張衛芳,熊愛珍,吳衛華,祝田田,鄒小舟,劉 汀,胡長平
(1.南昌大學第二附屬醫院藥學部,江西 南昌 330006;2. 中南大學藥學院藥理學系,湖南 長沙 410078;3.湖南醫藥學院藥理學教研室,湖南 懷化 418000)
?
肺動脈高壓時肺血管內皮間質轉化相關miRNAs網絡調控的生物信息學分析
張衛芳1,2,熊愛珍1,吳衛華3,祝田田2,鄒小舟2,劉汀2,胡長平2
(1.南昌大學第二附屬醫院藥學部,江西 南昌330006;2. 中南大學藥學院藥理學系,湖南 長沙410078;3.湖南醫藥學院藥理學教研室,湖南 懷化418000)
目的探索肺動脈高壓(pulmonary hypertension,PH)時肺血管內皮間質轉化(EndMT)相關miRNAs及其下游靶點的網絡調控。方法利用文獻挖掘PH相關基因及EndMT/EMT相關miRNAs。利用Biological General Repository for Interaction Datasets(BioGRID)數據庫得到基因相互作用關系。利用生物信息學(DIANA3、Miranda4、PicTar5、TargetScan6、miRDB7和microT-CDS8)預測相應miRNAs的靶基因關系,超幾何分析預測與肺動脈高壓EndMT相關miRNAs,通過對miRNAs參與功能分區中的情況篩選評分最高的miRNAs并選擇部分進行實驗驗證,利用Cytocape 3軟件構建miRNAs與其下游靶點的相互作用網絡。結果根據文獻挖掘出與PH有關的基因230個,與EndMT/EMT相關miRNAs共189個,對應成熟體322個。其中98個miRNAs可能與PH時EndMT有關。其中,僅有22個miRNAs同時參與了TGF-β/BMP、低氧和炎癥3個功能通路,評分最高,分別為miR-let-7家族、miR-124、miR-130家族、miR-135、miR-144、miR-149、miR-155、miR-16-1、miR-17、miR-181家族、miR-182、miR-200家族、miR-204、miR-205、miR-21、miR-224、miR-27、miR-29家族、miR-301a、miR-31、miR-361和miR-375。對let-7g、miR-21、miR-124及miR-130家族進行實時熒光定量PCR驗證發現其在低氧誘導PH大鼠肺動脈中表達均明顯變化。結論利用生物學信息技術從大量miRNAs中篩選得到的22個miRNAs同時參與TGF-β/BMP、低氧和炎癥信號通路,可能與PH時EndMT相關,為后續深入研究PH時EndMT提供了重要的理論依據。
肺動脈高壓;miRNAs;內皮間質轉化;網絡調控;生物信息學;網絡藥理;相互作用
肺動脈高壓(pulmonary hypertension,PH)主要特征為肺動脈阻塞引起肺血管阻力及肺動脈壓力漸進性升高,伴隨不可逆的肺血管重構,最終導致右心衰竭而死亡[1]。PH時肺血管重構主要表現為內膜增生、中膜肥厚、外膜增生、原位血栓、不同程度的炎癥以及叢狀動脈樣改變[2-3]。PH時重構的肺血管內膜中α-SMA標記的細胞明顯增加[1]。傳統的觀念認為靜止的肺動脈平滑肌細胞(pulmonary arterial smooth muscle cell,PASMCs)自身增殖是這些細胞的唯一來源。近期有學者在PH動物模型和患者病變肺血管中發現了內皮細胞間質轉化(endothelial-mesenchymal transition, EndMT)的存在,并通過體外實驗證實雷帕霉素可抑制各種因素誘導的肺血管EndMT[4-5]。提示,肺血管EndMT是肺血管重構時α-SMA樣細胞的另一重要來源。進一步探索PH時肺血管EndMT的病理機制,為尋找防治PH的新靶點和藥物具有重要意義。
微小非編碼RNA(microRNA,miRNA)是一類存在于真核生物中具有調控功能的非編碼小分子單鏈RNA,大約長度為21~25 nt。大量研究表明其參與生命過程中一系列的重要進程,包括個體發育、器官形成以及細胞增殖、死亡與分化等[6]。眾所周知,一個miRNA有多個靶點,一個基因又可被多個miRNAs調控,他們之間往往形成復雜的網絡調控機制參與疾病發生發展。因此,通過網絡藥理學技術探索相互作用網絡,而不是單一的研究某個miRNA或基因的功能,能更好地解釋miRNA或基因在疾病中的整體作用。
目前研究雖然提示miRNAs在PH的病理生理過程中扮演著重要的角色。但僅發現了少部分miRNAs在PH中起重要作用,且對于這類疾病分子機制的整體功能研究也尚在起步階段。鑒于PH時肺血管EndMT的機制尚不明確,本文擬運用網絡藥理學方法探索與PH時肺血管EndMT相關miRNAs及其相關下游靶點的相互作用機制,為后續研究PH時肺血管EndMT的分子機制提供明確的方向及策略。
1.1相關文獻篩查通過Medline(PubMed)搜索“pulmonary hypertension”,通過此我們尋找到與PH疾病相關的基因,我們稱為PH模塊。通過進一步切換關鍵詞,包含“pulmonary hypertension”、“microRNA”、“miRNA”、“endothelial to mesenchymal transition”、“epithelial-mesenchymal transition”。搜索得到與PH時EMT/EndMT相關的miRNAs及EMT/EndMT相關的miRNAs。
1.2PH模塊網絡屬性評價從Medline(PubMed)基因數據庫中隨機選取與PH模塊個數相同的蛋白編碼基因,作為隨機網絡模塊。隨機網絡模塊重復選取3次。同時將PH模塊及隨機網絡模塊中的基因分別通過蛋白質-蛋白質相互作用軟件數據庫BioGRID(Biological General Repository for Interaction Datasets)數據庫得到各自模塊基因相互作用關系,并計算各自網絡的最大連接組件的“節點數”(largest connected component,LCC)和直接相互作用的“邊”(edges)。用Cytocape 3軟件做相互作用網絡圖,孤立的節點不在圖上畫出。
1.3miRNAs相關靶點分析通過生物信息數據庫(DIANA3、Miranda4、PicTar5、TargetScan6、miRDB7和microT-CDS8)進行搜索得到相應miRNAs靶基因關系。
1.4miRNAs富集分析及評分通過miRNAtap9工具包超幾何分析列表中每個miRNA的靶基因在PH模塊中的富集效應。具體方法為選擇PH模塊中的230個基因作為基因集合,每個miRNAs預測得到的所有miRNAs為基因列表,以在2個或以上不同靶基因預測數據源中出現過的基因為全部基因背景,四聯表卡方分析,采用蒙特卡洛模擬方法計算確切顯著性概率值P值。對于在基因集合中出現基因列表中的基因的比例小于隨機概率的,P值賦予0.95,即直接認定富集不顯著。校正P值計算用到BH(Benjamini Hochberg)方法。通過設定篩選條件[校正P值<0.05, 靶基因在基因集合中富集的基因個數(setsize)≥5]得出與PH時肺血管EndMT相關miRNAs。將參與PH疾病的功能通路主要分為TGF-β、低氧和炎癥,通過miRNAs基因靶點所屬功能類別進一步對miRNAs進行功能分類評分,篩選出評分較高的miRNAs,并用Cytocape 3軟件構建miRNAs-靶點相互作用網絡圖。
1.5低氧大鼠PH模型建立清潔級Sprague-Dawley(SD)♂大鼠20只,合格號為scxk(湘)2009-0004,體質量180~200 g,適應性喂養1周后稱量體質量、標號;按體質量隨機分為對照組(n=10)和低氧模型組(n=10)。對照組常氧下(21% O2)飼養;低氧模型組于低氧倉中(10% O2,放有無水氯化鈣和鈉石灰分別用來吸收水分和CO2)飼養,兩組大鼠自由飲水、進食。3周后頸靜脈插管分別檢測右心室收縮壓(right ventricular systolic pressure,RVSP)及肺動脈平均壓(mean pulmonary artery pressure, mPAP)以確定造模是否成功。
1.6實時熒光定量PCR肺動脈用液氮磨碎后加TRIzol。根據逆轉錄試劑盒(TaKaRa)說明書逆轉錄為cDNA。cDNA經適當稀釋后,用SYBR Premix Ex TaqⅡ試劑盒(TaKaRa)進行實時熒光定量PCR。PCR反應條件:95℃ 30 s,(95℃ 5 s,60℃ 31 s)40個循環。內參選用U6,內參及目的miRNAs引物由廣州銳博生物有限公司提供。
2.1PH模塊建立通過Medline(PubMed)搜索pulmonary hypertension(2016年2月14日),共50 307篇文獻,尋找到與PH疾病相關的基因共230個,我們將其稱為PH模塊。將這230個基因通過22個不同功能進行分類并做相互作用關系圖(Fig 1A)。圖中每個節點表示一個基因,顏色為該基因對應的功能;字體大小表示該節點的度的大小,度越大節點字體越大;每條邊的粗細表示該兩兩基因作用的研究報道支撐多寡,線條越粗則該兩兩作用在不同研究中報道的次數越多。分別計算PH模塊及隨機網絡模塊的網絡屬性得到PH模塊共有195個節點,LCC為76,Edges為727;隨機模塊LCC為3.7±3,Edges為36.7±3.5。PH模塊LCC及Edges顯著高于隨機網絡模塊(Fig 1B~C,P<0.01)。表明PH模塊具有巨大而稠密的相互關聯,是作為篩選相關miRNAs的理想模塊。
2.2與PH時EndMT相關的miRNAs通過Medline(PubMed)搜索得到PH時EndMT相關的文獻23篇;PH時EndMT相關miRNAs文獻0篇;EndMT/EMT有關的miRNAs文獻56篇(2016年2月14日)。通過閱讀摘要,必要時閱讀全文,得到相關miRNAs189個,對應成熟體322個。通過富集分析發現可能與PH時EndMT相關的miRNAs共98個,將其稱為“目標miRNAs”(Tab 1)。

Fig 1 The PH-network
2.3對目標miRNAs進行功能分類評分并進行miRNAs-靶點網絡構建由于“目標miRNAs”數目較多,為了篩選評分最高的miRNAs,將參與PH疾病的功能通路主要分為TGF-β、低氧和炎癥并對得到的目標miRNAs進行功能分類。其中有22個miRNAs同時參與了TGF-β、低氧和炎癥3個功能通路,評分最高,它們分別是miR-let-7家族、miR-124、miR-130家族、miR-135、miR-144、miR-149、miR-155、miR-16-1、miR-17、miR-181家族、miR-182、miR-200家族、miR-204、miR-205、miR-21、miR-224、miR-27、miR-29家族、miR-301a、miR-31、miR-361和miR-375(Fig 2)。

Fig 2 A subset of miRNAs previously associated with hypoxia,inflammation and TGF-β is predicted to target PH network

miRNAtargetCntsetSizePvaluePadjustedlet-7a-3p2067450.00010.0021miR-130a-3p1677410.00010.0021miR-130b-3p1680420.00010.0021miR-139-5p401150.00010.0021miR-148a-5p1750400.00010.0021miR-181a-5p1286350.00010.0021miR-181b-5p1259340.00010.0021miR-181c-5p1285350.00010.0021miR-224-5p1476350.00010.0021miR-27a-3p2406490.00010.0021miR-338-5p2368570.00010.0021miR-33a-3p2386540.00010.0021miR-374a-3p1076290.00010.0021miR-42993351510.00010.0021miR-44887641480.00010.0021miR-56885281480.00010.0021miR-589-3p1693390.00010.0021miR-9-3p1819400.00010.0021miR-124-3p2340470.00020.0032miR-144-3p1627370.00020.0032miR-301a-3p1700410.00020.0032miR-320a2574530.00020.0032miR-129-5p2453500.00030.0039miR-135a-5p1497360.00030.0039miR-149-5p1783380.00030.0039miR-302a-5p1797390.00030.0039let-7b-3p2118440.00040.0044miR-106a-3p1086270.00040.0044miR-150-5p1470330.00040.0044miR-106a-5p2273460.00060.0059miR-200b-3p1928400.00060.0059miR-200c-3p1980410.00060.0059miR-33b-5p1032250.00060.0059miR-93-5p1178280.00070.0064miR-148a-3p1460320.00080.0066miR-199a-3p728190.00080.0066miR-506-3p2367460.00080.0066let-7g-3p1960400.00100.0075miR-590-3p4122710.00100.0075miR-126-5p2071410.00120.0084miR-200b-5p811210.00120.0084miR-490-5p442140.00120.0084miR-183-5p1134260.00130.0088let-7f-2-3p891220.00150.0096miR-186-5p3049550.00150.0096miR-17-5p1195270.00170.0106miR-200a-5p875220.00190.0113miR-29c-3p1704350.00200.0117miR-1371465310.00220.0123miR-20b-5p1199270.00220.0123miR-29b-3p1709350.00220.0123miR-19b-1-5p14270.00230.0128miR-29a-3p1703350.00250.0133miR-589-5p984230.00250.0133miR-16-1-3p461140.00260.0135miR-335-3p3510610.00260.0135
續表

miRNAtargetCntsetSizePvaluePadjustedmiR-3751357290.00260.0135miR-103a-3p2346440.00270.0136miR-6123297580.00270.0136miR-205-3p1004230.00310.0151miR-222-3p984220.00390.0178miR-374a-5p2011390.00390.0178miR-185-5p1674330.00430.0192miR-221-3p976220.00450.0196miR-92a-3p1504310.00450.0196miR-2061654330.00460.0197miR-26b-5p1740340.00460.0197miR-155-5p1225260.00470.0200miR-27a-5p736180.00490.0204miR-361-5p1307270.00500.0207miR-204-5p857200.00530.0216miR-9-5p2265420.00550.0222miR-491-5p872200.00570.0229miR-26a-5p1770340.00630.0249miR-34b-5p1307270.00630.0249miR-218-5p995220.00700.0271miR-409-3p726170.00750.0279miR-182-3p389110.00800.0294miR-205-5p1715330.00800.0294miR-1072650470.00810.0296miR-31-3p542140.00820.0297miR-127-5p1684320.00840.0303miR-155-3p557140.00930.0321miR-19b-3p1795340.00930.0321miR-21-5p788180.00930.0321let-7f-1-3p1305260.01050.0352miR-19a-3p1806340.01050.0352miR-204-3p1815340.01070.0353miR-21-3p1169240.01070.0353miR-29a-5p628150.01080.0353miR-590-5p987210.01080.0353let-7a-2-3p796180.01120.0358miR-34c-3p1337260.01320.0415miR-424-5p2959500.01390.0432miR-136-3p648150.01460.0444miR-382-5p1063220.01490.0451miR-424-3p25780.01650.0491
target Cnt: the number of all predicted targets;set size:the number of all predicted targets in PH model
2.4低氧PH模型大鼠構建為進一步驗證生物信息學分析所得miRNAs,我們構建了低氧誘導PH大鼠模型,探討miRNAs在肺動脈中的表達變化。結果顯示,低氧模型組大鼠的RVSP及mPAP均顯著高于對照組(Fig 3,P<0.01)。提示:低氧PH模型大鼠構建成功。
2.5實時熒光定量PCR驗證隨機挑選在EMT和PH中作用均肯定的miRNAs 2個(miR-21、miR-124)、只在EMT中作用肯定的miRNAs 1個(let-7g)及只在PH中作用肯定的miRNAs 1個(miR-130家族)進行實時熒光定量PCR初步驗證。結果發現與對照組相比,低氧誘導PH大鼠肺動脈中let-7g和miR-124表達明顯下調,miR-21、miR-130家族表達明顯上調(Fig 4,P<0.05)。進一步提示通過生物信息學預測得到的let-7g、miR-21、miR-124、miR-130家族可能與低氧PH時EndMT有關。

Fig 3 Homodynamic index for hypoxia-induced PH rats(n=10)
**P<0.01vsControl

Fig 4 Change of miRNAs in pulmonary artery
*P<0.05,**P<0.01vsControl
2.6miRNAs-靶點網絡構建對這22個miRNAs進行miRNAs-靶點(PH網絡中的)網絡構建,以直觀觀察該22個miRNAs在PH內皮間質轉化中可能發揮的整體作用(Fig 5)。

Fig 5 Predicted target network of 22 miRNA groups
EndMT即在外界刺激及體內微環境的影響下,單層內皮細胞間固有的聯系遭到破壞,內皮細胞失去原有的表型,獲得狹長的間質樣及肌成纖維細胞樣表型[7]。在EndMT過程中,內皮細胞標志蛋白(VE-cadherin, Tie-1/2, VEGFR1/2, PECAM/CD31)表達明顯下調,肌成纖維細胞和平滑肌細胞標志蛋白波形蛋白(vimentin)和α-平滑肌肌動蛋白(α-smooth muscle actin, α-SMA)表達增加。實驗證據提示[8],EndMT在心血管發育(包括肺動脈發育)、各種血管疾病(如動脈粥樣硬化和血管再狹窄時內膜增生)以及傷口愈合中發揮重要作用。有學者發現在PH患者的肺動脈內膜中,同時存在著內皮細胞和多功能間質祖細胞,其中肌成纖維細胞在肺動脈內膜增生中發揮重要作用[9];PH患者肺動脈內皮細胞形態發生改變,并且通過標志蛋白的表達檢測發現有平滑肌樣細胞(即α-SMA標記細胞)和小部分移行細胞(即內皮樣細胞標志蛋白和平滑肌樣細胞標志蛋白同時出現的細胞)的存在[10]。提示EndMT可促進α-SMA樣細胞在病變血管部位聚集從而參與PH時肺血管重構。但PH時肺血管EndMT發生的機制尚不明確。
自2007年英國藥理學家Hopkins[11]率先提出“網絡藥理學”概念后,由于該方法成本較低,并可有效地幫助科研工作者從大數據中縮小范圍尋找靶標,顯示出重要的理論和實際應用價值。目前被迅速應用于眾多領域的研究中,以探索miRNAs和基因在人類疾病中的整體作用。早在2012年便有學者運用網絡藥理學的方法探索了與PH相關的miRNAs,并最終通過實驗證實了miR-21在多種PH模型中表達上調并可通過抑制其靶點RhoB改善PH肺血管重構,延緩病情的發展[12]。本文首次運用網絡藥理學方法探索與PH時肺血管EndMT相關miRNAs及其相關下游靶點的相互作用機制,并通過實驗對部分miRNAs進行實驗驗證。其中let-7家族屬于腫瘤抑制因子,可通過HMGA2抑制多種腫瘤細胞的EMT[13];miR-130可促進多種類型的PH肺血管重構[14];miR-124及miR-21已確證參與了PH的發生發展,且參與了多種細胞的EndMT/EMT。PH時,miRNA124在肺動脈外膜及肺組織中均表達下調,通過多個靶點(NFATc1、CAMTA1、PTBP1)抑制PASMCs的增殖和表型轉化及肺動脈成纖維細胞的增殖、遷移和炎癥[15-16]。miR-124還可通過多個靶點(CDH2、RHOG)抑制TGF-β或低氧誘導的肺癌細胞[17]及視網膜色素上皮細胞[18]EMT。與其他學者結果一致,我們驗證時發現低氧PH時let-7g下調而miR-130上調,這從側面反映了低氧PH時可能發生了EndMT。而miR-124在低氧誘導的肺動脈中表達下調,提示其可能在PH時具有抑制肺血管EndMT的作用。總之,網絡藥理學方法不僅可通過生物信息學預測從而為后續的研究提供方向和策略,還可通過探究信號分子在疾病中的整體作用而解釋表面看似矛盾的結果。
對于本研究的實驗驗證,尚存在以下不足。首先,我們通過分子生物學實驗驗證了部分miRNAs在低氧PH大鼠肺動脈中的表達變化,對于其它miRNAs如何改變未做探討;其次,我們僅在低氧誘導的PH模型中進行了miRNAs驗證而未涉及其他動物模型如野百合堿誘導PH模型,而兩種模型代表的PH病理過程有差異;再次,肺動脈由肺動脈內皮細胞、平滑肌細胞及成纖維細胞等多種細胞組成,我們僅檢測了miRNAs在肺動脈中的表達變化,故這不足以說明其參與了PH時肺血管EndMT。因此,后續還需在多種動物模型及細胞水平進一步驗證這些miRNAs在PH時肺血管EndMT的整體作用及機制。
(致謝:本文實驗在中南大學藥學院藥理學系心血管藥理研究室完成。湖南醫藥學院藥理學教研室吳衛華博士以及中南大學藥學院藥理學系博士生祝田田、鄒小舟、劉汀和碩士生葛曉月參與完成本文實驗,并協助數據分析。)
[1]Morrell N W, Adnot S, Archer S L, et al. Cellular and molecular basis of pulmonary arterial hypertension[J].JAmCollCardiol, 2009,54(1 Suppl): S20-31.
[2]Crosswhite P, Sun Z. Molecular mechanisms of pulmonary arterial remodeling[J].MolMed, 2014,20:191-201.
[3]Li X W, Hu C P, Wu W H, et al. Inhibitory effect of calcitonin gene-related peptide on hypoxia-induced rat pulmonary artery smooth muscle cells proliferation: Role of ERK1/2 and p27[J].EurJPharmacol, 2012, 679(1-3). 117-26.
[4]Ranchoux B, Antigny F, Rucker-Martin C, et al. Endothelial-to-mesenchymal transition in pulmonary hypertension[J].Circulation, 2015,131(11):1006-18.
[5]Good R B, Gilbane A J, Trinder S L, et al. Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary arterial hypertension[J].AmJPathol, 2015,185(7):1850-8.
[6]He L, Hannon G J. MicroRNAs: small RNAs with a big role in gene regulation[J].NatRevGenet, 2004,5(7):522-31.
[7]Lin F,Wang N,Zhang T C. The role of endothelial-mesenchymal transition in development and pathological process[J].IUBMBLife, 2012, 64(9):717-23.
[8]Arciniegas E, Frid M G, Douglas I S, et al. Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension[J].AmJPhysiolLungCellMolPhysiol, 2007,293(1):L1-8.
[9]Maruoka M, Sakao S, Kantake M, et al. Characterization of myofibroblasts in chronic thromboembolic pulmonary hypertension[J].IntJCardiol, 2012,159(2):119-27.
[10]Sakao S, Hao H, Tanabe N, et al. Endothelial-like cells in chronic thromboembolic pulmonary hypertension: crosstalk with myofibroblast-like cells[J].RespirRes,2011,12:109.
[11]Hopkins A L. Network pharmacology[J].NatBiotechnol, 2007, 25(10):1110-1.
[12]Parikh V N, Jin R C, Rabello S, et al. MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach[J].Circulation, 2012,125(12):1520-32.
[13]Ma C, Nong K, Zhu H, et al. H19 promotes pancreatic cancer metastasis by derepressing let-7′s suppression on its target HMGA2-mediated EMT[J].TumourBiol, 2014,35(9):9163-9.
[14]Bertero T, Lu Y, Annis S, et al. Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension[J].JClinInvest, 2014,124(8):3514-28.
[15]Kang K, Peng X, Zhang X, et al. MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells[J].JBiolChem, 2013,288(35):25414-27.
[16]Wang D, Zhang H, Li M, et al. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts[J].CircRes,2014,114(1):67-78.
[17]Ma T, Zhao Y, Wei K, et al. MicroRNA-124 functions as a tumor suppressor by regulating CDH2 and epithelial-mesenchymal transition in non-small cell lung cancer[J].CellPhysiolBiochem, 2016,38(4):1563-74.
[18]Jun J H, Joo C K. MicroRNA-124 controls transforming growth factor beta1-induced epithelial-mesenchymal transition in the retinal pigment epithelium by targeting RHOG[J].InvestOphthalmolVisSci, 2016,57(1):12-22.
MicroRNAs integrates pathogenic signaling to control endothelial-mesenchymal transition in pulmonary hypertension: results of a network bioinformatic approach
ZHANG Wei-fang1,2, XIONG Ai-zhen1, WU Wei-hua3,ZHU Tian-tian2, ZOU Xiao-zhou2, LIU Ting2, HU Chang-ping2
(1.DeptofPharmacy,theSecondAffiliatedHospitalofNanchangUniversity,Nanchang330006,China;2.DeptofPharmacology,SchoolofPharmaceuticalSciences,CentralSouthUniversity,Changsha410078,China;3.DeptofPharmacology,HunanUniversityofMedicine,HuaihuaHunan418000,China)
AimTo explore micro RNAs-integrated pathogenic signaling to control endothelial-mesenchymal transition(EndMT) in pulmonary hypertension(PH) by a network bioinformatic approach.MethodsLiterature-mining method was used to find PH -related genes and EndMT/EMT-related miRNAs. Bioinformatic prediction approach(DIANA3,Miranda4,PicTar5,TargetScan6,miRDB7 and microT-CDS8) was used for miRNA target prediction. Hypergeometric analysis was used to predict miRNAs related to EndMT in PH. The analysis of interactions between PH-relevant genes(PH network) was performed with the use of Biological General Repository for Interaction Datasets(BioGRID). These miRNAs were ranked with the highest probability of substantial overlap among their gene targets in the PH-network, the relationship between their targets and the PH functional categories which include hypoxia, inflammation, and transforming growth factor/BMP signaling. Then, the part of results was validated by animal experiment. Lastly the miRNA-Target network was built using Cytocape 3.ResultsList of 230 genes was compiled that were directly implicated in the development of PH and 189 miRNAs were related to EndMT in PH. Among 189 miRNAs, only 22 microRNAs(miR-let-7 family, miR-124, miR-130 family, miR-135, miR-144, miR-149, miR-155, miR-16-1, miR-17, miR-181 family, miR-182, miR-200 family, miR-204, miR-205, miR-21, miR-224, miR-27, miR-29 family, miR-301a, miR-31, miR-361 and miR-375) were related to hypoxia, inflammation, and transforming growth factor/BMP signaling. Among these miRNAs, the levels of let-7g, miR-21, miR-124 and miR-130 family were significantly changed in the pulmonary artery in hypoxia-induced PH rats.ConclusionsAmong numerous miRNAs,22 of which may be involved in hypoxia, inflammation, and transforming growth factor/BMP signaling and related to EndMT in PH by network bioinformatic approach, which provides a theoretical basis for further investigation of EndMT in PH.
pulmonary hypertension; miRNAs; EndMT; network regulation; bioinformatics; network pharmacology;interaction
2016-05-23,
2016-06-25
國家自然科學基金資助項目(No 81273512,81473209,91439105,81460010);江西省科技廳青年科學基金(No 20142BAB215035);南昌大學第二附屬醫院院內課題(No 20142YNQN12018)
張衛芳(1987-),女,博士,研究方向:心血管藥理學,E-mail:z_weifang@163.com;
胡長平(1969-),男,教授,博士生導師,研究方向:心血管藥理學,通訊作者,E-mail: huchangping@yahoo.com
10.3969/j.issn.1001-1978.2016.09.021
A
1001-1978(2016)09-1294-07
R322.12;R318.04;R329.2;R342.2;R394.2; R544
網絡出版時間:2016-8-23 14:29:00網絡出版地址:http://www.cnki.net/kcms/detail/34.1086.R.20160823.1429.042.html