999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Stability analysis of nonlinear delaydifferential-algebraic equations and of theimplicit euler methods

2016-09-20 05:51:38JIANGLanlanJINXiangyingSUNLeping
關(guān)鍵詞:方法

JIANG Lanlan, JIN Xiangying, SUN Leping

(College of Mathematics and Science,Shanghai Normal University,Shanghai 200234,China)

?

Stability analysis of nonlinear delaydifferential-algebraic equations and of theimplicit euler methods

JIANG Lanlan, JIN Xiangying, SUN Leping

(College of Mathematics and Science,Shanghai Normal University,Shanghai 200234,China)

We consider the stability and asymptotic stability of a class of nonlinear delay differential-algebraic equations and of the implicit Euler methods.Some sufficient conditions for the stability and asymptotic stability of the equations are given.These conditions can be applied conveniently to nonlinear equations.We also show that the implicit Euler methods are stable and asymptotically stable.

nonlinear differential-algebraic equation; delay; implicit Euler method

1 Introduction

In recent years,much research has been focused on numerical solutions of systems of differential-algebraic equations (DAEs).These systems can be found in a wide variety of scientific and engineering applications,including circuit analysis,computer-aided design and real-time simulation of mechanical systems,power-systems,chemical process simulation,and optimal control.In some cases,time delays appear in variables of unknown functions so that the Differential-Algebraic Equations (DAEs) are converted to Delay Differential-Algebraic Equations (DDAEs).Delay-DAEs (DDAEs),which have both delays and algebraic constraints,arise frequently in circuit simulation and power system,Among numerous results on DDAE systems,there are few achievements on nonlinear systems.The solution of a nonlinear system depends on a nonlinear manifold of a product space as well as on consistent initial valued-vectors over a space of continuous functions.It is pointed in [1-2] that research on nonlinear DDAEs is more complicated and still remains investigated.

In this paper,we investigate a class of nonlinear DDAE systems,and show the conditions under which the analytical solutions are stable and asymptotically stable.Similarly,the implicit Euler methods retain the asymptotic behaviors.

2 Asymptotic behavior of a class of nonlinear DDAEs

2.1Stability of analytical solutions of nonlinear DDAEs

In this subsection,we consider the following nonlinear system of delay differential-algebraic equations,

(1)

(2)

According to [3] the assumption thatφvis nonsingular allows one to solve the constraint equations (2) forv(t) (using the implicit function theorem),yielding

(3)

By substituting (3) into (1) we obtain the DODE

(4)

Thus,the DDAE (1),(2) are stable if the DODE (4) is stable.Note that if all the delay terms are present in this retarded DODE,then the initial conditions need to be defined forton [-2τ,0],In this paper we investigate the following nonlinear DDAEs

(5)

(6)

(7)

(8)

and its perturbed equations

(9)

(10)

(11)

(12)

Definition 2.1[4]The system (5)-(8) are said to be stable.if the following inequalities are satisfied:

(13)

(14)

whereM>0 is a constant,

(15)

To study the stability of the DDAE (5)-(8),it is necessary to introduce several lemmas.

Lemma 2.1[4-5]Consider the following initial value problem

(16)

wherea(t),η(t) are continuous functions oftwhent≥0,Re(a(t))<0.Then the solution of the initial value problem (16) satisfies

(17)

for allt≥0.

Now we require thatf,φsatisfy the following Lipschitz conditions (1)-(4):

(3)φvis nonsingular,so that forg(u,v) in (3) there existsL>0 andK>0 such that

(4)σ(t)<0,γ1(t)+(L+K)γ2(t)+(L+K)γ3(t)≤-σ(t),?t≥0.

Theorem 2.1Iffandφin (5)-(6) satisfy the conditions (1)-(4),then (5)-(6) is stable.

ProofLetu=u(t),uτ=u(t-τ),v=v(t),vτ=v(t-τ).Then

(18)

(19)

From the condition (3),we get

Thus

(20)

According to (20),(19) becomes

Consider the following initial value problem of differential equation:

(21)

(22)

Using the Lemma 2.1,the solution of (21)-(22) satisfies

LetΥ(t)=γ1(t)+Kγ2(t)+Lγ3(t).It becomes

(23)

(24)

According to the condition (4),we get

(25)

It is easy to verify that

Thus

(26)

Ift∈[τ,2τ]?s-τ∈[0,τ],s-2τ∈[-τ,0].Similarly,we also get

(27)

Applying mathematical induction,we conclude that

(28)

Therefore

By (20)

2.2Asymptotic stability of analytical solutions of nonlinear DDAEs

In order to study the asymptotic stability of (5)-(8),the following Lemma is needed.

Lemma 2.2[4-5]Suppose that a non-negative functionZ(t) satisfies

whereφ(t)≥0,ω(t),γ1(t),γ2(t),are given functions,and

ThenZ(t)→0(t→∞).

Apply (20) to (19),we have

(29)

Theorem 2.2If (5)-(8) satisfies conditions (1),(2),(3) and (4)′

then (5)-(8) is asymptotically stable.

ProofConsider the initial value problem of the delay differential equations

where

(30)

From (4)′,all the conditions of Lemma (2.2) are satisfied,so

Note (29).It is easy to verify

Therefore,

and the theorem is proved.

3 The stability and asymptotic stability Applying Implicit Euler Methods

Consider the initial value problem of the ordinary differential equations

(31)

(32)

The implicit Euler methods can be written as:

(33)

(34)

wherexn~x(tn),h>0 is the step size.Note (1)-(3),to solve (5)-(8) by (33)-(34),we get

(35)

(36)

(37)

(38)

The Perturbations of (35)-(38) are

(39)

(40)

(41)

(42)

Theorem 3.1The implicit Euler methods are stable for DDAEs.

(43)

Applying the Schwartz theorem and the condition (1)-(2),we obtain

(44)

(45)

(46)

(47)

In (45),let 0≤n≤m-1,and note the initial value function.We have

(48)

In the rest of this section,we study the asymptotic stability of Euler methods.First,we have the following definition.

wheref,gsatisfy conditions (1),(2),(3)′,(4).

Theorem 3.2The implicit Euler methods are asymptotically stable for DDAEs.

ProofNoting (47) and (26),we have

Let 0≤n≤m-1 in the above inequality,we get

Note condition (4)′,

Therefore,when 0≤n≤m-1,

For the casen=m

For the caserm≤n≤(r+1)m-1,it can be shown by induction that

Whenn→∞,r→∞,

Thus,

References:

[1]Zhu W J,Petzold L R.Asymptotic stability of linear delay differential-algebraic equations and numerical methods [J].Appl Numer Math,1997,24:247-264.

[2]Zhu W J,Petzold L R.Asymptotic stability of hessenberg delay differential-algebraic equations of retarded or neutral type [J].Appl Numer Math,1998,27:309-325.

[3]Ascher U,Petzold L R.The numerical solution of delay-differential-algebraic equations of retarded and neutral type [J].SIAM Numer Anal,1995,32:1635-1657.

[4]Kuang J X,Cong Y H.Stability of numerical methods for delay differential equations [M].Beijing:Science Press,USA,Inc,2005.

[5]Tian H J,Kuang J X.The stability ofθ-methods for delay differential equations [J].J CM,1996,14:203-212.

[6]Brenan K E,Campbell S L,Petzold L R.Numerical solution of initial-value problems in differential-algebraic equations [M].Philadelphia:SIAM Press,1996.

[7]Kukel P,Mehrmann V.Differential-algebraic equations:Analysis and numerical solutions [M].Zurich:EMS Publishing House,2006.

[8]Hairer E,Nprsett S,Lubich,Wanner G.Solving ordinary differential equations II:Stiff and differential-algebraic equations [M].New York:Springer,1996.

[9]Campbell S L,Linh V H.Stability criteria for differential-algebraic equations with multiple delays and their numerical solutions [J].Appl Math Comput,2009,208:397-415.

[10]Shampine L F,Gahinet P.Delay-differential-algebraic equations in control theory [J].Appl Numer Math,2006,56:574-588.

[11]Zhao J J,Xu Y,Dong S Y,et al.Stability of the rosenbrock methods for the neutral delay differential-algebraic equations [J].Appl Math and Comput,2005,168:1128-1144.

[12]Lei J G,Chen M J,Kuang J X.Functional methods of numerical analysis [M].Beijing:Higher Education Press,1989.

[13]Kuang J X,Tian H J,Yu Q H,The asymptotic stability analysis of numerical solutions of nonlinear systems of delay differential equations [J].J Shanghai Normal Univ,1993,22(2):1-8.

[14]Otgega J M,Rheinboldt W C.Iterative solution of nonlinear equations in several variables [M].New York:Academic Press,1970.

[15]Torelli L.Stability of numerical methods for delay differential equations [J].J CAM,1989,25:15-26.

[16]Hale J K,Verduyn Lunel S M.Introduction to functional equations [M].Berlin:Springer-Verlag,1993.

[17]Bellen A,Zennarc M.Numerical methods for delay differential equations [M].Oxford:Clarendon Press,2003.

(責(zé)任編輯:馮珍珍)

10.3969/J.ISSN.1000-5137.2016.04.002

非線性延時微分代數(shù)方程和隱式歐拉方法的穩(wěn)定性分析

姜蘭蘭, 金香英, 孫樂平

(上海師范大學(xué) 數(shù)理學(xué)院,上海 200234)

考慮了一類非線性延時微分代數(shù)方程隱式歐拉方法的穩(wěn)定性和漸近穩(wěn)定性,給出了穩(wěn)定和漸近穩(wěn)定的一些充分條件.這些條件便于應(yīng)用到非線性方程.也證明了隱式歐拉方法是穩(wěn)定和漸近穩(wěn)定的.

非線性微分代數(shù)方程; 延遲; 隱式歐拉方法

date: 2014-06-20

Shanghai Natural Science Foundation (15ZR1431200)

SUN Leping,College of Mathematics and Science,Shanghai Normal University,No.100 Guiling Rd,Shanghai 200234,China,E-mail:sunleping@shnu.edu.cn

O 241.81Document code: AArticle ID: 1000-5137(2016)04-0395-07

猜你喜歡
方法
中醫(yī)特有的急救方法
中老年保健(2021年9期)2021-08-24 03:52:04
高中數(shù)學(xué)教學(xué)改革的方法
河北畫報(2021年2期)2021-05-25 02:07:46
化學(xué)反應(yīng)多變幻 “虛擬”方法幫大忙
變快的方法
兒童繪本(2020年5期)2020-04-07 17:46:30
學(xué)習(xí)方法
用對方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
最有效的簡單方法
山東青年(2016年1期)2016-02-28 14:25:23
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
賺錢方法
捕魚
主站蜘蛛池模板: 真人免费一级毛片一区二区| 男女性色大片免费网站| 亚洲人网站| 日韩在线1| 亚洲三级a| 欧美日韩专区| 日韩黄色在线| 国产成人91精品| 亚洲免费三区| 亚洲性影院| 福利在线不卡一区| 激情在线网| 国产人前露出系列视频| 亚洲久悠悠色悠在线播放| 亚洲第一页在线观看| 亚洲人成亚洲精品| 在线综合亚洲欧美网站| 美女潮喷出白浆在线观看视频| 国产成人啪视频一区二区三区| 国产新AV天堂| 在线欧美日韩国产| 久久性妇女精品免费| 精品国产香蕉伊思人在线| 老司机久久99久久精品播放| 国产欧美在线| 婷婷六月在线| 亚洲国产成熟视频在线多多| 亚洲高清资源| 亚洲国产精品久久久久秋霞影院 | 久久青草精品一区二区三区 | www.国产福利| 一级片一区| 一区二区三区精品视频在线观看| 亚洲午夜国产精品无卡| 国产手机在线观看| 九九久久精品免费观看| 伊人色天堂| 国产呦精品一区二区三区下载| 国产日本一线在线观看免费| 亚洲欧美日韩成人在线| 国产亚洲精品97在线观看| 欧美特黄一级大黄录像| 亚洲精品视频免费看| 高清精品美女在线播放| 青青极品在线| 国产91视频免费| 国产网站免费| 思思热精品在线8| 日韩一区精品视频一区二区| 成人午夜免费观看| 国产乱人伦AV在线A| 青青久久91| 97国产精品视频自在拍| 久久久久国产精品熟女影院| 国产精品三级专区| 福利在线免费视频| 亚洲熟女中文字幕男人总站| 亚洲欧美日韩另类在线一| 一本无码在线观看| 婷婷开心中文字幕| 2020最新国产精品视频| 91精品国产自产在线老师啪l| 九色综合视频网| 国产亚洲精| 看国产毛片| 色香蕉影院| 强奷白丝美女在线观看| 国产 日韩 欧美 第二页| 欧美第二区| 国产一在线观看| 午夜视频免费试看| 国产精品网拍在线| 国产aⅴ无码专区亚洲av综合网| 亚洲天堂色色人体| 亚洲欧洲日韩久久狠狠爱| 久久香蕉国产线| 国产在线91在线电影| 无码在线激情片| 亚洲av片在线免费观看| 国产三级国产精品国产普男人| 国产综合在线观看视频| 拍国产真实乱人偷精品|