搖勻后用高效液相色譜儀測試溶液中剩余的2,4,6-三氯苯酚,流動相為甲醇和水(1%冰乙酸)(V:V=8:2),檢測波長290 nm,流動相速度為0.8 mL/min,進樣量為20 μL。
2.1Fe2+用量對2,4,6-三氯苯酚降解的影響


圖1 Fe2+用量對2,4,6-三氯苯酚降解的影響

(1)
2.2K2S2O8用量對2,4,6-三氯苯酚降解的影響
氧化劑用量是影響污染物降解的重要因素,同時也是評估修復技術經濟性的重要指標。使2,4,6-三氯苯酚初始濃度為0.05 mmol/L、FeSO4初始濃度為1.25 mmol/L,改變K2S2O8的用量,使溶液中K2S2O8/Fe2+的摩爾比為5:25、10:25、25:25、50:25、75:25、100:25、150:25,研究K2S2O8用量對2,4,6-三氯苯酚降解的影響,所得結果如圖2所示。

圖2 K2S2O8用量對2,4,6-三氯苯酚降解的影響
由圖2可知,隨著K2S2O8用量的增加,2,4,6-三氯苯酚的降解率也隨之升高,當K2S2O8/Fe2+的摩爾比為75:25時,反應24 h后,2,4,6-三氯苯酚的降解率達到了91%。當繼續增加K2S2O8用量時,2,4,6-三氯苯酚的降解率增幅較小。表明過高濃度的K2S2O8并不能顯著提高2,4,6-三氯苯酚的降解率。陳曉旸等[20]認為,K2S2O8濃度過高時,反應體系中產生大量的硫酸根自由基來不及消耗,過多的硫酸根自由基之間相互反應生成過硫酸鹽,從而造成K2S2O8的利用率下降。
(2)
2.3K2S2O8/Fe2+體系中2,4,6-三氯苯酚降解的動力學過程


圖3 K2S2O8/Fe2+體系中2,4,6-三氯苯酚降解動力學過程
(1)Fe2+活化K2S2O8能夠在一定程度上降解2,4,6-三氯苯酚,適當提高Fe2+和K2S2O8濃度均能促進2,4,6-三氯苯酚的降解。
(2)FeSO4活化K2S2O8降解2,4,6-三氯苯酚的過程可分為兩個階段,其中第一階段反應速度較快,第二階段為慢速反應,并且第二階段符合一級反應動力學規律。
[1]吳金鋼, 戴友芝, 郭麗麗, 等. pH 值對“FeO-厭氧微生物”體系去除2,4,6-三氯酚過程的影響[J]. 環境工程學報, 2013, 7(4): 1273-1278.
[2]楊靜, 崔世海, 練鴻振. 磁載光催化劑Fe3O4/C/TiO2的制備及對三氯苯酚的降解[J]. 無機化學學報, 2013, 29(10): 2043-2048.
[3]Farshid Ghanbaria, Mahsa Moradi, Fariba Gohari. Degradation of 2,4,6-trichlorophenol in aqueous solutions usingperoxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals [J]. Journal of Water Process Engineering, 2016, 9: 22-28.
[4]A Go′mez-De Jesu′s, F J Romano-Baez, L Leyva-Amezcua, et al. Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation Journal of Hazardous Materials[J]. 2009, 161: 1140-1149.
[5]Jeong-Hak Choi, Young-Hun Kim. Reduction of 2,4,6-trichlorophenol with zero-valent zinc and catalyzed zinc[J]. Journal of Hazardous Materials, 2009, 166: 984-991.
[6]Renchao Li, Xiaoying Jin, Mallavarapu Megharaj, et al. Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system[J]. Chemical Engineering Journal, 2015, 264: 587-594.
[7]Lei Xu, Ruixia Yuan, Yaoguang Guo, et al. Sulfate radical-induced degradation of 2,4,6-trichlorophenol: A de novo formation of chlorinated compounds[J]. Chemical Engineering Journal, 2013, 217: 169-173.
[8]Peidong Hu, Mingce Long. Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications [J]. Applied Catalysis B: Environmental, 2016, 181: 103-117.
[9]Minhui Xu, Xiaogang Gu, Shuguang Lu, et al. Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system [J]. Journal of Hazardous Materials, 2015, 286: 7-14.
[10]Jun Zhang, Xueting Shao, Chao Shi, et al. Decolorization of Acid Orange 7 with peroxymonosulfate oxidation catalyzed by granular activated carbon [J]. Chemical Engineering Journal, 2013, 232: 259-265.
[11]Y R Wang, W Chu. Photo-assisted degradation of 2,4,5-trichlorophenol by Electro-Fe(II)/Oxone process using a sacrificial iron anode: Performance optimization and reaction mechanism [J]. Chemical Engineering Journal, 2013, 215-216: 643-650.
[12]Danna Zhou, Long Chen, Changbo Zhang, et al. A novel photochemical system of ferrous sulfite complex: Kinetics and mechanisms of rapid decolorization of Acid Orange 7 in aqueous solutions [J]. water research, 2014, 57: 87-95.
[13]Yan Fan, Yuefei Jia, Deyang Kong, et al. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process [J]. Journal of Hazardous Materials, 2015, 300: 39-47.
[14]Xiaofang Xie, Yongqing Zhang, Weilin Huang, et al. Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation [J]. Journal of Environmental Sciences, 2012, 24(5): 821-826.
[15]Yuefei Ji, Changxun Dong, Deyang Kong, et al. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: Kinetics, reaction products and transformation mechanisms [J]. Journal of Hazardous Materials, 2015, 285: 491-500.
[16]Yingying Sha, Iswarya Mathewa, Qingzhou Cui, et al. Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles [J]. Chemosphere, 2016, 144: 1530-1535.
[17]Yuefei Ji, Changxun Dong, Deyang Kong, et al. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: Kinetics, reaction products and transformation mechanisms [J]. Journal of Hazardous Materials, 2015, 285: 491-500.
[18]鄧靖, 馮善方, 馬曉雁, 等. 均相活化過硫酸氫鹽高級氧化技術研究進展[J]. 水處理技術, 2015, 41(4): 13-19.
[19]王繼鵬, 胡林潮, 楊彥, 等. Fe2+活化過硫酸鈉降解1,2-二氯苯[J]. 環境工程學報, 2014, 8(9): 3767-3772.
[20]陳曉旸, 王衛平, 朱鳳香, 等. UV/K2S2O8降解偶氮染料AO7 的研究: 動力學及反應途徑[J]. 環境科學, 2010, 31(7): 1433-1537.
Study on Potassium Persulfate Activated by Fe2+for Degradation of 2,4,6-Trichlorophenol*
LIU Jiang-yi1, ZHONG Mei-e2, GAO Quan2
(1 College of Orient Science & Technology, Hunan Agricultural University, Hunan Changsha 410128;2CollegeofScience,HunanAgricultureUniversity,HunanChangsha410128,China)
To investigate the degradation of 2,4,6-trichlorophenol in water, the activating agent of Fe2+and the oxidant of K2S2O8were used. The effects of the concentrations of K2S2O8and FeSO4on the degradation of 2,4,6-trichlorophenol were studied. The optimal operating conditions were obtained as follows: 3.75 mmol/L of K2S2O8and 1.25 mmol/L of FeSO4, namely, the optimal molar ratio of oxidant K2S2O8to activating agent Fe2+was 75:25. Under these conditions, the degradation rate of 2,4,6-trichlorophenol was 91%. The degradation kinetics of 2,4,6-trichloro-phenol showed that the reaction included an initial fast stage and a final slow stage. The reaction was very fast at the first stage, and became slow at the second stage which followed a first-order kinetic.
2,4,6-trichlorophenol; sulfate radical; potassium persulfate; Fe2+
湖南農業大學東方科技學院大學生研究性學習和創新實驗計劃項目(No.DFCXY201324);湖南省教育廳科學研究項目(15C0653)。
鐘美娥(1979-),女,博士,講師,主要從事環境污染物的修復治理研究。
X703.1
A
1001-9677(2016)013-0073-03