寇佳媛,姜月晴,田野,2,楊力明
(1.哈爾濱醫科大學病理生理學教研室,哈爾濱150081;2.哈爾濱醫科大學附屬第一醫院心內科,哈爾濱150001)
中藥提取物聲敏劑在聲動力治療動脈粥樣硬化中的應用
寇佳媛1,姜月晴1,田野1,2,楊力明1
(1.哈爾濱醫科大學病理生理學教研室,哈爾濱150081;2.哈爾濱醫科大學附屬第一醫院心內科,哈爾濱150001)
目前,動脈粥樣硬化引起的心血管疾病發生率越來越高,除昂貴的介入和搭橋治療術外,尋求一種簡單、有效且經濟的治療方法至關重要.聲動力治療是一種無創、安全的治療方式,其在動脈粥樣硬化治療中的應用很有前景.聲動力治療中使用的藥物為聲敏劑,是影響其療效的主要因素之一.研究人員一直致力于探討不同種類聲敏劑所帶來的聲動力效果在動脈粥樣硬化治療中起到的不同作用.近年來,在聲敏劑的篩選研究中發現,中藥提取物有很大的潛在聲敏劑價值.簡要總結了目前對聲動力治療機制及大黃素、姜黃素及其衍生物和金絲桃素作為聲敏劑在聲動力治療動脈粥樣硬化中的相關進展.
聲動力治療;聲敏劑;中藥提取物;動脈粥樣硬化
動脈粥樣硬化是一種常見的慢性炎癥性心血管疾病[1],其中動脈粥樣硬化斑塊的破裂是急性心血管事件發生的主要原因,嚴重威脅人類健康[2].傳統的動脈粥樣硬化治療包括藥物治療和手術介入治療,是目前臨床患者的主要選擇.然而,這些療法仍存在一些副作用,例如抗血小板藥物會導致血小板含量過低,最終引起出血[3];抗血脂藥會引起肌病[4];手術介入治療也存在機械創傷大、術后再狹窄率高、支架內血栓發生率高的缺陷[5].因此,尋求一種損傷小、靶向性強的動脈粥樣硬化治療方法勢在必行.
光動力療法是一種應用感光材料(光敏劑)和光照,產生活性氧和其他物質靶向導致細胞或組織產生形態、功能上改變的治療手段.在過去幾十年間,由于光動力療法具有可以選擇性破壞靶向組織的特點,已應用于各種疾病中,例如癌癥[6]、牙周炎[7]、心血管疾病[8].盡管光動力療法取得了巨大的成效,但其在臨床應用上的缺點卻不容忽視.首先是可見光的穿透深度較淺,如果將光動力療法應用于治療動脈粥樣硬化,那么只有淺表的血管可得到治療;除此之外,光敏劑和光照選擇性差可能導致皮膚毒性或其他正常組織的損傷.并且,這種損傷愈合后也會不可避免地留下疤痕[9].雖然恰當地選擇光敏劑的種類、劑量和光照的波長、作用時間可以在一定程度上提高光動力療法的效能并降低毒性,但這種療法在治療動脈粥樣硬化方面仍然面臨嚴峻考驗.
1989年,Yumita等[10]發現血卟啉被超聲激活可以導致明顯細胞損傷,并把這種方法命名為聲動力療法.聲動力療法的原理是使低頻超聲和具有聲敏活性的藥物(聲敏劑)同時作用,產生活性氧等物質,導致細胞損傷乃至死亡.與光動力療法相比,聲動力療法在無創治療非淺表的動脈粥樣硬化斑塊上展現出一些重要的優勢:①超聲是一種低成本的、安全的臨床影像系統,很容易被廣泛接受;②超聲在軟組織中的穿透深度可以達到數十厘米,并且可通過超聲頻率控制[11];③超聲在穿透組織時有恰當的組織衰減系數,當到達目的地時,超聲又有能力將能量集中在需要治療的小范圍內[12].換句話說,超聲可以完全集中于一個特定的血管位置并有效激活或增加聲敏劑所包圍區域的細胞毒性,并對周圍正常組織幾乎沒有傷害[13].因此,聲動力療法是一種理想的治療手段,并且需要進行更多更為細致的科學研究.
到目前為止,盡管在體外或體內模型中均已有聲動力相關研究,但聲動力治療的確切機制仍不明確.大量文獻報道未將超聲和聲敏劑間相互作用的機制闡述清晰,主要是因為機制與生物模型、實驗系統、超聲聲敏劑種類,包括頻率和強度的曝光參數均有關系[6].目前較為公認的可能機制有:①超聲空化;②流體壓力;③活性氧(reactive oxygen species,ROS);④結合多種機制共同作用[14-15].
超聲生物效應分為熱效應和非熱效應[16].非熱效應又被分為空化效應和其他機械效應[17].“空化”用來表示聲空化:指氣泡在聲場的作用下被激發生長甚至漲破的運動過程[18].空化可分為慣性和非慣性空化,慣性空化過程包括氣體氣泡的生長、最大限度的膨脹和劇烈的崩潰.氣泡爆炸釋放的能量會引起周圍微環境溫度的升高和壓力的驟然增大[19].而非慣性空化是指相對低強度聲場中的小氣泡振動的過程.慣性和非慣性空化均可產生機械力,然而只有慣性空化可產生化學效應[14].當氣泡快速地在細胞間移動時,超聲可以通過流體力學方式對細胞切割從而產生傷害,振蕩氣泡周圍流體振蕩產生的剪切力對細胞造成的損傷稱為流體壓力[14].
超聲激活聲敏劑導致的ROS產生可對細胞進行攻擊,是聲動力效果引起的結果[20-21]. ROS包括兩大類:自由基和單線態氧.此外,如果產生足夠多的ROS,將會引發一連串的生物學變化如細胞骨架收縮、染色質濃縮、DNA斷裂、線粒體膜電位消失,而上述結果最終可以導致靶細胞的凋亡[22-23].
顯然,聲敏劑的選擇是聲動力研究中不可缺少的重要切入點之一,研究人員一直致力于探討不同種類聲敏劑所帶來的聲動力效果在動脈粥樣硬化進展中起到的不同作用.近年來,在聲敏劑的篩選研究中發現,中藥提取物有很大的潛在聲敏劑價值,下面將總結中藥提取物聲敏劑在聲動力治療動脈粥樣硬化中的相關進展.
2.1大黃素
大黃素是從天然草本植物大黃中提取而來,大黃本身具有抗炎、抗增殖及抗腫瘤等生物學特性[24-26].大黃素(emodin,見圖1(a))是一種已知光敏劑[27],然而其是否可以作為聲敏劑是未知的.2011年,已有研究表明大黃素(15 mg/L)介導的聲動力治療可以引起巨噬細胞凋亡和壞死[28].因此,大黃素介導的聲動力治療可能通過降低動脈粥樣硬化斑塊中巨噬細胞的浸潤來達到治療目的,成為未來一種潛在的治療方法.
2.2姜黃素及其衍生物
姜黃素(curcumin,見圖1(b))是一種疏水性多酚類物質,從草本植物姜黃的根莖中提取而來.諸多證據表明姜黃素具有抗炎、抗變異及抗癌的生物學特性[29-31].近期一項研究證實,姜黃素(40.7μmol/L)介導的聲動力治療可明顯降低巨噬細胞存活率,細胞形態在聲動力治療后表現為線粒體膜電位下降以及細胞骨架的形態學改變等[32].上述研究結果表明,姜黃素具有聲敏劑活性,姜黃素介導的聲動力治療可能是一種很有前景的治療方式.本課題組為了提高姜黃素的聲敏活性,對其進行了化學修飾,替換原有的不穩定的羥基合成羥基乙?;S素(hydroxyl-acylated curcumin,見圖1(c)),并證實5μg/mL的羥基乙?;S素即可表現出明顯的聲敏活性.同時發現,在低強度超聲作用下,羥基乙酰化姜黃素可通過細胞內產生的ROS激活線粒體Caspase-3/9信號通路,促進THP-1巨噬細胞發生凋亡,表明羥基乙酰化姜黃素可以作為一種新型聲敏劑應用于聲動力研究中[22].
2.3金絲桃素和偽金絲桃素
金絲桃素(hypericin,見圖1(d))由連翹的全草提取而得,多環二酮結構的金絲桃素作為一種效果良好的光敏劑而被廣泛應用,其主要優勢為毒性小、腫瘤選擇特異性高、排空率高、單線態氧產生率高以及抗炎等[33-35].本課題組在聲動力研究中旨在篩選安全性高、使用劑量低的聲敏劑,因此將金絲桃素列為研究篩選目標.結果發現,0.25μg/mL金絲桃素介導的聲動力治療可明顯誘導THP-1巨噬細胞產生ROS,并促進細胞凋亡,證實金絲桃素確實具有聲敏活性.同時發現,在此過程中是通過誘導促凋亡因子BAX的易位和線粒體通透性轉換孔開放,釋放細胞色素C,從而達到促使細胞凋亡的目的.與同劑量的大黃素、姜黃素及艾拉(一種非中藥提取物聲敏劑,見下文)相比,金絲桃素擁有更好的聲敏效果,本研究結果表明其在介導聲動力治療動脈粥樣硬化中有巨大潛力[36].
偽金絲桃素(psedo-hypericin,見圖1(e))也由連翹的全草提取而來,與金絲桃素結構類似,同樣具有光敏活性.本課題組為了驗證偽金絲桃素是否存在聲敏活性,且與金絲桃素相比是否具有更好的聲敏效果,對該種中藥提取物加以實驗研究.結果顯示,偽金絲桃素在0.4μg/mL時即可誘導巨噬細胞發生凋亡,與同劑量的艾拉相比效果更佳[37].

圖1 應用于動脈粥樣硬化治療中的中藥提取物聲敏劑化學結構式Fig.1 Chemical structures of sonosensitizers derived from Chinese herb products used in atherosclerosis treatment
3.1艾拉
艾拉(5-氨基酮戊酸,5-aminolevulinic acid,ALA,見圖2(a))是血紅素合成途徑中原卟啉Ⅸ(見圖2(b))的生物學前體[38].艾拉可以通過靜脈注射聚集在腫瘤組織中,并在低頻超聲的激活下產生ROS[15].在過去的若干年中,艾拉介導的聲動力治療在腫瘤細胞應用中的研究相對廣泛[38-41],但在動脈粥樣硬化斑塊模型中是否也能達到治療效果卻未可知.體外研究發現,艾拉介導的聲動力治療可通過對THP-1巨噬細胞作用使其產生ROS,同時伴隨著線粒體膜電位的消失[23].Chen等[42]發現,通過阻滯電壓依賴性陰離子通道,可明顯抑制鈣離子參與的艾拉介導聲動力治療中所引起的氧化應激反應及巨噬細胞凋亡;并且推測艾拉介導的聲動力治療可能通過降低巨噬細胞在動脈粥樣硬化斑塊中的浸潤,從而達到治療動脈粥樣硬化斑塊的效果,在此過程中電壓依賴性陰離子通道起到了重要作用.

圖2 應用于動脈粥樣硬化中的非中藥提取物聲敏劑化學結構式Fig.2 Chemical structures of sonosensitizers derived from non-Chinese herb products used in atherosclerosis treatment
血管平滑肌細胞是一種高度特化的細胞,可以調節血管張力、血壓及血流量[43].在血管再狹窄過程中,血管平滑肌細胞從已分化表型轉變為去分化表型[44].文獻[45]的研究結果表明,艾拉介導的聲動力治療通過局部產生ROS對血管平滑肌細胞增殖和遷移能力均有抑制,且提高了平滑肌特異蛋白的表達,調節血管平滑肌細胞表型從去分化表型轉變為分化表型,并激活p38絲裂原活化蛋白激酶.由此推測,艾拉介導的聲動力治療可能在臨床血管再狹窄的治療中起到重要作用.
富含脂質的泡沫細胞的存在是動脈粥樣硬化病變的一個標志[46],泡沫細胞分泌的炎性因子在動脈粥樣硬化斑塊的各個時期均加速斑塊進展[47].2014年,Wang等[48]的研究表明,艾拉介導的聲動力治療可通過產生ROS激活THP-1巨噬細胞源性泡沫細胞線粒體凋亡途徑和內質網應激.2015年,Li等[49]在動脈粥樣硬化模型兔中證明艾拉介導的聲動力治療可促進斑塊穩定,誘導巨噬細胞消除并抑制基質降解.2016年,Tian等[50]首次在人動脈粥樣硬化斑塊中發現程序性壞死現象,并在體外建立的泡沫細胞模型中成功通過艾拉介導的聲動力治療達到抑制程序性壞死、激活Caspase-3/8通路促進細胞凋亡的目的.
3.2原卟啉Ⅸ
原卟啉Ⅸ(protoporphyrinⅨ,PpⅨ,見圖2(b))是血紅素的前體,通過結合線粒體轉運蛋白參與血紅素代謝[51].原卟啉Ⅸ及其衍生物已廣泛應用于光動力和聲動力治療中,達到殺傷癌細胞的目的.已有研究表明,在動脈粥樣硬化斑塊中,PpⅨ具有顯著選擇性積累于動脈粥樣硬化斑塊中的特點,比正常血管壁內原卟啉含量高12倍[52].基于上述特點,PpⅨ在聲動力治療動脈粥樣硬化中可作為效果顯著的聲敏劑.巨噬細胞在動脈粥樣硬化形成過程中起著重要作用,斑塊中巨噬細胞的表型及數量將影響疾病與斑塊的進展[53].近期研究發現,原卟啉Ⅸ可在體外巨噬細胞中積累,使用1.0 MHz及0.5 W/cm2超聲參數進行聲動力治療可誘導細胞存活率下降[54].根據流式檢測、hoechst 33342和碘化丙啶(propidium iodide,PI)染色發現細胞死亡形式主要以凋亡為主,同時發現了單線態氧的產生及細胞骨架的破壞.
在過去的20年間,有關聲動力治療機制或療效的研究逐漸增多,然而將其應用于動脈粥樣硬化治療的研究中卻是近幾年剛剛出現的.本研究主要總結了目前較公認的聲動力治療機制,以及聲敏劑在聲動力治療動脈粥樣硬化中的應用,著重闡述諸如大黃素、姜黃素及其衍生物、金絲桃素等中藥聲敏劑的應用及潛在價值.聲動力治療是一種無創、安全、有針對性的治療手段,具有十分廣闊的應用前景,隨著中藥提取物聲敏劑的逐漸涌現,相信不久的將來將實現臨床應用.
[1]LOTTA L A.Genome-wide association studies in atherothrombosis[J].European Journal of Internal Medicine,2010,21(2):74-78.
[2]MOZAFFARIAN D,BENJAMIN E J,GO A S,et al.Heart disease and stroke statistics—2012 update:a report from the American Heart Association[J].Circulation,2014,131(4):e29-e322.
[3]FERGUSON J J,KEREIAKES D J,ADGEY A A,et al.Safe use of platelet GPⅡb/Ⅲa inhibitors[J].American Heart Journal,1998,135(4):D40-D51.
[4]NEUVONEN P J,MIKKO N,BACKMAN J T.Drug interactions with lipid-lowering drugs:mechanisms and clinical relevance[J].Clinical Pharmacology and Therapeutics,2007,80(6):565-581.
[5]ROCKSON S G,LORENZ D P,CHEONG W F,et al.Photoangioplasty an emerging clinical cardiovascular role for photodynamic therapy[J].Circulation,2000,102(5):591-596.
[6]CHEN H,ZHOU X,YU G,et al.Recent progress in development of new sonosensitizers for sonodynamic cancer therapy[J].Drug Discovery Today,2014,19(4):502-509.
[7]SGOLASTRA F,PETRUCCI A,GATTO R,et al.Photodynamic therapy in the treatment of chronic periodontitis:a systematic review and Meta-analysis[J].Lasers in Medical Science,2013,28(2):669-682.
[8]MARIA K,KONSTANTINOS T,ARCHONTOULA M,et al.Vulnerable plaque and inflammation:potential clinical strategies[J].Curr Pharm Des,2011,17(37):4190-4209.
[9]MARTIJN T,PAUL B,SCHELLENS J H M,et al.Photodynamic therapy in oncology[J].Oncologist,2006,11(9):1034-1044.
[10]YUMITA N,NISHIGAKI R,UMEMURA K,et al.Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound[J].Jpn J Cancer Res,1989,80(3):219-222.
[11]BAILEY M R,KHOKHLOVA V A,SAPOZHNIKOV O A,et al.Physical mechanisms of the therapeutic effect of ultrasound(a review)[J].Acoustical Physics,2003,49(4):369-388.
[12]KUROKI M,HACHIMINE K H,SHIBAGUCHI H,et al.Sonodynamic therapy of cancer using novel sonosensitizers[J].Anticancer Research,2007,27(6A):3673-3678.
[13]SHI J,CHEN Z,WANG B,et al.Reactive oxygen species-manipulated drug release from a smart envelope-type mesoporous titanium nanovehicle for tumor sonodynamic-chemotherapy[J].ACS Applied Materials and Interfaces,2015,7(51):28554-28565.
[14]ROSENTHAL I,SOSTARIC J Z,RIESZ P.Sonodynamic therapy—a review of the synergistic effects of drugs and ultrasound[J].Ultrasonics Sonochemistry,2004,11(6):349-363.
[15]HIROTOMO S,HIROFUMI T,MOTOMU K,et al.Sonodynamic cancer therapy:a non-invasive and repeatable approach using low-intensity ultrasound with a sonosensitizer[J].Anticancer Research,2011,31(7):2425-2429.
[16]BAKER K G,ROBERTSON V J,DUCK F A.A review of therapeutic ultrasound:biophysical effects[J].Physical Therapy,2001,81(7):1351-1358.
[17]SUSLICK K S.Ultrasound:its chemical,physical and biological effects[M].Weinheim:Vch Publishers,1988.
[18]APFEL R E.Acoustic cavitation:a possible consequence of biomedical uses of ultrasound[J]. British Journal of Cancer Supplement,1982,5(1):140-146.
[19]DAVID C,CONOR M E,COLIN F,et al.Treating cancer with sonodynamic therapy:a review[J]. International Journal of Hyperthermia the Official Journal of European Society for Hyperthermic Oncology North American Hyperthermia Group,2015,31(2):107-117.
[20]LI Y,PAN W,PING Z,et al.Apoptosis induced by sonodynamic treatment by protoporphyrinⅨon MDA-MB-231 cells[J].Ultrasonics,2012,52(4):490-496.
[21]XIN S,XU H,JING S,et al.Real-time detection of intracellular reactive oxygen species and mitochondrial membrane potential in THP-1 macrophages during ultrasonic irradiation for optimal sonodynamic therapy[J].Ultrasonics Sonochemistry,2015,22:7-14.
[22]ZHENG L,SUN X,ZHU X,et al.Apoptosis of THP-1 derived macrophages induced by sonodynamic therapy using a new sonosensitizer hydroxyl acetylated curcumin[J].PLoS One,2014,9(3):e93133.
[23]CHENG J,SUN X,GUO S,et al.Effects of 5-aminolevulinic acid-mediated sonodynamic therapy on macrophages[J].International Journal of Nanomedicine,2013,8(1):669-676.
[24]TAO L,HUI J,SUN Q R,et al.Neuroprotective effects of emodin in rat cortical neurons against beta-amyloid-induced neurotoxicity[J].Brain Research,2010,1347(1):149-160.
[25]QIN H,MAZHAR N,YUEN F W,et al.In vitro anti-fibrotic activities of herbal compounds and herbs[J].Nephrology Dialysis Transplantation,2009,24(10):3033-3041.
[26]CAI J,RAZZAK A,HERING J,et al.Feasibility evaluation of emodin(rhubarb extract)as an inhibitor of pancreatic cancer cell proliferation in vitro[J].Journal of Parenteral and Enteral Nutrition,2008,32(2):357-360.
[27]ESTHER B,GEERT C,NICO H,et al.Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy[J].FASEB Journal,2006,20(6):756-758.
[28]GAO Q,WANG F,GUO S,et al.Sonodynamic effect of an anti-inflammatory agent—emodin on macrophages[J].Ultrasound in Medicine and Biology,2011,37(9):1478-1485.
[29]BUHRMANN C,MOBASHERI A,BUSCH F,et al.Curcumin modulates NF-κB-mediated inflammation in human tenocytes in vitro:role of the phosphatidylinositol 3-kinase-Akt pathway[J]. Journal of Biological Chemistry,2011,286(32):28556-28566.
[30]SAMUHASANEETO S,THONG-NGAM D,KULAPUTANA O,et al.Curcumin decreased oxidative stress,inhibited NF-kappaB activation,and improved liver pathology in ethanol-induced liver injury in rats[J].Journal of Biomedicine and Biotechnology,2009,2009(1):981963.
[31]ISSEI D,YUNKYUNG H,NORIYUKI Y,et al.Inhibitory effect of curcumin on IMP dehydrogenase,the target for anticancer and antiviral chemotherapy agents[J].Bioscience Biotechnology and Biochemistry,2010,74(1):185-187.
[32]WANG F,GAO Q,GUO S,et al.The sonodynamic effect of curcumin on THP-1 cell-derived macrophages[J].Biomed Research International,2013,2013(1):121-128.
[33]SARRIS J,PANOSSIAN A,SCHWEITZER I,et al.Herbal medicine for depression,anxiety and insomnia:a review of psychopharmacology and clinical evidence[J].European Neuropsychopharmacology,2011,21(12):841-860.
[34]EHRENSHAFT M,ROBERTS J E,MASON R P.Hypericin-mediated photooxidative damage of α-crystallin in human lens epithelial cells[J].Free Radical Biology and Medicine,2013,60:347-354.
[35]BOˇZIN B,KLADAR N,GRUJI′C N,et al.Impact of origin and biological source on chemical composition,anticholinesterase and antioxidant properties of some St.John's Wort Species(Hypericum spp.,Hypericaceae)from the central balkans[J].Molecules,2013,18(18):11733-11750.
[36]LI X,GAO L,ZHENG L,et al.The efficacy and mechanism of apoptosis induction by hypericin-mediated sonodynamic therapy in THP-1 macrophages[J].International Journal of Nanomedicine,2015,10:821-838.
[37]KERB R,BROCKM¨OLLER J,STAFFELDT B,et al.Single-dose and steady-state pharmacokinetics of hypericin and pseudohypericin[J].Antimicrobial Agents and Chemotherapy,1996,40(9):2087-2093.
[38]LV Y,FANG M,ZHENG J,et al.Low-intensity ultrasound combined with 5-aminolevulinic acid administration in the treatment of human tongue squamous carcinoma[J].Cellular Physiology and Biochemistry,2012,30(2):321-333.
[39]HE Y,XIA X,XU C,et al.5-aminolaevulinic acid enhances ultrasound-induced mitochondrial damage in K562 cells[J].Ultrasonics,2010,50(8):777-781.
[40]BARBARA K,KRISTJAN P.ALA and its clinical impact,from bench to bedside[J].Photochemical and Photobiological Sciences,2008,7(3):283-289.
[41]SONG W,CUI H,ZHANG R,et al.Apoptosis of SAS cells induced by sonodynamic therapy using 5-aminolevulinic acid sonosensitizer[J].Anticancer Research,2011,31(1):39-45.
[42]CHEN H,GAO W,YANG Y,et al.Inhibition of VDAC1 prevents Ca2+-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages[J].Apoptosis,2014,19(12):1712-1726.
[43]RENSEN S S M,DOEVENDANS P A F M,EYS G J J M V.Regulation and characteristics of vascular smooth muscle cell phenotypic diversity[J].Netherlands Heart Journal,2007,15(3):100-108.
[44]CHEN K H,GUO X,MA D,et al.Dysregulation of HSG triggers vascular proliferative disorders[J].Nature Cell Biology,2004,6(9):872-883.
[45]DAN J,SUN X,LI W,et al.5-aminolevulinic acid-mediated sonodynamic therapy promotes phenotypic switching from dedifferentiated to differentiated phenotype via reactive oxygen species and p38 mitogen-activated protein kinase in vascular smooth muscle cells[J].Ultrasound in Medicine and Biology,2015,41(6):1681-1689.
[46]MOORE K J,TABAS I.Macrophages in the pathogenesis of atherosclerosis[J].Cell,2011,145(3):341-355.
[47]IRA T,KEVIN J W,JAN B.Subendothelial lipoprotein retention as the initiating process in atherosclerosis:update and therapeutic implications[J].Circulation,2007,116(16):1832-1844.
[48]WANG H,YANG Y,CHEN H,et al.The predominant pathway of apoptosis in THP-1 macrophagederived foam cells induced by 5-aminolevulinic acid-mediated sonodynamic therapy is the mitochondria-caspase pathway despite the participation of endoplasmic reticulum stress[J]. Cellular Physiology and Biochemistry,2014,33(6):1789-1801.
[49]LI Z,SUN X,GUO S,et al.Rapid stabilisation of atherosclerotic plaque with 5-aminolevulinic acid-mediated sonodynamic therapy[J].Thrombosis and Haemostasis,2015,114(4):793-803.
[50]TIAN F,YAO J,YAN M,et al.5-aminolevulinic acid-mediated sonodynamic therapy inhibits RIPK1/RIPK3-dependent necroptosis in THP-1-derived foam cells[J].Scientific Reports,2016,6:21992.
[51]CHUNG J,CHEN C,PAW B H.Heme metabolism and erythropoiesis[J].Current Opinion in Hematology,2012,19(3):156-162.
[52]PENG C,LI Y,LIANG H,et al.Detection and photodynamic therapy of inflamed atherosclerotic plaques in the carotid artery of rabbits[J].Journal of Photochemistry and Photobiology B Biology,2011,102(1):26-31.
[53]MOORE K J,SHEEDY F J,FISHER E A.Macrophages in atherosclerosis:a dynamic balance[J]. Nature Reviews Immunology,2013,13(10):709-721.
[54]GUO S,SUN X,CHENG J,et al.Apoptosis of THP-1 macrophages induced by protoporphyrinⅨ-mediated sonodynamic therapy[J].International Journal of Nanomedicine,2013,8(13):2239-2246.
Application of sonosensitizers derived from Chinese herb products in sonodynamic therapy for atherosclerosis treatment
KOU Jiayuan1,JIANG Yueqing1,TIAN Ye1,2,YANG Liming1
(1.Department of Pathophysiology,Harbin Medical University,Harbin 150081,China;2.Department of Cardiology,First Affiliated Hospital,Harbin Medical University,Harbin 150001,China)
At present,morbidity of cardiovascular disease induced by atherosclerosis(AS)is becoming higher.Besides expensive intervention and bypass surgery,it is extremely urgent to look for a popular and effective method for the treatment of AS.Sonodynamic therapy(SDT)is a non-invasive targeting therapy,and is promising for AS treatment based on the SDT-related research.Sonosensitizer,an application of SDT,is an entry points of the SDT investigation.Therefore,different sonodynamic effects with different sonosensitizers are investigated by researchers in AS treatment.In recent years,it is found that sonosensitizers derived from Chinese herb products play an important role in SDT,exerting potent sonodynamic effects for AS treatment.This review briefly summarizes the action of SDT and relevant development of SDT with emodin,curcumin,hypericin and itsderived derivatives as sonosensitizers for AS treatment.
sonodynamic therapy;sonosensitizer;Chinese herb product;atherosclerosis
R 285
A
1007-2861(2016)03-0318-08
10.3969/j.issn.1007-2861.2016.03.012
2016-04-19
國家自然科學基金資助項目(81571833,81271734,81000688);地方高校國家級大學生創新創業訓練計劃資助項目(201510226011)
楊力明(1978—),男,教授,博士,研究方向為中藥聲敏劑介導的聲動力治療動脈粥樣硬化.
E-mail:cooperationyang@126.com