王超,張靖宇,張一順,丁紅兵
(天津大學(xué) 電氣與自動化工程學(xué)院,天津,300072)
基于靜電法的氣力輸送局部流動特性R/S分析
王超,張靖宇,張一順,丁紅兵
(天津大學(xué) 電氣與自動化工程學(xué)院,天津,300072)
利用靜電電極的局部敏感特性,使用四電極靜電傳感器對氣力輸送過程中管道截面局部流動狀態(tài)進行研究,運用R/S法提取顆粒運動微觀特征。研究結(jié)果表明:當(dāng)表觀氣速上升,靜電信號Hurst指數(shù)隨之下降,顆粒運動復(fù)雜度升高,Hurst指數(shù)對輸送氣速變化引起的顆粒運動狀態(tài)改變具有很好的表征效果。在水平管道截面內(nèi),上側(cè)區(qū)域靜電信號Hurst指數(shù)遠比左側(cè)、右側(cè)及下側(cè)區(qū)域的高,說明上側(cè)區(qū)域顆粒運動復(fù)雜度較低。當(dāng)管內(nèi)流型發(fā)生變化時,下側(cè)區(qū)域靜電信號Hurst指數(shù)的相對變化最明顯,可以反映顆粒沉積過程。R/S分析法為氣力輸送流型的研究提供了一種有效的判斷方法。
靜電傳感器;氣力輸送;流動特性;R/S分析
氣力輸送在電力、化工和冶金等工業(yè)領(lǐng)域應(yīng)用廣泛,理解管道內(nèi)氣固兩相流動狀態(tài)的演化規(guī)律,對于節(jié)能減排和輸送過程的安全穩(wěn)定具有重要意義。壓損是氣力輸送管內(nèi)流動狀態(tài)的重要表征。在固相質(zhì)量流量一定的條件下,隨著輸送氣速的下降,壓損體現(xiàn)為先下降后上升的過程[1]。壓損曲線的最低點也是氣力輸送流型變化的臨界點[2]。輸送速度高于最小壓降速度時,顆粒以懸浮狀態(tài)存在。輸送速度低于最小壓降速度,將導(dǎo)致顆粒沉積[3]。但是,由于氣固兩相流動的復(fù)雜性,并且缺乏針對實際管道內(nèi)部流動狀態(tài)的測量手段,對于管道內(nèi)部局部流動特征的演化規(guī)律缺少了解。傳統(tǒng)的壓損分析可以對管內(nèi)流動狀態(tài)進行一定程度的表征[4],但壓損只體現(xiàn)氣力輸送流動的宏觀特性,而無法體現(xiàn)管內(nèi)不同區(qū)域的流動狀態(tài)變化。研究者們使用流場顯示技術(shù)如LDV和PIV等對氣力輸送流動特性進行深入分析[5-7]。但LDV和PIV等設(shè)備的復(fù)雜性、測量范圍窄及易受污染等特點決定了其無法針對實際工業(yè)管道內(nèi)部流動狀態(tài)的變化進行觀測[8]。在氣力輸送的管道中,顆粒之間碰撞,顆粒與管壁之間撞擊使顆粒攜帶電荷,靜電傳感器利用靜電感應(yīng)原理進行測量,測量信號包含顆粒的運動信息,以此為基礎(chǔ)可實現(xiàn)氣力輸送流動特性的分析[9-11]。本文作者設(shè)計了四電極靜電傳感器,利用4個電極的局部敏感特性,采用R/S分析法研究管內(nèi)局部靜電信號復(fù)雜度隨氣力輸送流動狀態(tài)的演化過程。
1.1 四電極靜電傳感器設(shè)計
四電極靜電傳感器結(jié)構(gòu)示意圖如圖1所示。靜電傳感器主要由管道絕緣層、弧形電極組和屏蔽管壁組成。管道絕緣層內(nèi)徑為50 mm。該靜電傳感器有4個弧形電極,以1~4的數(shù)字標記,分別安裝于管道截面圓周上側(cè)、右側(cè)、下側(cè)和左側(cè)。電極寬度為 6 mm,弧度為60°。

圖1 四電極靜電傳感器結(jié)構(gòu)圖Fig.1 Structure of four-electrode electrostatic sensor
1.2 靜電場局部敏感特性分析
靜電傳感器電極的空間敏感度定義為:在敏感空間內(nèi),處于某一位置(x, y)的單位電荷,靜電感應(yīng)作用下在電極上產(chǎn)生感應(yīng)電荷量的絕對值。

其中:Q為電極上感應(yīng)電荷量;q(x,y)為點電荷電荷量;s(x,y)為弧形電極在(x,y)位置的空間敏感度?;⌒坞姌O2安裝于管道右側(cè),其敏感度分布函數(shù)如圖2所示。
根據(jù)泊松方程,帶電顆粒流經(jīng)靜電傳感器時,在傳感器電極上產(chǎn)生感應(yīng)電荷是敏感區(qū)域內(nèi)所有帶電顆粒共同作用的結(jié)果,電極上的感應(yīng)電荷Q可表示為

式中:σ(x ,y,t)為t時刻顆粒在傳感器內(nèi)的空間電荷分布函數(shù);s(x,y)為靜電電極敏感度分布函數(shù)。
弧形靜電電極具有局部敏感特性,即靠近電極區(qū)域敏感度高,遠離電極區(qū)域敏感度低,弧形電極靜電信號主要表征電極附近區(qū)域顆粒的運動信息。四電極靜電傳感器利用四弧形電極對管內(nèi)不同區(qū)域顆粒運動信息進行分析,得到流動狀態(tài)變化時管內(nèi)局部顆粒運動變化規(guī)律。

圖2 單個弧形電極靜電敏感度分布函數(shù)Fig.2 Sensitivity distribution function of an arc-shaped electrode
R/S分析是處理非線性規(guī)律數(shù)據(jù)的一種方法,起源于分數(shù)布朗運動,主要針對隨機時間序列的長期相關(guān)性和統(tǒng)計自相似性[12]。靜電信號間接反映了固相顆粒在輸送管道內(nèi)的流動特性,氣固兩相流動產(chǎn)生的復(fù)雜靜電波動信號為類隨機信號,所以,靜電信號波動程度的大小,反映了靜電傳感器電極附近敏感區(qū)域內(nèi)的顆粒運動劇烈和復(fù)雜程度。
R/S分析的基本思想是:對于給定的時間序列{xi},設(shè)置觀測次數(shù)M,同時將序列分成A個長度為N(2≤N≤M/2)的相鄰子區(qū)間,AN=M,記第a個子區(qū)間為Ia(a=1,2,…,A),Ia中的第k項記作xk,a(k=1,2,…,N)[12]。




HURST[13]建立等式關(guān)系如下式所示,以期比較不同的時間序列。

其中:b為常數(shù);H為Hurst指數(shù),且01H≤≤ 。對式(8)兩端取對數(shù),可以得到

當(dāng)0<H<0.5時,序列具有反持續(xù)的特征,即表明時間序列目前的下降(增長)意味后續(xù)的增長(下降),或者從另一個角度看,即是時間序列的相關(guān)性偏低而且較不規(guī)則。H=0.5時,序列是純隨機過程。當(dāng) 0.5<H<1.0時,序列具有正持續(xù)的特征,即表明時間序列當(dāng)前的下降(增長)意味后續(xù)的下降(增長)。Hurst指數(shù)越接近1.0,靜電信號波動規(guī)則性越強,說明顆粒微觀運動的復(fù)雜度越低;Hurst指數(shù)越接近0.5,靜電信號波動隨機性越強,說明顆粒微觀運動的復(fù)雜度越高。
氣固兩相流實驗裝置為正壓氣力輸送裝置,其組成包括空氣壓縮機、儲氣罐、干燥系統(tǒng)、氣流量計、氣路調(diào)節(jié)閥、輸送管道、螺旋給料機、料倉、稱量裝置和回收罐等,如圖3所示。
裝置管道口徑為 DN50,材質(zhì)為不銹鋼。實驗過程中使用的固體顆粒是石英粉,其密度為2.65 g/cm3,粒徑范圍為96~106 μm。輸送氣速通過電動閥進行控制,通過氣流量計進行測量。顆粒的質(zhì)量流量通過螺

圖3 氣力輸送裝置圖Fig.3 Schematic diagram of pneumatic conveying test rig
旋給料機進行控制,并且通過裝在料斗下面的稱重裝置進行測量。實驗管段前的直管段可以使氣力輸送流型充分發(fā)展,保證實驗管段中氣力輸送流型穩(wěn)定。四電極靜電傳感器以及差壓變送器安裝在水平實驗管道上。差壓變送器下游取壓口與靜電傳感器中心截面之間距離為0.3 m,可以認為差壓變送器測量管段的流型與靜電傳感器測量管段的流型一致。通過四電極靜電傳感器對管道內(nèi)顆粒流動狀況進行測量。差壓變送器型號為川儀橫河EJA120A,量程為0~1 kPa,精度為1%。兩取壓口安裝在長度為1.8 m的水平直管段兩端,用來測量水平直管段的壓損變化情況。
4.1 直管段壓損分析
在實驗過程中,保持固相質(zhì)量流量不變,調(diào)節(jié)電動閥,逐漸降低管道表觀氣速,并實時測量實驗直管段的壓損。直管段壓損的實驗結(jié)果如圖4所示。
由圖4可見:在純氣情況下,隨著表觀氣速的下降,管道壓損基本呈線性下降。當(dāng)固相質(zhì)量流量為100 kg/h時,表觀氣速從約9 m/s繼續(xù)下降,壓損反而增加。這是由于管道內(nèi)流動狀態(tài)由管底流向疏密流過渡[14],同樣的情況出現(xiàn)在固相質(zhì)量流量為120 kg/h時。固相質(zhì)量流量越大,在同樣表觀氣速條件下,管道壓損也越大。當(dāng)固相質(zhì)量流量為80 kg/h時,表觀氣速在8 m/s附近管道壓損出現(xiàn)上升點,但是上升點出現(xiàn)后,管道壓損沒有繼續(xù)上升,而是很快又下降,與純氣情況下趨于一致。TASHIRO等[15]對此現(xiàn)象進行研究發(fā)現(xiàn):管道固相質(zhì)量流量過低會導(dǎo)致低氣速時壓損與純氣時壓損趨于一致,在短時間出現(xiàn)疏密流的狀態(tài)后,管底顆粒很快又被吹起,轉(zhuǎn)化為管底流。

圖4 直管段壓損隨氣速及固料流量變化曲線Fig.4 Curve of pressure loss of straight pipe at various gas velocities and solids flow rates
4.2 局部顆粒運動分析
使用R/S分析法對靜電信號進行分析,可以得到氣力輸送流動狀態(tài)變化時,管內(nèi)顆粒運動的微觀信息。當(dāng)固定顆粒質(zhì)量流量為120 kg/h時,改變表觀空氣速度,使氣力輸送流型發(fā)生變化,對四側(cè)電極靜電信號計算Hurst指數(shù),結(jié)果見圖5。

圖5 局部靜電信號Hurst指數(shù)隨表觀氣速變化曲線Fig.5 Curve of Hurst exponent of local electrostatic signal at various gas velocities
靜電信號的Hurst指數(shù)均大于0.5,說明靜電信號的時間序列是具有正的長時間相關(guān)效應(yīng)的有偏隨機序列。隨著表觀氣速的升高,管道各個位置的靜電信號Hurst指數(shù)均表現(xiàn)出線性的下降趨勢,顆粒微觀運動的復(fù)雜度越高,顆粒運動能量越高。在低氣速時靜電信號Hurst指數(shù)較高,說明顆粒的微觀運動趨于緩和。
上側(cè)電極靜電信號的Hurst指數(shù)一直比其他位置電極的高,說明管道上側(cè)顆粒微觀運動的復(fù)雜度較低。上側(cè)顆粒濃度較其他位置更低,顆粒之間碰撞、顆粒與管道壁的碰撞概率較小。值得一提的是,在表觀氣速較高時,管道下側(cè)電極附近顆粒的Hurst指數(shù)較低,而當(dāng)表觀氣速降低到10 m/s以下時,下側(cè)電極的Hurst指數(shù)逐漸高于左右兩側(cè)。這一現(xiàn)象表明:在10 m/s的表觀氣速附近管內(nèi)流動狀態(tài)發(fā)生了劇烈變化,管道底部出現(xiàn)沉積層導(dǎo)致管內(nèi)下側(cè)顆粒運動逐漸變緩。
通過管道壓力降信號對管內(nèi)流動狀態(tài)進行分析,可以確定管內(nèi)固相顆粒大致在表觀氣速為10 m/s時由原本穩(wěn)定的管內(nèi)均勻流向管底流轉(zhuǎn)變,此時管道底部的 Hurst指數(shù)開始高于左右兩側(cè),同時管道壓力降信號出現(xiàn)不穩(wěn)定波動。隨著表觀氣速的繼續(xù)降低,至 8 m/s時,管道底部開始出現(xiàn)明顯的沉積層,管內(nèi)流動狀態(tài)轉(zhuǎn)變?yōu)槭杳芰?,而管道底部的Hurst指數(shù)變得更高,同時管道壓損開始出現(xiàn)很大幅度的上升,說明管底顆粒的流動逐漸放緩,顆粒的微觀運動復(fù)雜程度有所下降。
1) 隨著表觀氣速的升高,管內(nèi)各個區(qū)域的靜電信號 Hurst指數(shù)均表現(xiàn)出線性的下降趨勢,顆粒微觀運動復(fù)雜度越高,顆粒運動能量越高。
2) 上側(cè)區(qū)域靜電信號的Hurst指數(shù)一直比其他區(qū)域靜電信號的高,說明管道上側(cè)固相顆粒微觀運動的復(fù)雜度較低。
3) 管道底部出現(xiàn)沉積層將導(dǎo)致管內(nèi)下側(cè)區(qū)域顆粒運動逐漸變緩,下側(cè)區(qū)域靜電信號的Hurst指數(shù)由最低變得逐漸高于左右兩側(cè)Hurst指數(shù)。
4) 通過 R/S法提取四電極靜電傳感器靜電信號的特征,與管道壓損進行對比分析,在一定程度上表現(xiàn)出氣力輸送管內(nèi)流動狀態(tài)的變化情況,對于進一步研究氣力輸送的流型提供了一種有效的判斷方法。
[1] RABINOVICH E, KALMAN H. Boundary saltation and minimum pressure velocities in particle-gas systems[J]. Powder Technology, 2008, 185(1): 67-79.
[2] KLINZING G, RIZK F, LEUNG L. Pneumatic conveying of solids: a theoretical and practical approach[M]. Berlin, German:Spring Science & Business Media, 2010: 14-15.
[3] KALMAN H, RABINOVICH E. Analyzing threshold velocities for fluidization and pneumatic conveying[J]. Chemical Engineering Science, 2008, 63(13): 3466-3473.
[4] CONG Xingliang, GUO Xiaolei, LU Haifeng, et al. Flow patterns of pulverized coal pneumatic conveying and time-series analysis of pressure fluctuations[J]. Chemical Engineering Science, 2013, 101: 303-314.
[5] RINOSHIKA A, YAN F, KIKUCHI M. Experimental study on particle fluctuation velocity of a horizontal pneumatic conveying near the minimum conveying velocity[J]. International Journal of Multiphase Flow, 2012, 40: 126-135.
[6] JAMA G, KLINZING G, RIZK F. An investigation of the prevailing flow patterns and pressure fluctuation near the pressure minimum and unstable conveying zone of pneumatic transport systems[J]. Powder Technology, 2000, 112(1): 87-93.
[7] ZHENG Y, RINOSHIKA A, YAN F. Multi-scale analysis on particle fluctuation velocity near the minimum pressure drop in a horizontal pneumatic conveying[J]. Chemical Engineering Science, 2012, 72: 94-107.
[8] FOKEER S, KINGMAN S, LOWNDES I, et al. Characterisation of the cross-sectional particle concentration distribution in horizontal dilute flow conveying-a review[J]. Chemical Engineering and Processing, 2004, 43(6): 677-691.
[9] XU Chuanlong, LI Jian, GAO Heming, et al. Investigations into sensing characteristics of electrostatic sensor arrays through computational modelling and practical experimentation[J]. Journal of Electrostatics, 2012, 70(1): 60-71.
[10] 付飛飛, 許傳龍, 王式民. 密相氣力輸送中氣固兩相流動特性多源信息分析[J]. 化工學(xué)報, 2012, 63(10): 3070-3079. FU Feifei, XU Chuanlong, WANG Shiming. Multi-sensors integration for flow characterization of dense phase pneumatic conveying of coal powder[J]. CIESC Journal, 2012, 63(10):3070-3079.
[11] 付飛飛, 許傳龍, 王式民, 等. 基于陣列式靜電傳感器的密相氣力輸送煤粉顆粒運動特性分析[J]. 東南大學(xué)學(xué)報(自然科學(xué)版), 2013, 43(3): 536-541. FU Feifei, XU Chuanlong, WANG Shiming, et al. Flow characteristics of dense-phase pneumatically conveyed coal powders by electrostatic sensor arrays[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(3): 536-541.
[12] 徐緒松, 馬莉莉, 陳彥斌. R/S分析的理論基礎(chǔ): 分數(shù)布朗運動[J]. 武漢大學(xué)學(xué)報(理學(xué)版), 2004, 50(5): 547-550. XU Xusong, MA Lili, CHEN Yanbin. The basic theory of R/S analysis: fractional Brown motion[J]. Journal of Wuhan University (Natural Science Edition), 2004, 50 (5): 547-550.
[13] HURST H E. Long-term storage capacity of reservoirs[J]. Transactions of the American Society of Civil Engineer, 1951,116: 770-808.
[14] GOMES L, MESQUITA A. On the prediction of pickup and saltation velocities in pneumatic conveying[J]. Brazilian Journal of Chemical Engineering, 2014, 31(1): 35-46.
[15] TASHIRO H, PENG X, TOMITA Y. Numerical prediction of saltation velocity for gas-solid two-phase flow in a horizontal pipe[J]. Powder Technology, 1997, 91(2): 141-146.
(編輯 楊幼平)
R/S analysis for local flow characteristics of pneumatically conveyed particles using electrostatic method
WANG Chao, ZHANG Jingyu, ZHANG Yishun, DING Hongbing
(School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China)
A four-electrode electrostatic sensor with local electrostatic sensibility was used for studying local flow characteristics in the pneumatic conveying process. Moreover R/S method was adopted to characterize the complexity of particle motion. The results show that the Hurst exponent of electrostatic signal has a decreasing trend with the increase of surficial gas velocity, which indicates that the complexity of particle motion increases. Thus the Hurst exponent can represent the particle motion state when the conveying velocity changes. In the horizontal pipe, the Hurst exponent of the electrostatic signal in the top of the pipe is higher than those in other regions. It is demonstrated that the particle motion in the top of the pipe is with low complexity. When the flow pattern changes, the Hurst exponent of the electrostatic signal in the bottom of the pipe changes clearly, which shows the particle deposition. The R/S method is an effective judgment for flow pattern of pneumatic conveying.
electrostatic sensor; pneumatic conveying; flow characteristics; R/S analysis
TB971
A
1672-7207(2016)05-1794-05
10.11817/j.issn.1672-7207.2016.05.045
2015-05-13;
2015-07-05
國家自然科學(xué)基金資助項目(61072101) (Project(61072101) supported by the National Natural Science Foundation of China)
王超,博士,教授,從事氣固多相流測量研究;E-mail: wangchao@tju.edu.cn