999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

機插方式和密度對不同穗型水稻品種產量及其構成的影響

2016-10-25 02:47:42胡雅杰錢海軍曹偉偉邢志鵬張洪程戴其根霍中洋許軻魏海燕郭保衛
中國水稻科學 2016年5期
關鍵詞:水稻產量

胡雅杰 錢海軍 曹偉偉 邢志鵬 張洪程 戴其根 霍中洋 許軻 魏海燕 郭保衛

(揚州大學 農業部長江流域稻作技術創新中心/江蘇省作物遺傳生理國家重點實驗室培育點, 江蘇 揚州 225009;*通訊聯系人, E-mail: hczhang@yzu.edu.cn)

?

機插方式和密度對不同穗型水稻品種產量及其構成的影響

胡雅杰錢海軍曹偉偉邢志鵬張洪程*戴其根霍中洋許軻魏海燕郭保衛

(揚州大學 農業部長江流域稻作技術創新中心/江蘇省作物遺傳生理國家重點實驗室培育點, 江蘇 揚州 225009;*通訊聯系人, E-mail: hczhang@yzu.edu.cn)

HU Yajie, QIAN Haijun, CAO Weiwei, et al. Effect of different mechanical transplantation methods and density on yield and its components of different panicle-typed rice. Chin J Rice Sci, 2016, 30(5): 493-506.

為探明不同機插方式下水稻適用穗型和適宜栽插規格,闡明不同機插方式下不同穗型水稻品種產量形成特征,選用大、中和小穗型各2個品種為試驗材料,設置缽苗機插(行距33 cm)、行距30 cm毯苗機插和行距25 cm毯苗機插3種機插方式(記為A、B、C),研究機插方式和密度對不同穗型水稻品種產量及其形成和穗部性狀的影響。缽苗機插設置3種株距,分別為12 cm、14 cm和16 cm(記為1、2、3),2種行距毯苗機插設置5種株距,分別為10 cm、11.7 cm、13.3 cm、14.8 cm、16 cm(記為1、2、3、4、5)。研究結果表明:1)缽苗機插,隨著密度降低,大穗型品種產量呈先增后減,以A2最高;中、小穗型品種產量呈遞減趨勢,以A1最高。毯苗機插,隨著密度降低,大穗型品種B方式產量呈先增后減,以B4最高,C方式呈遞增趨勢,以C5最高;中穗型品種B和C方式產量均呈先增后減,分別以B3和C4最高;小穗型品種B方式產量呈遞減趨勢,以B1最高,C方式呈先增后減,以C2最高。同一密度下,缽苗機插產量顯著高于毯苗機插,增產幅度表現為大穗型>中穗型>小穗型,2種行距毯苗機插差異不顯著。對2種行距毯苗機插而言,同一株距下,大穗型品種B方式產量高于C方式;中穗型品種株距為10 cm、11.7 cm、13.3 cm,B方式產量高,而株距為14.8 cm、16 cm,C方式產量高;小穗型品種除株距為10 cm外,C方式較B方式具有增產優勢。2)隨著密度降低,不同機插方式下不同穗型品種單位面積穗數減少,每穗粒數增加,群體穎花量變化趨勢與產量一致,結實率和千粒重變化不一。同一密度下,不同機插方式間單位面積穗數相當,缽苗機插每穗粒數顯著高于毯苗機插,每穗粒數增幅表現為大穗型>中穗型>小穗型,結實率和千粒重差異不顯著。對2種行距毯苗機插而言,同一株距下,B方式單位面積穗數少于C方式,而每穗粒數則相反。3)隨著密度降低,不同機插方式下不同穗型品種穗長、著粒密度、單穗質量、一次枝梗數、一次枝梗粒數、二次枝梗數和二次枝梗粒數呈增加趨勢,一、二次枝梗數比值和一、二次枝梗粒數比值呈減少趨勢。同一密度下,缽苗機插穗長、著粒密度、單穗質量、一次枝梗數、一次枝梗粒數、二次枝梗數和二次枝梗粒數高于毯苗機插。因此,缽苗機插應用大穗型品種宜適當降低密度,充分發揮大穗優勢,提高群體穎花量而高產;中、小穗型品種宜采用高密度栽插,增加穗數以獲得高產。毯苗機插應用大穗型品種宜采用行距30 cm,適當增加株距,依靠擴大穗型而高產;中穗型品種宜采用行距30 cm,配置中等密度,協調穗粒結構而提高群體穎花量;小穗型宜采用行距25 cm,適當減少株距,通過顯著增加穗數以獲得高產。

缽苗機插; 毯苗機插; 株行距; 產量; 產量構成; 穗部性狀

探索研究新型水稻機械化種植方式及其高產形成特征一直是生產上的研究熱點和重點[1-4]。目前,我國主體水稻機插方式是20世紀80年代引進日本插秧機及其工廠化育秧技術并加以本土化而發展形成的盤育毯狀小苗機插(簡稱毯苗機插)。毯苗機插水稻憑借其高產高效和省工省力優勢,近三十多年推廣面積不斷擴大,對保障我國糧食生產安全和提升水稻全程機械化水平發揮了重要作用[5-7]。當前生產上應用的毯苗機插水稻行距為30 cm,但江蘇、江西、湖南等省稻農普遍反映機插行距偏大,穴數較少,基本苗偏少,導致有效穗數不足,限制機插稻產量潛力發揮[8-11]。而有研究認為機插稻超高產應適當擴大行株距,降低移栽密度,減少基本苗,增加田間通風透光條件,提高水稻中后期群體質量,主攻大穗[12-13]。國內外學者就行株距或移栽密度對毯苗機插水稻產量的影響研究報道較多[14-21],李世峰等[17]和彭長青等[18]認為毯苗機插水稻移栽密度過小或過大均不利于高產,小棵密植利于個體與群體生長發育。盡管前人針對毯苗機插水稻不同移栽密度進行了研究,但結果不盡一致。

同時,毯苗機插還存在以下問題:秧齡彈性小(秧齡15~20 d),茬口季節緊張,易造成超秧齡,且播種密度大、秧苗素質不高,加之移栽植傷重,返青期長,生育期縮短,限制了水稻品種產量潛力,特別是雜交稻品種不適用毯苗機插[22-23]。因此,生產上亟待研發能夠克服毯苗機插不足的新型插秧機及配套高產栽培技術,做到農機農藝有機融合,而缽苗機插水稻實現了缽育長秧齡壯苗的機械化有序精確無植傷栽植,可能是我國多數稻區種植機械化的重要途徑。早在1998年,江蘇省農機推廣站就引進日本RX-6型水稻缽苗移栽機進行了初步試驗,由于該機進口價格昂貴,未能大面積推廣應用[24]。之后,中國農業大學、黑龍江八一農墾大學和吉林省農機推廣站等單位相繼開展了水稻缽苗行栽機的研制及試驗示范[25-26]。自2010年以來,常州亞美柯機械裝備有限公司全套引進并吸收改進了日本水稻缽苗栽插機械及其配套裝備,揚州大學聯合國內多家單位開展了水稻缽苗機插高產栽培試驗示范研究,結果證明水稻缽苗機插較毯苗機插具有明顯的增產優勢[27]。

然而,如何因種選用不同插秧機機型,如何因品種因機型配置適宜栽插規格,生產上還缺乏理論與技術的指導。因此,開展不同機插方式和密度對不同穗型水稻品種產量及其形成的影響研究,闡明不同機插方式水稻產量及其形成特征,探明不同穗型品種配套機型和適宜栽插密度,以期為大面積機插水稻生產提供理論與技術支持。

1 材料與方法

1.1試驗地點

試驗于2013-2014年在揚州大學農學院校外試驗基地江蘇省興化市釣魚鎮(33°05′N,119°58′E)進行。該區位于江蘇里下河腹部,屬北亞熱帶濕潤氣候區,年平均溫度15℃左右,年降水量1024.8 mm左右,全年日照時數2305.6 h左右,無霜期227 d左右。兩年水稻生長季節溫度、降水量和日照等氣象資料見圖1。試驗地前茬為小麥(產量約6.7 t/hm2),土壤類型勤泥土,質地黏性。2013年和2014年0-20 cm土層有機質含量分別為24.8 g/kg和24.9 g/kg,全氮1.6 g/kg和1.6 g/kg,速效磷含量12.8 mg/kg和13.1 mg/kg,速效鉀含量141.5 mg/kg和136.8 mg/kg。

1.2供試材料

選取具有不同穗質量的24個品種或組合進行預備試驗,在統一高產栽培管理條件下,充分發揮其產量潛力,成熟期按平均單穗質量進行聚類分析,即按歐氏距離長短劃分為大穗型(平均單穗質量≥5 g)、中穗型(3 g<平均單穗質量<5 g)和小穗型(平均單穗質量≤3 g) 3類。每種穗型各選取2個最具代表性品種或組合進行正式試驗,大穗型品種為甬優2640和甬優8號,中穗型品種為武運粳24號和寧粳3號,小穗型品種為淮稻5號和淮稻10號。

1.3試驗設計

采用裂區設計,品種為主區,機插方式為裂區,密度處理為再裂區,重復3次,共234個小區,小區面積20 m2。試驗設置水稻缽苗機插和水稻毯苗機插2種機插方式,毯苗機插又設置2種機插行距,分別為30 cm和25 cm。為便于比較研究,將缽苗機插、行距30 cm毯苗機插和行距25 cm毯苗機插分別記為A、B、C。同時,根據不同插秧機機型設置株距,缽苗機插方式下設置3種株距,分別為12 cm、14 cm、16 cm,記為1、2、3;行距30 cm毯苗機插和行距25 cm毯苗機插,設置5種株距,分別為10.0 cm、11.7 cm、13.3 cm、14.8 cm、16.0 cm,記為1、2、3、4、5。為了便于數據分析,對機插方式和株距進行組合編號,具體見表1。

2013年和2014年,缽苗機插采用特制塑料缽體硬盤旱育秧,5月18日和5月20日播種,6月17日和6月19日機插,秧齡均為30 d;毯苗機插采用塑料軟盤旱育秧,5月30日和6月2日播種,6月17日和6月19日機插,秧齡均為18 d。根據錢銀飛等[21]和李剛華等[28]關于不同穗型水稻品種每穴適宜苗數的研究結果,確定大穗型品種每穴栽插2苗,中穗型品種每穴栽插3苗,小穗型品種每穴栽插4苗。

總施純氮300 kg/hm2,m基蘗肥∶m穗肥=6∶4,其中基肥和分蘗肥各占50%,穗肥分兩次等量施用;氮磷鉀配比為mN∶mP2O5∶mK2O=1∶0.4∶0.8,磷肥全作基肥一次施用,鉀肥分兩次施用,其中基肥和促花肥各占50%。機插時薄水移栽活棵,分蘗期穩定的淺水層灌溉;在有效分蘗臨界葉齡的前一個葉齡(N-n-1),莖蘗數達到預期穗數的80%時,開始排水擱田;拔節至成熟期實行濕潤灌溉,干干濕濕,直至收獲前5~7 d。病蟲草害防治按當地大面積生產統一實施。

圖12013和2014年水稻生長季節日照、平均溫度、降水量

Fig.1. Sunshine hours, mean temperature and precipitation during the growth season of rice in 2013 and 2014.

表1不同機插方式水稻基本苗構成

Table 1. Basic seedlings of rice under various mechanical transplantion methods.

處理Treatment行株距Row-plantspacing/cm密度Density/(×104·hm-2)大穗型Largepanicle-typedvariety穴苗數Seedlingnumberperhill基本苗Basicseedlings/(×104·hm-2)中穗型Mediumpanicle-typedvariety穴苗數Seedlingnumberperhill基本苗Basicseedlings/(×104·hm-2)小穗型Smallpanicle-typedvariety穴苗數Seedlingnumberperhill基本苗Basicseedlings/(×104·hm-2)A133×1225.5251.0376.54102.0A233×1421.0242.0363.0484.0A333×1619.5239.0358.5478.0B130×1033.0266.0399.04132.0B230×11.728.5257.0385.54114.0B330×13.325.5251.0376.54102.0B430×14.822.5245.0367.5490.0B530×1621.0242.0363.0484.0C125×1040.5281.03121.54162.0C225×11.734.5269.03103.54138.0C325×13.330.0260.0390.04120.0C425×14.827.0254.0381.04108.0C525×1625.5251.0376.54102.0

1.4測定內容與方法

1.4.1產量測定

成熟期采用五點法每小區普查50穴,計算有效穗數,每小區按平均穗數取10穴測定每穗粒數和結實率;取1 000實粒種子(含水率14%)稱重,重復 3次,求取千粒重;并實收核產。

1.4.2穗部性狀調查

每小區按平均穗數取10穴進行考種,分穗長、一次枝梗、二次枝梗等考查穗部性狀。著粒密度(粒/cm)=每穗粒數/穗長;一、二次枝梗數比值=一次枝梗數/二次枝梗數;一、二次枝梗粒數比值= 一次枝梗粒數/二次枝梗粒數。

1.5數據處理

采用Microsoft Excel 2003進行數據處理,運用SPSS 16.0軟件進行統計分析,用Origin 8.0作圖。由于兩年數據趨勢基本一致,除產量數據外,其他數據以2013年數據進行分析。

2 結果與分析

2.1產量及其構成

兩年不同穗型水稻品種產量的方差分析結果表明(表2),年度、品種、處理(機插方式和密度)間的互作達極顯著水平,且F值表現為處理>品種>年度。互作效應方面,年度與品種二因子間達顯著水平,品種與處理二因子間達極顯著水平,年度與處理二因子間和年度、品種、處理三因子間未達顯著。

2.1.1大穗型品種產量及其構成

由表3可知,隨著密度降低,兩年兩大穗型品種A和B方式產量均呈先增后減,C方式產量呈遞增,最高產量分別為A2、B4、C5。2013年兩品種A2產量較B4、C5分別高10.41%和10.22%、17.69%和14.61%,B4產量較C5高6.60%和3.98%;2014年兩品種A2產量較B4、C5分別高8.06%和8.22%、15.12%和13.67%,B4產量較C5高6.53%和5.04%。同一密度下,兩年兩品種A1產量顯著高于B3、C5,2013年增產幅度分別為10.52%和9.28%、12.10%和9.74%,2014年增產幅度為9.97%和8.46%、10.47%和9.53%,而B3產量略高于C5,但差異不顯著。對2種行距毯苗機插而言,同一株距下,除2013年甬優8號株距16 cm外,大穗型品種B方式產量均高于C方式,增產幅度0.10%~9.07%,平均增產4.30%。

表2產量在年度間、品種間、處理間的方差分析

Table 2. Analysis of variance (F-value) of yield among years, cultivars and treatments(n=468).

變異來源Source自由度df平方和Sumofsquares均方MeansquareF值Fvalue年度Year(Y)119.5819.5857.14**品種Cultivar(C)5260.2552.05159.01**處理Treatment(T)1269.115.76190.47**年度×品種Y×C51.640.3321.83*年度×處理Y×T120.360.032.02ns品種×處理C×T6058.920.9865.49**年度×品種×處理Y×C×T600.900.020.42ns

*,**分別表示在5%和1%水平上差異顯著,ns表示差異不顯著。下同。

*,**Significantly different at 0.05 and 0.01 probability levels, respectively. ns, No signifcant difference. The same as in tables below.

對群體穎花量分析可知,隨著密度降低,A和B方式群體穎花量呈先增后減,C方式呈遞增,兩品種群體穎花量最大值分別為A2、B4、C5,這與產量變化規律一致。再對產量構成因素進行分析,隨著密度降低,3種機插方式穗數均呈遞減趨勢,每穗粒數呈遞增趨勢,結實率和千粒重無明顯變化趨勢。相關分析和通徑分析表明(表4),大穗型品種產量與穗數呈極顯著負相關,與每穗粒數和群體穎花量呈極顯著正相關,且PX2-X3>PX1-X3。同一密度下,3種機插方式穗數、結實率和千粒重相當,而每穗粒數A1顯著高于B3和C5。就2種行距毯苗機插而言,同一株距下,B方式穗數低于C方式,而每穗粒數呈相反趨勢,結實率和千粒重互有高低。就機插方式平均值而言,與B和C方式相比,A方式穗數分別低6.26%和13.16%,每穗粒數分別高18.22%和32.56%,群體穎花量分別高11.28%和15.37%;與C方式相比,B方式穗數低7.36%,每穗粒數高12.13%,群體穎花量高3.67%;而結實率和千粒重表現為A>B>C。

因此,缽苗機插采用大穗型品種較毯苗機插利于充分發揮大穗優勢而高產,而毯苗機插水稻宜采用行距30 cm機插,利于大穗型品種增產。

2.1.2中穗型品種產量及其構成

由表5可知,隨著密度降低,兩年兩中穗型品種A方式產量呈遞減趨勢,B和C方式產量均呈先增后減。兩年武運粳24號和寧粳3號最高產量分別為A1、B3、C4,2013年A1較B3、C4分別高8.35%和6.97%、5.74%和5.01%,而B3較C4低2.45%和1.90%;2014年A1較B3、C4處理分別高7.42%和7.66%、5.75%和5.04%,B3較C4處理低1.55%和2.43%。同一密度下,兩年兩品種A1產量顯著高于B3、C5,2013年增產幅度為8.35%和6.97%、9.61%和7.83%;2014年增產幅度為7.42%和7.66%、8.83%和7.86%,而B3略高于C5。對2種行距毯苗機插而言,在株距為10 cm、11.7 cm、13.3 cm條件下,B方式產量高于C方式,增產幅度為2.48%~8.24%,而在株距為14.8 cm、16 cm條件下,B方式產量低于C方式,減產幅度為4.15%~6.63%。

對群體穎花量分析可知,隨著密度降低,A方式群體穎花量呈遞減趨勢,B和C方式均呈先增后減趨勢,兩品種群體穎花量最大值為A1、B3、C4,且A1顯著高于B3和C4,與產量變化規律一致。對產量構成進一步分析,隨著密度降低,3種機插方式穗數均呈遞減趨勢,每穗粒數均呈遞增趨勢,結實率和千粒重變化不一。相關分析和通徑分析結果表明(表4),中穗型品種產量與穗數呈顯著負相關,與每穗粒數呈極顯著正相關,且PX2-X3>PX1-X3。同一密度下,A1、B3和C5穗數、結實率、千粒重相當,A1每穗粒數顯著高于B3和C5。就2種行距毯苗機插而言,同一株距下,B方式穗數低于C方式,而每穗粒數呈相反趨勢,結實率和千粒重互有高低。就平均值而言,與B和C方式相比,A方式穗數減少7.59%和14.21%,每穗粒數增加16.58%和26.22%,群體穎花量高8.22%和8.26%;與C方式相比,B方式穗數減少7.17%,每穗粒數增加8.27%,群體穎花量相當;結實率和千粒重表現為A>B>C。

因此,對中穗型品種而言,水稻缽苗機插較毯苗機插利于擴大穗型而增產,而行距30 cm與行距25 cm毯苗機插產量相當,但綜合考慮到行距30 cm毯苗機插利于提高結實率和千粒重,故中穗型品種宜采用行距30 cm機插。

2.1.3小穗型品種產量及其構成

由表6可知,隨著密度降低,兩年兩小穗型品種A和B方式產量呈遞減,C方式呈先增后減趨勢,兩年兩品種最高產量分別為A1、B1、C2,兩年A1、B1和C2產量相當。同一密度下,兩年兩品種A1產量顯著高于B3、C5,2013年增產幅度為6.03%和5.47%、5.72%和5.03%,2014年增產幅度為5.49%和6.25%、8.58%和6.71%,而B3與C5產量相當,差異不顯著。對2種行距毯苗機插而言,除株距為10 cm外,行距25 cm毯苗機插水稻產量高于行距30 cm毯苗機插,增產幅度為2.11%~8.61%,主要是株距10 cm條件下,行距25 cm毯苗機插群體數量過大,后期發生倒伏,較行距30 cm毯苗機插減產8.37%~12.18%。

對群體穎花量分析可知,隨著密度降低,A和B方式均呈遞減趨勢,C方式呈先增后減趨勢,兩品種群體穎花量最大值分別為A1、B1、C2,與產量變化規律一致。再對產量構成分析可知,隨著密度降低,3種機插方式穗數均呈遞減趨勢,每穗粒數呈相反趨勢,結實率和千粒重處理間相當,差異不顯著。相關分析和通徑分析表明(表4),小穗型品種產量與穗數呈正相關,與每穗粒數呈負相關,與群體穎花量呈極顯著正相關,且PX2-X3>PX1-X3。同一密度下,A1、B3和C5穗數、結實率、千粒重相當,A1每穗粒數顯著高于B3和C5,而B3與C5每穗粒數相當。就2種行距毯苗機插而言,同一株距下,B方式穗數低于C方式,而每穗粒數呈相反趨勢,結實率和千粒重互有高低。就機插方式平均值而言,與B和C方式相比,A方式穗數減少9.54%和17.62%,每穗粒數增加9.95%和18.59%,群體穎花量減少0.21%和2.07%;與C方式相比,B方式穗數減少8.93%,每穗粒數增加7.86%,群體穎花量減少1.87%,結實率和千粒重表現為A>B>C。

表3機插方式和密度對大穗型品種水稻產量構成的影響

Table 3. Yield and its components of large panicle-typed rice under different mechanically transplanted methods and densities.

品種與處理Cultivarandtreatment單位面積穗數Paniclenumber/(×104hm-2)每穗粒數Spikeletnumberperpanicle群體穎花量Totalspikeletnumber/(×104hm-2)結實率Seed-settingrate/%千粒重1000-grainweight/g理論產量Theoreticalyield/(t·hm-2)2013年實產Harvestedyieldin2013/(t·hm-2)2014年實產Harvestedyieldin2014/(t·hm-2)甬優2640Yongyou2640A1236.91d242.89cd57541.86b92.77a25.23a13.47b13.10b12.35abA2222.60ef269.73b60040.62a92.39a25.08a13.91a13.75a12.87aA3210.50g282.55a59475.82ab91.89a24.80a13.55ab13.25ab12.29bB1254.10bc196.52hi49935.73fg91.06a24.75a11.25fg10.97ef10.35efB2246.30cd208.00fg51230.40e91.37a24.84a11.63ef11.27e10.42efB3239.40d221.40e53002.05cde91.19a25.14a12.15d11.85d11.23dB4228.75e239.36d54754.43c91.49a25.28a12.66c12.45c11.91cB5214.13f251.18c53784.31cd90.53a25.13a12.23cd11.93d11.30cdC1270.15a180.29i48704.19g89.02a24.75a10.73h10.60f10.00fC2262.68ab188.43i49496.42fg89.73a24.88a11.05gh10.82f10.25fC3250.22bc202.13gh50574.71ef90.01a24.98a11.37fg11.15ef10.62efC4243.30cd212.89ef51795.87e89.95a25.00a11.65ef11.45de10.92deC5237.50d220.90e52463.75cde90.93a24.93a11.89de11.68d11.18d甬優8號Yongyou8A1263.10e198.55c52239.00b86.10a29.01a13.05b12.85b12.18abA2248.60f218.25b54257.50a86.19a29.05a13.59a13.42a12.64aA3225.94g232.31a52487.02b86.02a28.95a13.07b12.81b12.00bcB1293.70bc156.86gh46068.94ef84.99a28.30a11.08gh10.70fg10.12gB2279.20de168.60ef47073.12de85.62a28.45a11.47efg11.14ef10.46fgB3267.62e181.82d48658.67cd85.54a29.05a12.09cd11.76cd11.23deB4250.80f200.01c50162.51c85.39a28.97a12.41c12.18c11.68cdB5228.85g212.42b48611.02cd85.31a28.83a11.95cde11.60de11.16deC1310.06a144.83i44905.63f84.62a28.05a10.66h10.51g10.11gC2296.60b154.22h45742.47f84.78a28.08a10.89h10.68fg10.23fgC3283.70cd162.11fg45990.92ef84.92a29.04a11.34fg11.10ef10.61efC4278.70de171.10ef47685.57de84.85a28.83a11.66ef11.43de10.75efC5268.80e179.00de48115.20d85.38a28.93a11.89de11.71cd11.12de均值MeanA234.61240.7156006.9789.2327.0213.4413.2012.39B250.28203.6250328.1288.2526.8711.8911.5810.99C270.17181.5948547.4787.4226.7511.3111.1110.58

小寫字母表示在同品種各處理間在0.05水平上差異顯著。采用PLSD顯著性測驗。下同。

Values followed by different lowercase letters are significantly different at 0.05 level byPLSDsignificant test. The same as below.

表4產量與其構成因素間的相關系數及直接通徑系數(n=78)

Table 4. Correlation coefficient and path coefficient between yield and its components(n=78).

品種類型與產量構成因素Cultivartypeandfactor相關系數CorrelationcoefficientbetweenyieldcomponentsX2X3X4X5產量(Y)對Y效應EffectforY(Pi-Y)對X3效應EffectforX3(Pi-X3)大穗型Largepanicletype 單位面積穗數Paniclenumber(X1)-0.955**-0.847**-0.682**0.486*-0.686**0.768 每穗粒數Spikeletnumberperpanicle(X2)0.956**0.735**-0.519**0.792**1.690 群體穎花量Totalspikeletnumber(X3)0.755**-0.519**0.854**1.098 結實率Seed-settingrate(X4)-0.932**0.3270.180 千粒重1000-grainweight(X5)-0.0060.732中穗型Mediumpanicletype 單位面積穗數Paniclenumber(X1)-0.953**-0.572**-0.049-0.468*-0.540*1.897 每穗粒數Spikeletnumberperpanicle(X2)0.784**0.1290.552**0.743**2.591 群體穎花量Totalspikeletnumber(X3)0.3710.650**0.983**0.857 結實率Seed-settingrate(X4)0.433*0.442*0.054 千粒重1000-grainweight(X5)0.744**0.163小穗型Smallpanicletype 單位面積穗數Paniclenumber(X1)-0.975**0.633**-0.393*-0.446*0.3503.766 每穗粒數Spikeletnumberperpanicle(X2)-0.461*0.466*0.534**-0.1673.212 群體穎花量Totalspikeletnumber(X3)0.1280.1260.903**0.847 結實率Seed-settingrate(X4)0.715**0.480*0.188 千粒重1000-grainweight(X5)0.498**0.257

因此,對小穗型品種而言,水稻缽苗機插較毯苗機插增產潛力相對較小,采用行距25 cm毯苗機插,提高栽插密度,顯著增加穗數,利于穩產高產。

2.2穗部構成特征

由表7、表8和表9可知,隨著密度降低,不同機插方式下3種穗型水稻品種穗長、著粒密度、單穗質量、一次枝梗數、一次枝梗粒數、二次枝梗數和二次枝梗粒數均呈增加趨勢,一、二次枝梗數比值和一、二次枝梗粒數比值呈減少趨勢,一次枝梗結實率和二次枝梗結實率無明顯趨勢。同一機插密度條件下,3種穗型水稻品種穗長、著粒密度、單穗質量、一次枝梗數、一次枝梗粒數、二次枝梗數和二次枝梗粒數表現為A1>B3、C5,一、二次枝梗數比值和一、二次枝梗粒數比值表現為A1C,一、二次枝梗數比值和一、二次枝梗粒數比值呈相反趨勢。就平均值而言,3種穗型水稻品種穗長、著粒密度、單穗質量、一次枝梗數、一次枝梗粒數、二次枝梗數、二次枝梗粒數、一次枝梗結束率和二次枝梗結實率表現為A>B>C,一、二次枝梗數比值和一、二次枝梗粒數比值表現為A

3 討論

3.1不同機插方式和密度下水稻產量差異

關于缽苗機插與毯苗機插對比研究,邴延忠等[29]認為,缽苗機插水稻比毯苗機插約增產5%。張洪程等[30]認為缽苗機插水稻較毯苗機插增產6.0%~12.6%,產量形成的主要特征是“穗大粒多”。本研究結果表明,同一密度下,不同穗型水稻品種A1產量顯著高于B3和C5,B3與C5產量相當;與B3和C5相比,A1大穗型品種增產9.27%~10.55%和9.34%~12.16%,中穗型品種增產6.99%~8.35%和7.78%~9.63%,小穗型品種增產5.50%~5.99%和5.05%~5.77%。說明缽苗機插水稻較毯苗機插具有明顯的增產優勢,且配套應用大穗型品種增產潛力更大。

表5機插方式和密度對中穗型品種水稻產量及其構成的影響

Table 5. Yield and its components of medium panicle-typed rice under different mechanically transplanted methods and densities.

品種與處理Cultivarandtreatment單位面積穗數Paniclenumber/(×104hm-2)每穗粒數Spikeletsperpanicle群體穎花量Totalspikelets/(×104hm-2)結實率Seedsettingrate/%千粒重1000-grainweight/g理論產量Theoreticalyield/(t·hm-2)2013年實產Harvestyieldof2013/(t·hm-2)2014年實產Harvestyieldof2014/(t·hm-2)武運粳24號Wuyunjing24A1345.97f138.08bc47772.69a94.41a27.38a12.35a12.07a11.58aA2327.81g144.27ab47293.15a94.62a27.18a12.16a11.72ab11.01abA3297.87h150.40a44800.40b93.73a27.22a11.43b11.10bc10.41cB1384.06bc109.33g41990.56cd94.59a27.13a10.78de10.53de10.24cdB2369.33cd118.85ef43892.86bc94.31a27.25a11.28bc11.07bc10.59bcB3354.70def125.07d44362.33b94.80a27.28a11.47b11.14bc10.78bcB4329.25fg131.31c43234.64bc94.33a26.95a10.99cd10.80cd10.15cdB5307.35h137.00bc42106.95cd93.94a27.03a10.69de10.43de9.99dC1405.37a100.27h40647.53d94.28a26.95a10.33e10.20e9.72dC2389.88ab107.45g41894.38cd94.37a26.93a10.64de10.39de9.87dC3371.50cd115.83f43032.08bc94.14a27.04a10.96cd10.87cd10.51bcC4364.20de123.14de44848.63b94.25a27.25a11.52b11.42b10.95bC5350.15ef126.37d44247.29b94.36a27.15a11.34bc11.01bc10.64bc寧粳3號Ningjing3A1358.22de130.44bc46724.67a94.27a27.02a11.90a11.63a11.25aA2335.13f135.41ab45380.88ab95.04a26.95a11.62ab11.27ab10.74abA3316.31g138.25a43729.37bc94.15a26.86a11.06cd10.81cde10.18bcB1401.04bc100.14gh40160.15ef93.81a26.93a10.14g9.91fg9.34deB2389.50c108.39f42218.80cd95.03a27.18a10.90cdef10.65cde10.12bcB3364.56d118.40de43163.31bc94.67a27.17a11.10cd10.87cd10.45bcB4343.35ef122.06d41908.90cde94.47a27.09a10.72def10.54de10.00cB5330.18fg125.82cd41544.17def94.13a27.08a10.59ef10.34e9.85cdC1420.30a93.83i39438.15f93.39a26.48a9.75g9.48g9.00eC2408.75ab98.26h40163.78ef94.31a26.62a10.08g9.87fg9.35deC3395.50bc104.64fg41386.25def94.29a26.83a10.47fg10.28ef9.87cdC4383.10c115.47e44235.28b94.43a27.00a11.28bc11.08bc10.71abC5360.55de119.73de43169.85bc94.25a27.08a11.02cde10.79cde10.43bc均值MeanA330.22139.4745950.1994.3727.1011.7511.4310.86B357.44119.8442539.1194.4427.1210.8710.6310.15C384.93110.3042233.4894.3626.9610.7510.5410.11

關于缽苗機插水稻高產適宜栽插密度,朱聰聰等[31]就缽苗機插密度對不同類型水稻品種產量的影響進行研究,認為缽苗機插常規粳稻品種產量以高密度最高,雜交秈稻和雜交粳稻以中密度產量最高。本研究也發現缽苗機插水稻高產適宜栽插密度因品種穗型差異而不同,隨著密度降低,大穗型品種產量先增后減,中、小穗型水稻品種產量呈遞減趨勢。說明缽苗機插應用大穗型品種宜中等密度栽插,而中、小穗型品種宜高密度栽插。由于缽苗機插水稻固定行距33 cm,最小株距為12 cm,對中、小穗型品種而言缽苗機插密度偏小。若能改進機具,適當縮小缽苗機插行距和株距,提高栽插密度,利于中、小穗型品種發揮產量潛力。而對于毯苗機插水稻栽插規格研究,葉厚專等[8]就南方雙季稻地區不同行距對機插稻產量的影響進行研究,發現在相同株距條件下,行距23.3 cm和26.7 cm機插產量均高于行距30 cm機插,早稻產量分別高出2.32%~4.24%和4.34%~5.98%,晚稻產量分別高出達2.00%~3.19%和3.90%~4.25%。劉強等[15]研究淮北稻區不同行距機插秧對產量的影響,認為中熟中粳水稻主要靠足穗來奪取高產,而行距過大不利于協調穗粒結構。

表6機插方式和密度對小穗型品種水稻產量及其構成的影響

Table 6. Yield and its components of small panicle typed rice with different mechanically transplanted methods and densities.

品種與處理Cultivarandtreatment單位面積穗數Paniclenumber/(×104hm-2)每穗粒數Spikeletnumberperpanicle群體穎花量Totalspikeletnumber/(×104hm-2)結實率Seed-settingrate/%千粒重1000-grainweight/g理論產量Theoreticalyield/(t·hm-2)2013年實產Harvestyieldof2013/(t·hm-2)2014年實產Harvestyieldof2014/(t·hm-2)淮稻5號Huaidao5A1373.22e106.12b39605.58a96.14a27.27a10.38a10.08a10.00aA2335.10fg112.73a37776.94bc96.07a27.15a9.85bc9.61ab9.42bcA3317.31h114.79a36424.13cd96.01a27.13a9.49cd9.26cd9.05cB1419.55ab92.89de38972.97ab96.11a26.84a10.05ab9.80ab9.85abB2401.88cd95.93cd38553.21ab96.05a26.75a9.91ab9.63bc9.57abB3381.33e98.85c37692.86bc96.16a26.70a9.68bc9.51bc9.48bcB4345.30f105.63b36471.92cd96.09a26.75a9.37cd9.12d9.05cB5326.40gh109.17ab35632.00d96.01a27.00a9.24d8.91d8.48dC1451.40a83.42f37653.87bc93.90a26.20a9.26d8.98d8.65cdC2434.10a91.84e39867.08a95.98a26.80a10.25a10.06a10.05aC3410.70bc95.50de39221.85a95.97a26.75a10.07ab9.83ab9.68abC4392.10de96.69cd37911.17ab96.33a27.28a9.96ab9.70ab9.58abC5381.05e99.88c38060.42ab96.19a26.58a9.73bc9.53bc9.21bc淮稻10號Huaidao10A1360.69fg107.79b38877.23ab96.41a27.19a10.19a9.98a9.86aA2330.33h110.47ab36490.45c96.59a27.19a9.58cd9.31cd9.21bcA3312.90i115.18a36041.14c96.87a27.06a9.45de9.18de9.08cdB1417.75bc93.55f39078.61a96.00a26.95a10.11ab9.84ab9.78aB2392.75d98.15de38549.92ab96.57a26.98a10.04ab9.72ab9.65abB3375.78ef100.57d37793.21bc96.07a26.90a9.77cd9.46bcd9.28bcB4347.70g105.29bc36610.76c95.18a27.03a9.42de9.08de9.00cdB5331.01h111.17ab36797.56c95.07a26.23a9.17e8.85e8.78dC1447.98a81.55g36530.33c95.06a26.18a9.09e8.76e8.61dC2426.15b92.67f39489.90a96.06a26.93a10.21a10.09a9.92aC3404.50cd95.23ef38520.85ab95.79a26.88a9.92abc9.78ab9.68abC4389.55de97.93de38146.68abc95.91a26.98a9.87bc9.68bc9.52abC5368.70f102.81cd37906.97bc96.02a26.95a9.81bcd9.50bcd9.24bc均值MeanA338.26111.1837535.9196.3527.169.829.579.44B373.94101.1237615.3095.9326.819.689.399.29C410.6293.7538330.9195.7226.759.829.599.41

本研究結果表明,隨著密度降低,大穗型品種行距30 cm毯苗機插產量呈先增后減趨勢,以B4產量最高,行距25 cm毯苗機插呈遞增趨勢,以C5產量最高;中穗型品種行距30 cm和行距25 cm毯苗機插產量均呈先增后減趨勢,分別以B3和C4產量最高;小穗型品種行距30 cm毯苗機插呈遞減趨勢,以B1產量最高,行距25 cm毯苗機插呈先增后減趨勢,以C2產量最高。說明毯苗機插水稻對不同穗型品種配置適宜栽插密度不同,大穗型品種宜低密度,中穗型品種宜中等密度,小穗型品種宜高密度,利于提高毯苗機插水稻產量。本研究結果還表明,大穗型品種行距30 cm毯苗機插平均產量較行距25 cm毯苗機插增加4.23%,中穗型品種行距30 cm毯苗機插平均產量較行距25 cm毯苗機插增加1.04%,而小穗型品種行距30 cm毯苗機插平均產量較行距25 cm毯苗機插減少2.09%。說明毯苗機插水稻配套大穗型品種宜采用行距30 cm機插,適當降低密度而利于高產;中穗型品種宜采用行距30cm機插,配置中等密度而獲得高產;小穗型品種宜采用行距25 cm機插,適當增加密度而利于增產。

表7不同機插方式和密度下大穗型水稻品種穗部性狀

Table 7. Panicle traits of large panicle-typed rice under different mechanically transplanted methods and densities.

品種與處理Cultivarandtreatment穗Panicle穗長PL/cm著粒密度GD/(grain·cm-1)單穗質量GWP/g一、二次枝梗數比值RNB一、二次枝梗粒數比值RNG一次枝梗Primaryrachisbranch枝梗數NB粒數NG結實率SR/%二次枝梗Secondaryrachisbranch枝梗數NB粒數NG結實率SR/%甬優2640Yongyou2640 A122.84ab10.63bc5.53ab0.30cd0.57cd15.11b87.78bc94.81a51.11b155.11b89.34a A223.24a11.56ab5.79a0.28d0.49d15.45b87.91bc95.04a55.00ab180.82a88.81a A323.46a12.08a5.82a0.28d0.53d17.18a98.36a95.75a60.82a185.18a88.46a B121.02cd9.41cd4.81d0.37ab0.69ab14.03cd80.71cd95.22a37.57de117.14de88.05a B221.08cd9.92c4.88d0.36ab0.65ab14.18cd82.67c95.97a39.78de126.33cd86.63a B322.44b9.82c5.12bcd0.33bc0.64b14.60bc85.60bc95.33a44.40cd134.80c86.35a B422.86ab10.47bc5.36abc0.30cd0.58c14.45bc87.45bc95.26a48.18bc151.91b88.87a B523.07ab10.93ab5.57ab0.30cd0.57cd15.91ab91.27ab94.02a53.64ab160.91b85.88a C120.31d8.87d4.75d0.40a0.70a13.21d74.29d93.87a32.86e106.00e86.24a C221.03cd8.96d4.92d0.38ab0.69a13.53d76.71d93.01a35.43e111.71de86.57a C321.89bc9.23cd5.03cd0.36ab0.66ab13.86cd80.25cd93.69a38.00de121.88cd88.00a C421.90bc9.72cd5.17bcd0.34bc0.63b14.06cd82.00c93.93a41.67de130.89c87.88a C522.23b9.87c5.20bcd0.33bc0.64b14.67bc85.80bc92.97a44.32cd133.68c87.72a甬優8號Yongyou8 A118.91c10.45abc5.10bc0.52d1.14cd17.45ab105.09bc90.45a33.55b92.45b81.12a A219.09c11.27a5.32ab0.49de1.08de17.92a112.00ab90.25a36.83ab103.25ab80.55a A321.64a10.83ab5.67a0.45e1.03e18.18a118.62a90.99a40.38a115.69a82.18a B117.07d9.19def4.77c0.64a1.28a15.00cd88.00ef90.25a23.29cd68.86de78.72a B217.85d9.45cde4.90bc0.61ab1.25ab15.20cd93.60de90.07a24.80cd75.00cd80.37a B318.15cd10.02bcd5.01bc0.55cd1.25ab16.73bc101.18c89.31a30.36bc80.64c80.61a B419.05c10.45abc5.30ab0.48e1.14cd17.16ab106.10bc90.30a35.60ab93.00b80.74a B520.37b10.43abc5.32ab0.45e1.14cd18.07a113.08ab89.70a40.17a99.33ab81.27a C117.01d8.52f4.72c0.64a1.29a14.56d81.00f88.89a22.68d63.00e78.87a C217.52d8.80ef4.78c0.63ab1.24ab15.33cd85.44ef88.16a24.33cd68.78de79.55a C318.11cd8.95ef4.89bc0.62ab1.22ab16.11bcd89.22ef88.66a26.11cd72.89cd79.97a C418.52c9.24def5.02bc0.59bc1.19bc16.45bc92.90de88.16a27.80cd78.20cd81.30a C518.48c9.69cde5.04bc0.54cd1.17bc16.50bc96.64cd88.73a30.36bc82.36c81.26a均值Mean A21.5311.145.540.390.8016.88101.6392.8846.28138.7585.08 B20.3010.015.100.440.9215.5392.9792.5437.78110.7983.75 C19.709.194.950.480.9414.8384.4391.0132.3696.9483.74

PL, Panicle length; GD, Grain density; GWP, Grain weight per panicle; RNB, Ratio of No. of primary rachis branch to No. of secondary rachis branch; RNG, Ratio of No. of grains on primary rachis branch to No. of grains on secondary rachis branch; NB, No. of rachis branches; NG, No. of grains; SR,Seed-setting rate.

3.2不同機插方式和密度下水稻產量構成因素差異

水稻產量構成因素包括單位面積穗數、每穗粒數、結實率和千粒重。水稻高產的獲得關鍵在于提高群體穎花量。前人研究認為增加穗數或每穗粒數或兩者均可提高水稻群體穎花量[32-33],穗數與每穗粒數呈負相關[34-35]。黃大山等[14]認為機插稻寧粳1號隨著移栽密度增加,穗數和群體穎花量大幅度增加,結實率和千粒重有所減少。本研究結果表明,隨著密度降低,不同機插方式下不同穗型品種穗數呈遞減趨勢,每穗粒數呈遞增趨勢,千粒重和結實率無明顯變化規律。就群體穎花量而言,缽苗機插方式,隨著密度降低,大穗型品種呈先增后減趨勢,以A2最高;中、小穗型品種呈遞減趨勢,以A1最高。行距30 cm毯苗機插,隨著密度降低,大、中穗型品種呈先增后減趨勢,以B4和B3最高;小穗型品種呈遞減趨勢,以B1最高。行距25 cm毯苗機插,隨著密度降低,大穗型品種呈遞增趨勢,以C5最高;中、小穗型品種呈先增后減趨勢,以C4和C2最高。說明缽苗機插應用大穗型品種,適當降低密度,依靠增加每穗粒數而提高群體穎花量,中、小穗型品種以配置高密度,通過增加穗數而提高群體穎花量;毯苗機插應用大穗型品種宜降低密度,通過擴大穗型而增加群體穎花量,中穗型品種則配置中等密度,協調穗粒結構而提高群體穎花量,小穗型品種則增加栽插密度,依靠顯著增加穗數而提高群體穎花量。本研究結果還表明,同一密度下,不同穗型品種穗數A1、B3和C5相當,每穗粒數A1顯著高于B3和C5,每穗粒數增幅表現為大穗型>中穗型>小穗型,但B3與C5每穗粒數相當。說明缽苗機插水稻較毯苗機插應用大穗型品種更利于充分發揮大穗優勢,擴大穗型。

表8不同機插方式和密度下中穗型水稻品種穗部性狀

Table 8. Panicle traits of medium panicle typed rice under different mechanically transplanted methods and densities.

品種與處理Cultivarandtreatment穗Panicle穗長PL/cm著粒密度GD/(grain·cm-1)單穗質量GWP/g一、二次枝梗數比值RNB一、二次枝梗粒數比值RNG一次枝梗Primaryrachisbranch枝梗數NB粒數NG結實率SR/%二次枝梗Secondaryrachisbranch枝梗數NB粒數NG結實率SR/%武運粳24Wuyunjing24 A115.49ab8.91ab3.49ab0.57de1.15de13.25ab73.92ab97.29a23.42b64.17b89.09a A215.85ab9.17ab3.51a0.54de1.05e13.93ab74.40ab97.13a25.73ab70.87ab90.31a A316.16a9.37a3.53a0.49e1.04e14.07a77.33a97.41a28.80a74.07a89.20a B113.38c8.10bc2.74b0.71ab1.52b11.75c65.42bc94.62a16.50c42.92f92.82a B214.95b7.95bc3.00ab0.62cd1.26cd12.08c66.31bc96.06a19.38bc52.54de92.09a B315.13b8.20bc3.14ab0.62cd1.24cd12.71bc68.71b96.65a20.43b55.36de88.65a B415.59ab8.42ab3.22ab0.58d1.17de12.94b70.88ab97.57a22.19b60.44cd89.56a B515.85ab8.64ab3.37ab0.51b1.05e12.33bc70.14ab97.07a24.28ab66.86abc93.08a C113.29c7.54c2.54b0.79a1.73a11.36c63.55c95.42a14.36c36.73f89.11a C214.00bc7.60c2.77b0.77a1.61ab11.75c65.73bc95.34a15.28c40.73f89.88a C314.73b7.80c2.89ab0.69bc1.35c12.25bc65.92bc97.22a17.75c48.92ef90.53a C415.05b7.92bc3.08ab0.66bc1.34c12.50bc68.29b97.05a19.00bc50.86de89.47a C515.41ab8.18bc3.13ab0.58de1.28cd13.13ab70.73ab97.29a22.80b55.33de90.96a寧粳3號Ningjing3 A115.38a8.48ab3.25a0.57c1.22e13.06ab71.56ab97.99a22.81a58.88ab90.13a A214.81ab9.08a3.29a0.56c1.19e13.18ab73.06a97.67a23.41a61.35ab91.85a A315.15a9.17a3.31a0.52c1.11e13.15ab73.05a97.91a25.42a65.89a90.89a B113.59b7.39cd2.51b0.87a1.81ab12.08b64.67c96.13a13.95b35.75d88.81a B213.96ab7.73bc2.73ab0.85ab1.64bc12.15b67.00bc97.70a14.31b40.92cd89.98a B314.79ab8.00bc2.98ab0.79b1.49d13.12ab70.87ab96.71a16.53b47.53c90.04a B413.68ab9.07a3.05ab0.77b1.47d13.12ab73.76a98.33a17.06b50.29bc90.06a B514.86ab8.53ab3.09ab0.78b1.40d13.52a73.94a98.01a17.35b52.88bc90.55a C113.43b6.91d2.42b0.89a2.04a11.53b62.33c95.19a13.00b30.50d89.84a C213.75ab7.25cd2.47b0.85ab1.88ab11.77b65.15c97.28a13.77b34.62d90.76a C314.21ab7.29cd2.56ab0.83ab1.79b11.95b66.50bc96.73a14.37b37.14d91.92a C413.74ab8.11abc2.91ab0.78b1.60c12.11b68.67bc97.09a15.60b42.80cd91.12a C514.49ab8.23ab3.00ab0.80b1.54c12.63ab72.40ab97.97a15.73b46.93c91.29a均值Mean A15.479.033.390.541.1313.4473.8997.5724.9365.8790.25 B14.588.202.980.711.4112.5869.1796.8818.2050.5590.56 C14.217.682.780.761.6212.1066.9396.6616.1742.4690.49

3.3不同機插方式和密度下水稻穗部構成特征

穗部性狀與水稻高產形成關系較為密切。曾勇軍等認為雙季稻地區早稻高產群體穗型特征為穗長較長,一、二次枝梗數多,每穗粒數100~130粒,單穗質量2.5 g以上;晚稻表現為穗長較長,二次枝梗數多,著粒密度大,每穗粒數120~150粒,單穗質量3.0 g 左右。馬均等研究認為重穗型品種理想穗部性狀為單穗重4.8 g以上,每穗粒數180~240粒。本研究結果表明,隨著密度降低,3種機插方式不同穗型水稻品種穗長、著粒密度、單穗質量、一次枝梗數、一次枝梗粒數、二次枝梗數和二次枝梗粒數呈增加趨勢,一、二次枝梗數比值和一、二次枝梗粒數比值呈降低趨勢。說明不同機插方式下水稻降低密度均利于擴大穗型,增加二次枝梗數和二次枝梗粒數,改善穗部性狀。本研究結果還表明,同一機插密度下,缽苗機插水稻穗長、著粒密度、單穗質量、一次枝梗數、一次枝梗粒數、二次枝梗數和二次枝梗粒數高于毯苗機插,不同穗型品種間表現為大穗型>中穗型>小穗型。可見,缽苗機插水稻較毯苗機插利于增加穗重和優化穗部結構。

4 結論

缽苗機插配套大穗型品種適當降低密度,充分發揮大穗優勢,增加每穗粒數,提高群體穎花量而高產;中、小穗型品種則應高密度栽插,增加穗數而高產。毯苗機插應用大穗型品種宜采用行距30 cm,適當增加株距,依靠擴大穗型而高產;中穗型品種宜采用行距30 cm,配置中等密度,協調穗粒結構而高產;小穗型品種則采用行距25 cm,適當減少株距,增加栽插密度,顯著增加穗數而增產。同一密度下,缽苗機插產量顯著高于毯苗機插,增產幅度以大穗型品種最大,中穗型品種次之,小穗型品種最小。不同機插方式大水稻降低栽插密度,利于優化不同穗型品種穗部性狀;同一密度下,缽苗機插穗部性狀優于毯苗機插。

表9不同機插方式和密度下小穗型水稻品種穗部性狀

Table 9. Panicle traits of small panicle-typed rice under different mechanically transplanted methods and densities.

品種與處理Cultivarandtreatment穗Panicle穗長PL/cm著粒密度GD/(grain·cm-1)單穗質量GWP/g一、二次枝梗數比值RNB一、二次枝梗粒數比值RNG一次枝梗Primaryrachisbranch枝梗數NB粒數NG結實率SR/%二次枝梗Secondaryrachisbranch枝梗數NB粒數NG結實率SR/%淮稻5號Huaidao5 A115.08bc7.03ab2.75ab0.66c1.42bc11.15a62.15a98.39a16.85abc43.85ab92.92a A215.49ab7.28a2.87a0.65c1.26cd11.13a62.87a98.09a17.07ab49.87a92.81a A316.03a7.29a2.92a0.59c1.22d11.95a64.26a98.28a20.11a52.53a93.02a B113.77de6.59bc2.33b0.82a1.36bc10.05b52.31b98.32a12.31c38.38bc91.82a B214.15cd6.78bc2.40ab0.76ab1.35bc10.47ab54.60b98.41a13.80bc40.33bc92.39a B314.58bc6.78bc2.49ab0.73b1.31cd10.85ab56.00ab98.21a14.77bc42.85bc92.65a B414.78bc7.15ab2.65ab0.67c1.31cd11.15a59.88ab97.91a16.56abc45.75ab92.56a B515.18ab7.19ab2.77ab0.69bc1.27cd11.50a61.11a98.33a16.78abc48.06ab93.08a C113.11e6.36c2.28b0.81a1.57a9.71b50.33b96.21a12.05c32.08c90.11a C213.91de6.58bc2.30b0.83a1.58a10.31ab56.00ab97.29a12.46c35.54c90.96a C313.92de6.79bc2.38ab0.72bc1.50ab10.43ab56.64ab97.98a14.43bc37.86c91.53a C414.21cd6.80bc2.45ab0.72bc1.50ab10.44ab58.00ab98.49a14.53bc38.69bc91.47a C514.32cd6.98ab2.50ab0.71bc1.41b10.35ab58.35ab97.88a14.65bc41.53bc91.96a淮稻10號Huaidao10 A115.28ab7.05ab2.77ab0.60c1.19d10.93ab58.64ab97.56a18.36ab49.14ab93.58a A215.31ab7.21ab2.79ab0.60c1.19d11.08ab60.13a97.67a18.33ab50.33ab92.90a A316.14a7.29ab2.96a0.52c1.13d11.47a62.37a98.14a22.21a55.32a93.19a B114.01c6.61c2.28b0.74b1.44bc10.31bc54.55ab97.67a14.00bc38.00cd91.81a B214.11c6.96bc2.48ab0.72b1.43bc10.58b57.69ab97.60a14.69bc40.46c91.98a B314.68bc6.92bc2.52ab0.68bc1.30cd10.50b57.43ab98.88a15.33bc44.14bc92.42a B414.65bc7.25ab2.61ab0.69bc1.29cd11.08ab59.94a96.81a15.94bc46.35bc92.58a B514.96bc7.50a2.68ab0.67bc1.26cd11.65a62.06a98.18a17.39ab49.11ab92.55a C113.54c6.02d2.31b0.86a1.66a9.43c50.91b97.68a11.01c30.64d90.24a C214.08c6.54cd2.35b0.87a1.55ab10.38bc56.08ab97.70a11.92c36.08cd90.96a C313.93c6.76bc2.35b0.87a1.54ab10.42b57.08ab97.57a11.92c37.15cd91.42a C414.59bc6.68c2.43ab0.75b1.45bc10.75ab58.18ab97.83a14.38bc40.25c91.51a C515.01abc6.85bc2.60ab0.73b1.42bc11.09ab60.31a97.11a15.15bc42.50bc92.14a均值Mean A15.567.192.840.601.2411.2961.7498.0218.8250.1793.07 B14.496.962.520.721.3310.8157.5698.0315.1643.3492.38 C14.066.632.390.791.5210.3356.1997.5713.2537.2391.23

[1]張洪程, 龔金龍. 中國水稻種植機械化高產農藝研究現狀及發展探討. 中國農業科學, 2014, 47(7): 1273-1289.

Zhang H C, Gong J L. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China.SciAgricSin, 2014, 47(7): 1273-1289. (in Chinese with English abstract)

[2]朱德峰, 陳惠哲, 徐一成. 我國水稻種植機械化的發展前景與對策. 北方水稻, 2007(5): 13-18.

Zhu D F, Chen H Z, Xu Y C. Countermeasure and perspective of mechanization of rice planting in China.NorthRice, 2007(5): 13-18. (in Chinese with English abstract)

[3]陸為農. 水稻生產機械化發展現狀及展望. 農機科技推廣, 2006(2): 13-16.

Lu W N. Progress and development of mechanical rice production.AgricMachTechnolExt, 2006(2): 13-16. (in Chinese with English abstract)

[4]宋建農, 莊乃生, 王立臣, 等. 21世紀我國水稻種植機械化發展方向. 中國農業大學學報, 2000, 5(2): 30-33.

Song J N, Zhuang N S, Wang L C, et al.The development tendency of Chinese rice planting mechanization in the 21st century.JChinaAgricUniv, 2000, 5(2): 30-33.

[5]朱德峰, 陳惠哲. 水稻機插秧發展與糧食安全. 中國稻米, 2009(6): 4-7.

Zhu D F, Chen H Z. The development of machine transplanted rice and food security.ChinaRice, 2009(6): 4-7. (in Chinese)

[6]高連興, 趙秀榮. 機械化移栽方式對水稻產量及主要性狀的影響. 農業工程學報, 2002, 18(5): 45-48.

Gao L X, Zhao X R. Effect of mechanized transplanting methods on rice yield and rice population growth trends.TransCSAE, 2002 18(5): 45-48. (in Chinese with English abstract)

[7]李杰, 楊洪建, 鄧建平, 等. 對加快推進江蘇省水稻機插秧發展的思考. 中國稻米, 2014, 20(1): 32-35.

Li J, Yang H J, Deng J P, et al.Thinking of accelerating development of machine-transplanted rice in Jiangsu Province.ChinaRice, 2014, 20(1): 32-35.

[8]葉厚專, 李艷大, 沈顯華, 等. 不同機插行距對水稻產量的影響. 中國農機化, 2012(4): 59-62.

Ye H Z, Li Y D, Shen X H, et al.Effects of different machine-transplanted row spacing on rice yield.ChinAgricMech, 2012(4): 59-62. (in Chinese with English abstract)

[9]馬振國, 潘九明. 水稻插秧機行距問題探索. 江蘇農機化, 2012(3): 49.

Ma Z G, Pan J M. Explore on problem of row spacing of mechanical rice.JiangsuAgricMech, 2012(3): 49. (in Chinese with English abstract)

[10]沈才標, 王駕清, 孫祖高, 等. 水稻窄行插秧機的引進示范. 上海農業科技, 2012(2): 51-52.

Shen C B, Wang J Q, Sun Z G, et al.Demonstration of narrow spacing of mechanical rice.ShanghaiAgricSciTechnol, 2012(2): 51-52. (in Chinese with English abstract)

[11]陳立才, 葉厚專, 舒時富. 8寸行距插秧機的研制與應用. 2012年中國作物學會學術年會論文摘要集. 2012: 28.

Chen L C, Ye H Z, Shu S F. Research and application of mechanical transplanted rice of eight cun row spacing. Abstract of Crop Academic Conference in 2012. 2012: 28. (in Chinese)

[12]陳俊義, 楊東平, 吳國良, 等. 雜粳“常優1號”機插超高產栽培技術. 上海農業科技, 2007(3): 30-31.

Chen J Y, Yang D P, Wu G L, et al. Technology of super-high-yielding of mechanical transplanted hybrid japonica rice of changyou 1.ShanghaiAgricSciTechnol, 2007(3): 30-31. (in Chinese with English abstract)

[13]張洪程, 趙品恒, 孫英菊, 等. 機插雜交粳稻超高產形成群體特征. 農業工程學報, 2012, 28(2): 39-44.

Zhang H C, Zhao P H, Sun Y J, et al. Population characteristics of super high yield formation of mechanical transplanted japonica hybrid rice.TransCSAE, 2012, 28(2): 39-44. (in Chinese with English abstract)

[14]黃大山. 播期、播量和移栽密度對寧粳1號機插稻產量形成及氮素吸收利用的影響. 揚州大學, 2008.

Huang D S. Effects of Sowing Date, sowing rate and transplanting density on the yield formation and nitrogen absorption of mechanical transplanting rice Nanjing 1. Yangzhou: Yangzhou University, 2008. (in Chinese with English abstract)

[15]劉強, 楊波, 段瑞華, 等. 淮北稻區不同行距機插秧對產量影響的研究. 現代農業科技, 2010(4): 83-84.

Liu Q, Yang B, Duan R H, et al. Study on effect of yield of different row spacing mechanical rice in Huaibei region.ModAgricSciTechnol, 2010(4): 83-84. (in Chinese with English abstract)

[16]邢春秋, 付有權, 閆彬. 淺談水稻八行與六行插秧機應用效果. 墾殖與稻作, 2006(5): 74-75.

Xing C Q, Fu Y Q, Yan B. Effect on eight and six row spacing of mechanical transplanting rice.ReclRiceCult, 2006(5): 74-75. (in Chinese with English abstract)

[17]李世峰, 劉蓉蓉, 吳九林. 不同播量與移栽密度對機插水稻產量形成的影響. 作物雜志, 2008(1):71-73.

Li S F, Liu R R, Wu J L. Effects of different sowing rates and transplanting densities on yield formation of machine-transplanted rice.Crops, 2008(1): 71-73. (in Chinese with English abstract)

[18]彭長青, 李世峰, 卞新民, 等. 機插水稻精確定量栽培調控技術研究. 上海農業學報, 2006, 22(1): 20-24.

Peng C Q, Li S F, Bian X M, et al. Study on quantitative planting practice of machine-transplanted rice.ActaAgricShanghai, 2006, 22(1): 20-24. (in Chinese with English abstract)

[19]吳雪源, 王依明. 不同機插密度對水稻產量的影響試驗簡報. 上海農業科技, 2012(3): 47-50.

Wu X Y, Wang Y M. Bulletin effect on yield of different density of mechanical rice.ShanghaiAgricSciTechnol, 2012(3): 47-50. (in Chinese with English abstract)

[20]Akita K, Tanaka N. Effects of planting density and planting patterns of young seedlings transplanting on the growth and yield of rice plants.JpnJCropSci, 1992, 61: 80-86.

[21]錢銀飛, 張洪程, 吳文革, 等. 機插穴苗數對不同穗型粳稻品種產量及品質的影響. 作物學報, 2009, 35(9): 1689-1707.

Qian Y F, Zhang H C, Wu W G, et al. Effects of seedlings number per hill on grain yieId and quality in different panicle types of mechanical transplanted japonica rice.ActaAgronSin, 2009, 35(9): 1689-1707. (in Chinese with English abstract)

[22]李宗春, 王恒雨, 許成軍, 等. 淮北地區機插稻存在問題及栽培對策. 北方水稻, 2008(4): 54-55.

Li Z C, Wang H Y, Xu C J, et al.The problem and cultivation countermeasure of mechanical transplanting rice in Huaibei region.NorthRice, 2008, (4): 54-55 (in Chinese)

[23]張洪程, 李杰, 戴其根, 等. 機插稻“標秧、精插、穩發、早擱、優中、強后”高產栽培精確定量關鍵技術. 中國稻米, 2010, 16(5): 1-6.

Zhang H C, Li J, Dai Q G, et al.The key techniques of "standardizing seedlings, precise transplanting, steady growing, earlier drainage, optimizing middle-stage, strengthening later-stage" model for precise quantitative high-yielding cultivation of mechanical transplanting rice.ChinaRice, 2010, 16(5): 1-6. (in Chinese)

[24]成永芳. 日本RX-6型水稻缽苗移栽機引進試驗簡報. 農機與食品機械, 1999(3): 27-31.

Cheng Y F. Bulletin trial of pot seedling of mechanical transplanted rice (RX-6) of Japan.AgricMachFoodMach, 1999, 3: 27-31. (in Chinese)

[25]王立臣, 王蘋, 李益民, 等. 2ZPY-H530型水稻缽苗行栽機試驗研究. 中國農業大學學報, 2002, 7(4): 21-24.

Wang L C, Wang P, Li Y M, Song J N. Research on trial of pot seedling of mechanical transplanted rice (2ZPY-H530).JChinaAgricUniv, 2002, 7(4): 21-24. (in Chinese)

[26]陳恒高, 張義峰, 董曉威. 新型水稻栽植機的研究. 黑龍江八一農墾大學學報, 2005, 17(4): 39-41.

Chen H G, Zhang Y F, Dong X W. Study on a new type rice transplanting machine.JHeilongjiangAugustFirstLandReclUniv, 2005, 17(4): 39-41. (in Chinese)

[27]張洪程. 缽苗機插水稻生產特點及其利用的核心技術. 農機市場, 2012(8): 19-21.

Zhang H C. Characteristic of production of pot seedling of mechanical transplanted rice and its using key technology.AgricMachMark, 2012, 8: 19-21. (in Chinese)

[28]李剛華, 于林惠, 侯朋福, 等. 機插水稻適宜基本苗定量參數的獲取與驗證. 農業工程學報, 2012, 28(8): 98-104.

Li G H, Yu L H, Hou P F, et al.Calculation and verification of quantitative parameters of optimal planting density of machine-transplant rice.TransCSAE, 2012, 28(8): 98-104. (in Chinese)

[29]邴延忠, 陳宗凱. 水稻缽苗移栽機械化技術研發與應用. 農機科技推廣, 2011(4): 52.

Bing Y Z, Chen Z K. Research and application on the technology of pot seedling of mechanical transplanted rice.AgricMachTechnolExt, 2011(4): 52. (in Chinese)

[30]張洪程, 朱聰聰, 霍中洋, 等. 缽苗機插水稻產量形成優勢及主要生理生態特點. 農業工程學報, 2013, 29(21): 50-59.

Zhang H C, Zhu C C, Huo Z Y, et al. Advantages of yield formation and main characteristics of physiological and ecological in rice with nutrition bowl mechanical transplanting.TransCSAE, 2013, 29(21): 50-59. (in Chinese with English abstract)

[31]朱聰聰, 張洪程, 郭保衛, 等. 缽苗機插密度對不同類型水稻產量及光合物質生產特性的影響. 作物學報, 2014, 40(1): 122-133.

Zhu C C, Zhang H C, Guo B W, et al.Effect of planting density on yield and photosynthate production characteristics in different types of rice with bowl mechanical-transplanting method.ActaAgronSin, 2014, 40: 122-133 (in Chinese with English abstract)

[32]Zhang H, Chen T T, Liu Li J, et al. Performance in grain yield and physiological traits of rice in the Yangtze River Basin of China during the last 60 yr.JIntegAgric, 2013, 12(1): 57-66.

[33]Huang M, Zou Y B, Jiang P, et al. Relationship between grain yield and yield components in super hybrid rice.AgricSciChina, 2011, 10(10): 1537-1544.

[34]Mohapatra P K, Sahu S K. Heterogeneity of primary branch development and spikelet survival in rice in relation to assimilates of primary branches.JExpBot, 1991, 42: 871-879.

[35]高良艷, 周鴻飛. 水稻產量構成因素與產量的分析. 遼寧農業科學, 2007(1): 26-28.

Gao L Y, Zhou H F. Relationship between yield component factors and yield in rice.LiaoningAgricSci, 2007(1): 26-28.

[36]曾勇軍, 石慶華, 潘曉華, 等. 長江中下游雙季稻高產株型特征初步研究. 作物學報, 2009, 35: 546-551.

Zeng Y J, Shi Q H, Pan X H,et al. Preliminary study on the plant type characteristics of double cropping rice in middle and lower reaches of Changjiang River.ActaAgronSin, 2009, 35: 546-551. (in Chinese with English abstract)

[37]馬均, 馬文波, 明東風, 等. 重穗型水稻株型特征研究. 中國農業科學, 2006, 39: 679-685.

Ma J, Ma W B, Ming D F,et al.Studies on the characteristics of rice plant with heavy panicle.SciAgricSin, 2006, 39: 679-685 (in Chinese with English abstract)

Effect of Different Mechanical Transplantation Methods and Density on Yield and Its Components of Different Panicle-typed Rice

HU Ya-jie, QIAN Hai-jun, CAO Wei-wei, XING Zhi-peng, ZHANG Hong-cheng*, DAI Qi-gen, HUO Zhong-yang, XU Ke, WEI Hai-yan, GUO Bao-wei

(Innovation Center of Rice Cultivation Technology in the Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China;*Corresponding author, E-mail: hczhang@yzu.edu.cn)

In order to apply suitable panicle-typed cultivar and plant density under different mechanical transplantation methods, and clarify high-yield formation characteristics of different panicle-typed rice, an experiment was conducted in Xinghua test point of Yangzhou University during 2013 and 2014. Three panicle-typed rice including large panicle type (LPT, Yongyou 2640 and Yongyou 8), medium panicle type (MPT, Wuyunjing 24 and Ningjing 3) and small panicle type (SPT, Huaidao 5 and Huaidao 10) were field-grown. We compared three mechanically transplanted methods including mechanically transplanted pot seedling (A), mechanically transplanted carpeted seedling in row spacing of 30 cm (B), mechanically transplanted carpeted seedling in row spacing of 25 cm (C) at different plant densities, namely plant spacing of 12 cm, 14 cm and 16 cm (marked as 1, 2, 3) in A and plant spacing of 10 cm, 11.7 cm, 13.3 cm, 14.8 cm, 16 cm (marked as 1, 2, 3, 4, 5) in B and C. Yield and its formation, panicle traits were investigated. The main results were as follows: 1) for mechanically transplanted pot seedling, with declining plant density, yield of LPT increased and then reduced, peaking in A2 treatment; yield of MPT and SPT reduced, peaking in A1 treatment. For mechanically transplanted carpet seedling, with reducing plant density, yield of LPT increased and then reduced in B, peaking in B4 treatment, yield of LPT increased in C, peaking in C5 treatment; yield of MPT increased and then reduced in B and C, peaking in B3 and C4 treatment, respectively; yield of SPT reduced in B, peaking in B1 treatment, yield of SPT increased and then reduced, peaking in C2 treatment. In the same plant density, yield of mechanically transplanted pot seedling was significantly higher than mechanically transplanted carpet seedling, the range of increased yield followed a tendency of LPT>MPT>SPT, with no significant difference in B and C. For B and C, in the same plant spacing, yield of LPT was higher in B than C; yield of MPT was higher in B than C in plant spacing of 10 cm, 11.7 cm, 13.3 cm, but it was opposite at plant spacing of 14.8 cm, 16 cm; yield of SPT was higher in C than B in plant spacing of 11.7 cm, 13.3 cm, 14.8 cm, 16 cm. 2) With plant density reduced, panicle number reduced and spikelet number per panicle increased in different panicle-typed rice under different mechanically transplanted methods. At the same plant density, there was no significant difference in panicle, grain filled percentage and 1000-grain weight in different mechanically transplanted methods, but spikelet number per panicle was significantly higher in A than B or C, following a trend of LPT>MPT>SPT. For B and C, number of panicle was lower in B than in C, but it was opposite in spikelet number per panicle. 3) Panicle length, grain density, grain weight per panicle, number of primary and secondary rachis branches, number of grains of primary and secondary rachis branches were increased with plant density reduced, it was opposite in the ratio of No. of primary rachis branch to No. of secondary rachis branch and ratio of No. of grains of primary rachis branch to No. of grains of secondary rachis branch. In the same plant density, panicle length, grain density, grain weight per panicle, number of primary and secondary rachis branches, number of grains of primary and secondary rachis branches in A than in B or C. Therefore, mechanically transplanted pot seedling of LPT could reduce plant density, it was beneficial to enlarge panicle type and increase total spikelet number and yield; for MPT and SPT, higher density should be adopted to increase panicle and spikelet number per panicle for high yield. For mechanically transplanted carpet seedling of LPT, B method and wider plant spacing should be applied to expand panicle type and acquire higher yield; for MPT, B method and medium density should be applied to coordinate panicle and spikelet number per panicle to increase total spikelet number; for SPT, C method and narrow plant spacing should be applied to increase number of panicle to achieve high yield.

mechanically transplanted pot seedling; mechanically transplanted carpet seedling; plant-row spacing; yield; yield components; panicle trait

2016-01-28; 修改稿收到日期: 2016-03-16。

國家科技支撐計劃重大項目(2011BAD16B03);江蘇省農業科技自主創新基金資助項目(CX[2]1003.9);江蘇省科技支撐計劃資助項目(BE2012301);江蘇省高校優勢學科建設工程資助項目;江蘇省研究生科研創新計劃(KYLX_1353)資助項目。

S511.045; S511.048

A

1001-7216(2016)05-0493-14

胡雅杰, 錢海軍, 曹偉偉,等. 機插方式和密度對不同穗型水稻品種產量及其構成的影響. 中國水稻科學, 2016, 30(5): 493-506.

猜你喜歡
水稻產量
什么是海水稻
2022年11月份我國鋅產量同比增長2.9% 鉛產量同比增長5.6%
有了這種合成酶 水稻可以耐鹽了
今日農業(2021年21期)2021-11-26 05:07:00
水稻種植60天就能收獲啦
軍事文摘(2021年22期)2021-11-26 00:43:51
提高玉米產量 膜下滴灌有效
今日農業(2021年14期)2021-11-25 23:57:29
油菜可以像水稻一樣實現機插
今日農業(2021年14期)2021-10-14 08:35:40
世界致密油產量發展趨勢
海水稻產量測評平均產量逐年遞增
今日農業(2020年20期)2020-11-26 06:09:10
一季水稻
文苑(2020年6期)2020-06-22 08:41:52
水稻花
文苑(2019年22期)2019-12-07 05:29:00
主站蜘蛛池模板: 国产午夜福利在线小视频| 国产超碰在线观看| 欧美专区在线观看| 乱系列中文字幕在线视频| 国产精品成人免费视频99| 国产成人精品优优av| 午夜福利无码一区二区| 美女无遮挡被啪啪到高潮免费| 超清人妻系列无码专区| 久久亚洲国产视频| 少妇被粗大的猛烈进出免费视频| 午夜福利无码一区二区| 亚洲视频一区在线| 91精品久久久久久无码人妻| 国产嫩草在线观看| 国产日韩精品欧美一区灰| www中文字幕在线观看| 亚洲欧美日韩另类在线一| 91精品视频播放| 国产性爱网站| 99视频国产精品| 欧美成人一级| 青青草国产免费国产| 一区二区三区国产精品视频| 亚洲欧美在线综合一区二区三区| 九九视频免费在线观看| 亚洲男人的天堂在线观看| 国产日韩丝袜一二三区| 国产日韩欧美视频| 欧美精品在线看| 91av国产在线| 亚洲无码精品在线播放| 亚洲视频a| 伊人久久大香线蕉影院| 伊人福利视频| 午夜精品久久久久久久无码软件 | 九色视频最新网址| 这里只有精品在线| 欧美色图第一页| 美女无遮挡拍拍拍免费视频| 欧美三級片黃色三級片黃色1| 国产精品无码AV中文| 久久久久久久久18禁秘| 国产一区三区二区中文在线| 婷婷亚洲最大| 久久免费精品琪琪| 在线欧美a| 日韩专区欧美| 91久久国产综合精品女同我| 欧美激情伊人| 亚洲国产成人久久精品软件| 中文字幕中文字字幕码一二区| 久久一本日韩精品中文字幕屁孩| 99热这里只有精品在线观看| 97成人在线视频| 最新加勒比隔壁人妻| 亚洲第一天堂无码专区| 又猛又黄又爽无遮挡的视频网站| 亚洲日本精品一区二区| 强奷白丝美女在线观看| 亚洲精品国产综合99| 免费一级毛片完整版在线看| 国产成人一区| 国产成人免费视频精品一区二区| 亚洲综合色在线| 曰韩免费无码AV一区二区| 国产办公室秘书无码精品| 亚卅精品无码久久毛片乌克兰| 国产理论精品| 国产精品亚欧美一区二区| 亚洲国产精品日韩专区AV| 国产永久在线观看| 中文字幕天无码久久精品视频免费 | 亚洲综合专区| 亚洲国产成人无码AV在线影院L| 沈阳少妇高潮在线| 国产国模一区二区三区四区| 在线免费看片a| 国产00高中生在线播放| 久久国产拍爱| 久久99精品国产麻豆宅宅| 极品尤物av美乳在线观看|