999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

不同播栽方式下雜交秈稻莖稈生長和穗粒形成特點及與氣象因子的關系

2016-10-25 02:47:42田青蘭劉波孫紅何莎鐘曉媛趙敏任萬軍
中國水稻科學 2016年5期
關鍵詞:質量

田青蘭 劉波 孫紅 何莎 鐘曉媛 趙敏 任萬軍,*

(1四川農業大學 農學院 / 農業部西南作物生理生態與耕作重點實驗室 / 四川農業大學 生態農業研究所, 四川 溫江611130; 2成都市郫縣氣象局,四川 郫縣 611730; * 通訊聯系人, E-mail: rwjun@126.com)

?

不同播栽方式下雜交秈稻莖稈生長和穗粒形成特點及與氣象因子的關系

田青蘭1劉波1孫紅1何莎2鐘曉媛1趙敏1任萬軍1,*

(1四川農業大學 農學院 / 農業部西南作物生理生態與耕作重點實驗室 / 四川農業大學 生態農業研究所, 四川 溫江611130;2成都市郫縣氣象局,四川 郫縣 611730;*通訊聯系人, E-mail: rwjun@126.com)

TIAN Qinglan, LIU Bo, SUN Hong, et al. Characteristics of stem growth and formation of grain ofindicahybrid rice in different planting methods and their correlation with meteorological factors . Chin J Rice Sci, 2016, 30(5): 507-524.

為探明不同播栽方式下雜交秈稻幼穗分化期莖稈和幼穗生長的規律及差異以進一步明確不同播栽方式穗粒形成特點,于2014年采用兩因素裂區試驗設計,研究了機直播、機插和手插3種播栽方式下2個不同穗粒型雜交秈稻組合[宜香優2115(中穗型)和F優498(大穗型)]的穗分化期莖稈和幼穗生長規律和穗粒形成特點,并分析了幼穗分化期氣象因素與幼穗和莖稈生長的關系。結果表明:1)基部向上第1至第3伸長節間長度分別在抽穗前20 d、16 d、12 d后趨于穩定,故基部第1、2節間的降長增粗應在抽穗前16 d之前;穗干質量和穗莖比在抽穗前12 d后迅速增加。2)從抽穗前16 d開始至抽穗期,穗莖干重比與多數枝梗和穎花性狀呈顯著或極顯著正相關,穗與莖稈競爭同化物的能力直接影響到穗粒形成。3)機插穗分化中后期穗莖干質量比較高,且抽穗期穗干質量顯著高于手插和機直播,有利于提高其每穗粒數,且機插拔節后群體生長率及單莖和群體干物質積累量較高,抽穗期葉面積指數較高,粒葉比高于機直播,較機直播更利于粒重的提高和穗長及著粒數的增加;大穗型品種F優498抽穗期穗干質量顯著高于中穗型品種宜香優2115,且穗分化后期穗莖干質量比高于宜香優2115,是其每穗粒數高的重要原因;F優498穗部著粒較密,較大的葉面積指數及粒葉比利于大穗的形成。4)機插全生育期最長,機直播最短,且機插穗分化期歷時較長,穗分化期積溫和日照時數較高,為穗粒形成提供了較好的溫光條件;莖稈長度和干質量及穗長受氣象因子影響較大,孕穗前適宜的溫度和一定的積溫有利于莖稈和幼穗伸長及莖稈的物質充實。生產上應針對不同播栽方式及品種的生育進程差異,適時采取措施調節莖稈和幼穗生長及物質分配,在培育壯稈的基礎上提高穗分化期穗莖比以達到增粒增產的目的。

水稻; 穗; 莖稈; 穗粒形成; 機插; 機直播; 氣象因子

幼穗分化期是產量構成因子的穗粒數形成的關鍵時期,水稻幼穗經歷第一苞分化期、一次枝梗原基分化期、二次枝梗原基及穎花原基分化期、雌雄蕊形成期、花粉 母細胞形成期、花粉母細胞減數分裂期、花粉內容充實期和花粉完成期[1],部分已分化的枝梗和穎花會在此過程中發生退化,現存的穎花則構成最終的每穗穎花數。不同播栽方式下雜交秈稻的穎花分化及退化存在顯著差異[2],而穗分化期幼穗和莖稈生長直接影響到穎花的分化及退化,因此,探明不同播栽方式間水稻幼穗分化期幼穗及莖稈生長進程、變化規律及差異,對進一步明確機械化播栽及手插的穗粒數形成規律有重要意義。已有研究表明,穗分化期溫度條件[3,4]、氮肥施用量及時期[5-8]、播期[9,10]等均會影響水稻的穗莖生長。壯稈是大穗的組織結構和物質基礎[11]。單莖莖鞘質量高的植株,莖鞘內貯藏性物質多,對提高結實率和粒重能起穩定性作用,是提高抗倒能力的物質基礎[12]。穗分化期幼穗鮮質量大致呈“S”型曲線增長[6],而穗相對于莖稈來說是一個較弱的庫[13],穗分化期穗與莖稈存在對同化物的競爭,水稻進入花粉母細胞形成期后,穗對于營養物質的競爭能力大于莖稈[6]。前期試驗結果表明,不同播栽方式的分蘗特性[14]、氮素積累分配特性[15]、抗倒伏性[16]等均存在差異,機插較機直播和手插有大穗優勢[17],但對于不同播栽方式間水稻穗莖生長規律及差異還不明確。本研究以四川近年推廣面積較大的2個不同穗粒型雜交中秈組合宜香優2115(中穗型)和F優498(大穗型)為材料,研究機直播、機插和手插3種播栽方式下水稻穗分化期的幼穗和莖稈生長規律及穗粒形成特點、物質積累與群體生長差異,并探究幼穗和莖稈生長與枝梗和穎花形成的關系以及穗分化期氣象條件對幼穗和莖稈生長的影響,以期明確不同播栽方式穗粒數形成的規律,對優化機械化播栽的增產途徑提供理論參考。

1 材料與方法

1.1試驗地點及供試品種

試驗于2014年在四川省成都市郫縣三道堰鎮程家船村(30°52′N,103°55′E)進行,試驗點地處成都平原區,水稻季降水量為1067 mm,平均溫度23.2 ℃,試驗田前作為甘藍,土壤類型為中壤土,pH值為6.71,0-20 cm土層有機質含量為28.14 g/kg,全氮含量為1.66 g/kg,全磷含量為0.77 g/kg,全鉀含量為19.34 g/kg,堿解氮含量75.51 mg/kg,速效磷含量為183.66 mg/kg,速效鉀含量為134.82 mg/kg。供試品種為雜交中秈遲熟組合宜香優2115(宜香1A×雅恢2115)和F優498(FS3A×蜀恢498)。宜香優2115為中穗型品種,每穗著粒數141,主莖伸長節間數為6個,主莖總葉數16片;F優498為大穗型品種,每穗著粒數為212,主莖伸長節間數為6個,主莖總葉數16~17片。

1.2試驗設計與田間管理

于2014年采用兩因素裂區試驗設計。播栽方式(A)為主區(A1, 機直播,MD;A2,機插,MT;A3, 手插,HT)。不同穗粒型品種(B)為副區(B1,中穗型品種宜香優2115;B2,大穗型品種F優498)。主區及副區均隨機排列,重復3次。機直播于2014年4月10日應用華南農業大學工學院研制的2BD-10精量穴直播機進行水直播,行穴距設為25 cm×19 cm,播量為5~6粒/穴;機插于4月10日采用缽形塑料軟盤旱育秧,于5月10日選用洋馬六行插秧機移栽,設定行穴距為30 cm×16 cm,2苗/穴;手插于4月10日播種,采用大田普通旱育,5月10日移栽,栽插行穴距為30 cm×16 cm,拉繩定點栽插,2苗/穴。機直播于播后30 d定苗至2苗/穴;機插和手插于栽后1 d定苗至2苗/穴。小區面積 36 m2(3 m×12 m)。施純氮180 kg/hm2,按m基蘗肥∶m穗肥=6∶4施入,其中m基肥∶m分蘗肥=2∶1;m促花肥∶m保花肥=5∶5。按mN∶mP2O5∶mK2O=2∶1∶2確定磷、鉀肥用量,磷肥作基肥一次性施用,鉀肥按m基肥∶m穗肥(促花肥)=5∶5的比例施用。3種播栽方式的總施肥量一致,機直播的基肥在播種前2 d施用,機插和手插的基肥在移栽前2 d施用;機直播的分蘗肥于4~5葉期施用,機插和手插的分蘗肥于栽后10 d施用,促花肥和保花肥按其各自的生育進程在倒4葉和倒2葉抽出時施用。小區間用塑料薄膜包埂隔離,保證可以進行單獨肥水管理。水分管理為夠苗控水曬田,拔節期施肥時復淺水,然后再次落干,后以淺水層和干濕交替為主,抽穗后25~30 d,以濕潤為主。收獲前7~10 d,排水以保證田間硬實,以便收割。病蟲草害防治等相關栽培措施均按照各自高產栽培要求實施。

1.3測定項目與方法

1.3.1穗莖生長動態測定

分蘗期每小區選取長勢一致的200株植株將主莖掛牌,從穗分化開始至抽穗期,每4 d取樣1次,每次取掛牌主莖15根,將葉片摘下,莖鞘則剝離為莖稈和葉鞘,穗分化前期將幼穗在體視顯微鏡下剝離,拍照并用配套軟件測量穗長,穗分化后期直接用直尺測量穗長,并用直尺測量每根莖稈各伸長節間的長度,用數顯游標卡尺測量各伸長節間的長軸直徑和短軸直徑,將測量后的莖稈按伸長節間的節位進行切分,相同節位的伸長節間放在一起,將葉片、葉鞘、穗及不同節位伸長節間分別裝于牛皮紙袋中,置于80℃恒溫烘箱中烘干至恒重并稱重。莖稈基部向上的伸長節間依次記為N1~N6,單個莖稈的質量為各節間質量之和,單個莖稈的長度為各節間長度總和;外徑為長軸直徑(mm)與短軸直徑(mm)的平均值;節間扁平率(%)=(1-短軸直徑/長軸直徑)×100;稈型指數=外徑(cm)/節間長度(cm),穗(莖稈)干質量增長速率(%)=[抽穗前nd穗(莖稈)干質量-抽穗前n+4 d穗(莖稈)干質量]/4×100。文中數據均為樣本的平均值即單個主莖的指標。

1.3.2枝梗和穎花性狀測定

齊穗期每小區選取長勢一致的掛牌主莖10根,用于枝梗及穎花分化、退化的測定,觀察并記錄每穗一次枝梗及著生其上的一次穎花、二次枝梗及著生其上的二次穎花、三次枝梗(著生在二次枝梗上的枝梗)及著生其上的三次穎花的退化數及現存數,每穗枝梗及穎花的分化數為退化數與現存數的總和。此部分相關數據已發表[17],在本文中僅用于相關分析。

1.3.3主要生育時期干物質量的測定

于拔節期、抽穗期、成熟期每小區調查20穴莖蘗數,按平均莖蘗數取樣2穴,剪除根部后洗凈并裝于牛皮紙袋中,150℃下殺青1 h后于80℃恒溫烘箱中烘干至恒重并稱重。各生育時期群體生長率(g/m2·d)=(W2-W1)/(t2-t1)。式中,W1和W2分別指前后兩次測定的干物質量,t2-t1指前后兩次測定相隔的天數。

1.3.4葉面積及收獲的穗部性狀測定

抽穗期將用于測定干物質的植株樣用長寬系數法(校正系數取0.75)測定倒3葉及其余葉的葉面積并計算高效葉面積率及葉面積指數。成熟期每小區調查60穴的有效穗數,按平均穗數取樣5穴,考查穗長、單穗實粒質量、每穗著粒數及實粒數,計算著粒密度及粒葉比。穎花葉面積比(粒/cm2)=每穗著粒數×單位面積有效穗/抽穗期單位面積葉面積;實粒葉面積比(粒/cm2)=每穗實粒數×單位面積有效穗/抽穗期單位面積葉面積;粒重葉面積比(mg/cm2)=單穗實粒質量×單位面積有效穗/抽穗期單位面積葉面積。

1.3.5氣象數據的收集

相關氣象數據資料來源于四川成都郫縣氣象局,包括2014年四川郫縣三道堰鎮4月初至9月中旬的氣象數據。

1.4數據處理

用Microsoft Excel 進行數據的輸入、整理及作圖;用DPS 7.05系統進行數據的方差分析,并采用LSD法進行樣本平均數的多重比較;用SPSS 18 軟件進行數據的相關分析。

2 結果與分析

2.1不同播栽方式下雜交秈稻莖稈和穗的生長規律及差異

2.1.1莖稈生長特點

中秈遲熟雜交稻的穗分化期開始于拔節期,結束于抽穗期。由圖1可以看出,莖稈長度從穗分化始期至抽穗前8 d大致呈線性緩慢增長,之后增長迅速,這主要是由于穗頸節間在抽穗前8 d開始迅速伸長。不同播栽方式間,莖稈長度機插和手插高于機直播,兩品種一致。而F優498抽穗期莖稈略長于宜香優2115。

穗分化期莖稈基部節間陸續長出并伸長,各伸長節間的長度變化有一定規律。由圖2可以看出,N1長度在抽穗前20 d后趨于穩定,N2長度在抽穗前20 d之前增長較快,在抽穗前16 d之后趨于穩定;N3長度在抽穗前12 d之前增長迅速,之后趨于穩定。N4、N5和N6抽穗期時仍在伸長,尚未達到最終長度。其中,宜香優2115的N4在抽穗前20 d之后一直穩定持續快速伸長,而F優498的N4在抽穗期伸長放緩;N5在抽穗前12 d開始迅速伸長,N6在抽穗前8 d開始迅速伸長,且N1~N4的最終長度隨節位上升而增加。比較不同播栽方式的差異可知,除N3及F優498的N4外,幼穗分化期的N1~N5長度均為機插大于手插和機直播,抽穗期N6長度為機插和手插大于機直播,兩品種一致;品種間比較可知,抽穗期N1~N4長度宜香優2115長于F優498,N5、N6長度則為F優498長于宜香優2115。

由于N1~N3的節間形態在抽穗前12 d后均趨于穩定,故將N1、N2、N3在抽穗前12 d至抽穗期的節間性狀取平均值進行方差分析。由表1可知,各播栽方式間和品種間的基部伸長節間性狀存在較大差異。N1和N2的長度均表現為機插>手插>機直播,其中,機插N1和N2長度較機直播分別長24.3%和12.1%,差異達極顯著,各播栽方式N3長度差異不大;品種間為宜香優2115的N1和N2長度顯著或極顯著大于F優498。N1、N2、N3長軸直徑和短軸直徑均為手插>機插>機直播,且手插和機插顯著大于機直播,品種間差異不大。N1、N2扁平率為手插和機插大于機直播,N3的扁平率為宜香優2115顯著高于F優498。N1、N2、N3的外徑均為手插和機插顯著或極顯著大于機直播,且機直播中為宜香優2115大于F優498,在手插中則相反。此外,機插的N1和N2的稈型指數最小,各播栽方式N1和N2的稈型指數均為F優498大于宜香優2115。由以上分析可以看出,手插基部伸長節間短而粗,而機直播基部節間較細,機插基部伸長節間則較長。

2.1.2幼穗生長特點

穗分化期穗與莖稈同步伸長,由圖3可以看出,穗長大致呈“S”型曲線增長,在抽穗前16d到抽穗前8 d這一階段增長最快,隨后緩慢增長并趨于穩定。不同播栽方式間,機插穗長高于機直播和手插,兩品種一致。由圖4和圖5可以看出,不同播栽方式下雜交秈稻穗分化期的穗干質量增加趨勢為穗分化始期至抽穗前16 d增長緩慢,抽穗前12 d至抽穗期持續快速增長,穗莖干質量比與穗干質量變化趨勢一致。抽穗前24 d至抽穗前4 d宜香優2115的機插處理的穗干質量增長速率均明顯快于手插和機直播。抽穗前4 d和抽穗期穗干質量表現為機插(分別為0.71 g和1.04 g)顯著或極顯著高于手插(分別為0.52 g和0.90 g)和機直播(分別為0.56 g和0.84 g),而F優498穗干質量顯著高于宜香優2115;抽穗前12 d至抽穗期,宜香優2115的穗莖干質量比表現為機插>機直播>手插,F優498各播栽方式間差異不大但以機插較高,且F優498穗分化后期穗莖干質量比均高于宜香優2115。

MD-機直播; MT-機插; HT-手插。下同。

MD, Mechanized direct-seeding; MT, Mechanized transplanting; HT, Hand transplanting. The same as below.

圖1不同栽插方式下秈稻穗分化期莖稈長度變化

Fig.1. Changes in the length of stem of indica hybrid rice at the panicle differentiation stage in various planting methods.

圖2不同栽插方式下秈稻穗分化期各伸長節間(N1~N6)的長度變化

Fig. 2. Change in the length of N1-N6 elongated internodes ofindicahybrid rice at the panicle differentiation stage in various planting methods.

表1不同栽插方式下雜交秈稻基部伸長節間性狀比較

Table 1. Comparison of the characters of basal elongated internodes of indica hybrid rice in various planting methods.

播栽方式Plantingmethod長度Length/cmN1N2N3長軸直徑Longaxisdiameter/mmN1N2N3機直播MD 宜香優2115YXY21152.54±0.44a7.58±0.79Aa10.47±0.42a7.02±0.197.07±0.12 6.55±0.10 F優498FY4982.03±0.16b6.02±0.4Bb9.43±0.55b6.73±0.016.95±0.076.47±0.01機插MT 宜香優2115YXY21153.18±0.31a8.48±0.14Aa9.89±0.657.34±0.207.36±0.116.78±0.08 F優498FY4982.50±0.33b6.75±0.41Bb10.15±0.357.35±0.227.36±0.296.75±0.22手插HT 宜香優2115YXY21152.96±0.47a7.65±0.78a10.74±0.247.39±0.34b7.48±0.176.74±0.06 F優498FY4982.45±0.11a6.35±0.37b10.01±0.717.92±0.23a7.47±0.146.86±0.10平均值Mean 機直播MD2.29±0.36Bb6.80±1.1Bb9.95±0.736.87±0.2Bc7.01±0.09Bb6.51±0.06Bb 機插MT2.84±0.48Aa7.62±1.22Aa10.02±0.197.34±0.004Ab7.36±0.002ABa6.76±0.02Aa 手插HT2.71±0.36Aa7.00±0.91Bb10.38±0.517.65±0.37Aa7.47±0.004Aa6.80±0.08Aa 宜香優2115YXY21152.90±0.32Aa7.90±0.50Aa10.37±0.43a7.25±0.207.30±0.216.69±0.12 F優498FY4982.54±0.44a7.58±0.79Aa10.47±0.42a7.33±0.597.26±0.286.69±0.20F值Fvalue 播栽方式PM21.05**20.41**1.5435.24**16.93*31.90** 品種V15.87**38.48**6.32*0.860.430.00 播栽方式×品種PM×V0.150.263.89(*)7.33*0.351.06播栽方式Plantingmethod短軸直徑Shortaxisdiameter/mmN1N2N3扁平率Oblaterate/%N1N2N3機直播MD 宜香優2115YXY21156.42±0.12a6.29±0.045.74±0.048.53±1.0511.03±0.9312.32±0.84a F優498FY4986.19±0.06b6.24±0.115.78±0.108.06±0.8810.10±1.8710.61±1.35b機插MT 宜香優2115YXY21156.61±0.196.67±0.075.98±0.089.91±0.959.38±1.7811.69±0.26a F優498FY4986.45±0.166.63±0.256.11±0.2512.16±0.879.88±0.629.53±0.69b手插HT 宜香優2115YXY21156.68±0.196.49±0.105.89±0.03b9.47±1.85b13.20±1.34a12.54±0.75Aa F優498FY4986.75±0.306.81±0.266.21±0.15a14.64±2.76a8.72±2.60b9.36±0.92Bb平均值Mean 機直播MD6.30±0.16Bb6.27±0.04b5.76±0.03Bb8.29±0.34b10.56±0.6611.45±1.21 機插MT6.53±0.11ABa6.65±0.03a6.05±0.09Aa11.01±1.59a9.63±0.3610.58±1.53 手插HT6.72±0.05Aa6.65±0.23a6.05±0.23Aa11.94±3.65a10.86±3.1710.90±2.25 宜香優2115YXY21156.57±0.146.48±0.195.87±0.129.30±0.70b11.16±1.9212.18±0.44Aa F優498FY4986.46±0.286.56±0.296.03±0.2311.47±3.32a9.56±0.749.83±0.68BbF值Fvalue 播栽方式PM15.85*13.74*16.78*10.04*0.631.52 品種V3.060.945.25(*)7.60*3.88(*)27.86** 播栽方式×品種PM×V2.222.271.393.88(*)3.231.00

同列同一項中標以不同大小寫字母分別表示其值差異達0.01和0.05顯著水平,未標注字母的均未達顯著性差異;(*),*和**分別表示差異達到0.1、0.05和0.01顯著水平。下表同。

Values within a column and item followed by different uppercase and lowercase letters are significantly different atP<0.01 andP<0.05, respectively. Values which have no markers are not significantly different. (*),*,**Denote significant difference at the 0.1, 0.05 and 0.01 probability levels, respectively. MD-Mechanized direct-seeding; MT-Mechanized transplanting; HT-Hand transplanting; PM-Planting method; V-Varieties; YXY2115-Yixiangyou 2115; FY498-F you 498; The same as below.

續表1:

播栽方式Plantingmethod外徑Stemdiameter/mmN1N2N3稈型指數StemtypeindexN1N2N3機直播MD 宜香優2115YXY21156.72±0.15a6.68±0.086.15±0.070.270±0.045b0.089±0.009Bb0.059±0.002b F優498FY4986.46±0.03b6.59±0.076.13±0.050.320±0.026a0.110±0.006Aa0.065±0.004a機插MT 宜香優2115YXY21156.98±0.197.01±0.066.38±0.080.220±0.015b0.083±0.002Bb0.065±0.004 F優498FY4986.90±0.186.99±0.276.43±0.240.278±0.032a0.104±0.003Aa0.063±0.001手插HT 宜香優2115YXY21156.68±0.197.04±0.26b6.98±0.136.32±0.040.240±0.027b0.092±0.007Bb0.059±0.001b F優498FY4987.34±0.24a7.14±0.196.53±0.120.300±0.024a0.113±0.009Aa0.066±0.006a平均值Mean 機直播MD6.59±0.18Bc6.64±0.06Bb6.14±0.01Bb0.295±0.035a0.099±0.015ab0.062±0.004 機插MT6.94±0.06ABb7.00±0.01Aa6.40±0.04Aa0.249±0.041b0.093±0.015b0.064±0.001 手插HT7.19±0.21Aa7.06±0.11Aa6.43±0.15Aa0.270±0.042ab0.102±0.015a0.062±0.005 宜香優2115YXY21156.91±0.176.89±0.186.28±0.120.243±0.025Bb0.088±0.005Bb0.061±0.003b F優498FY4986.90±0.446.91±0.286.36±0.210.299±0.021Aa0.109±0.005Aa0.065±0.001aF值Fvalue 播栽方式PM30.94**19.59**24.14**5.31(*)8.80*0.74 品種V0.030.061.7521.98**47.37**6.32* 播栽方式×品種PM×V6.04*1.131.270.060.002.84

2.1.3粒葉比及收獲后穗部性狀

粒葉比是衡量植株源庫是否協調的重要指標。由表2可知,雖不同播栽方式抽穗期高效葉面積率無差異,但機插和機直播的葉面積指數高于手插。而粒葉比手插和機插高于機直播,其中,穎花葉面積比手插和機插分別較機直播高19.30%和10.97%,實粒葉面積比手插和機插較機直播分別高17.47%和7.34%,粒重葉面積比手插和機插分別較機直播高17.85%和7.00%。品種間,宜香優2115的葉面積指數高于F優498,但F優498的穎花葉面積比、實粒葉面積比和粒重葉面積比均極顯著高于宜香優2115,3種播栽方式一致。收獲的單穗實粒重和著粒密度為手插和機插大于機直播,F優498極顯著大于宜香優2115。此外,播栽方式對穗長有顯著影響,機插的穗長顯著長于手插,極顯著高于機直播,而宜香優2115的穗長顯著長于F優498。由以上結果可以看出,機插葉面積指數較高,且粒葉比高于機直播,較機直播更利于粒重的提高和穗長及著粒數的增加;F優498著粒較密,較大的葉面積指數及粒葉比利于其大穗的形成。

圖3不同栽插方式下秈型雜交稻穗分化期穗長變化

Fig. 3. Change of the length of panicle of indica hybrid rice at the panicle differentiation stage in various planting methods.

圖4不同栽插方式下秈型雜交稻穗分化期每穗干質量變化

Fig. 4. Change of panicle dry weight of indica hybrid rice at the panicle differentiation stage in various planting methods.

圖5不同栽插方式下秈型雜交稻穗分化期穗莖干質量比變化

Fig. 5. Change of the dry weight ratio of panicle to stem of indica hybrid rice at the panicle differentiation stage in various planting methods.

2.2不同播栽方式下雜交秈稻物質積累與群體生長

2.2.1穗分化期各器官物質積累與分配變化

穗分化期不僅穗干質量在持續增長,葉片、葉鞘、莖稈干質量整體也呈上升趨勢(表3)。由表3可知,葉片干質量在抽穗前24 d和抽穗前20 d為手插>機直播>機插,抽穗前12 d至抽穗期則為機插>手插>機直播。葉鞘干質量在抽穗前12 d至抽穗期均為機插>手插>機直播,且抽穗前12 d和抽穗前8 d達顯著差異;抽穗前12 d F優498的葉鞘干質量高于宜香優2115,而抽穗期則為宜香優2115高于F優498。抽穗前24 d至抽穗期莖稈干質量均為機插高于手插和機直播,且除抽穗前20 d外,均達顯著或極顯著差異;抽穗前12 d至抽穗期宜香優2115莖稈干質量均高于F優498,各播栽方式一致。

表2不同播栽方式下雜交秈稻粒葉比及收獲后穗部性狀

Table 2. Grain leaf ratio and character of harvested panicle of indica hybrid rice in different planting methods.

播栽方式與品種PMandV高效葉面積率HELR/%葉面積指數LAA穎花葉面積比RSLA/(粒·cm-2)實粒葉面積比RFSLA/(粒·cm-2)機直播MD 宜香優2115YXY211568.85±1.349.92±0.19a0.34±0.03Bb0.31±0.01Bb F優498FY49868.99±1.718.58±1.63b0.55±0.06Aa0.51±0.06Aa機插MT 宜香優2115YXY211564.36±0.949.43±0.620.41±0.04Bb0.35±0.05Bb F優498FY49862.37±6.119.10±0.410.58±0.03Aa0.53±0.03Aa手插HT 宜香優2115YXY211566.80±1.939.70±0.24Aa0.38±0.04Bb0.33±0.04Bb F優498FY49867.53±5.776.93±0.21Bb0.68±0.05Aa0.63±0.04Aa平均值Mean 機直播MD68.92±0.109.25±0.940.44±0.15b0.41±0.15 機插MT63.37±1.419.26±0.230.49±0.12ab0.44±0.13 手插HT67.17±0.528.32±1.960.53±0.22a0.48±0.21 宜香優2115YXY211566.68±2.259.68±0.25Aa0.37±0.03Bb0.33±0.02Bb F優498FY49866.33±3.488.21±1.13Bb0.6±0.07Aa0.56±0.06AaF值Fvalue 播栽方式PM3.792.755.39(*)3.42 品種V0.0619.36**150.05**209.07** 播栽方式×品種PM×V0.294.47(*)4.31(*)5.62*播栽方式與品種PMandV粒重葉面積比RGWLA/(mg·cm-2)單穗實粒重GWPP/g穗長LP/cm著粒密度GD/(粒·cm-1)機直播MD 宜香優2115YXY211510.28±0.33Bb3.89±0.14Bb25.47±0.48a5.03±0.28Bb F優498FY49814.96±1.76Aa5.26±0.54Aa25.11±0.71a7.71±0.94Aa機插MT 宜香優2115YXY211511.95±1.44b4.51±0.44Bb28.74±0.14Aa5.33±0.32Bb F優498FY49815.06±1.13a5.78±0.72Aa26.84±0.37Bb8.26±0.47Aa手插HT 宜香優2115YXY211511.15±1.31Bb4.27±0.27Bb27.48±0.32a5.26±0.18Bb F優498FY49818.6±1.41Aa6.03±0.11Aa26.29±0.61b8.41±0.16Aa平均值Mean 機直播MD12.62±3.31b4.58±0.9725.29±0.25Bc6.37±1.89 機插MT13.51±2.2ab5.15±0.9027.79±1.35Aa6.79±2.08 手插HT14.87±5.27a5.15±1.2526.88±0.84Ab6.84±2.23 宜香優2115YXY211511.13±0.83Bb4.23±0.31Bb27.23±1.65Aa5.21±0.16Bb F優498FY49816.21±2.07Aa5.69±0.39Aa26.08±0.88Bb8.13±0.37AaF值Fvalue 播栽方式PM4.135.39(*)47.19**2.09 品種V86.39**150.05**22.17**171.41** 播栽方式×品種PM×V5.38*4.31(*)3.360.38

HELR, High effective leaf area ratio; LAA, Leaf area index; RSLA, Ratio of spikelets to leaf area; RFSLA, Ratio of filled spikelets to leaf area; RGWLA, Ratio of grain weight to leaf area; GWPP, Grain weight per panicle; LP, Length of panicle; GD, Grain density.

比較穗分化期各播栽方式下的雜交秈稻各器官干物質分配比例變化(圖6),發現穗分化中后期葉片和葉鞘的干物質分配比例整體呈階梯下降的趨勢,而莖稈和穗的干物質分配比例整體呈上升趨勢,兩品種一致。穗分化期葉片和葉鞘所占的干物質比例最大且為主要部分,穗占比最小。其中,抽穗前24 d葉片、葉鞘、莖稈和穗所占的干物質比例分別為40%~51%、34%~42%、13%~17%、0.03%~0.06%;抽穗前12 d葉片、葉鞘、莖稈和穗所占的干物質比例分別為33%~38%、34%~38%、21%~29%、1%~4.6%。隨著穗分化進程,穗和莖稈不斷生長,抽穗期葉片、葉鞘所占的干物質比例分別下降為25%~28%、29%~31%,而莖稈和穗的占比分別增加至24%~29%、12%~19%。說明穗分化中后期莖稈和穗較葉和葉鞘對同化物的需求更大。

不同播栽方式間,抽穗前24 d至抽穗期,葉片干質量占比均為手插高于機直播和機插。各播栽方式間葉鞘干質量占比差異不大,品種間差異主要在抽穗前16 d和抽穗前12 d,為F優498高于宜香優2115。除抽穗前8 d外,莖稈干質量占比均為機插高于機直播和手插,抽穗前12 d至抽穗期各播栽方式的莖稈干質量占比均為F優498高于宜香優2115。抽穗前24 d至抽穗期穗干質量占比為機插和機直播高于手插,F優498高于宜香優2115。

2.2.2各生育時期物質積累與群體生長率

由表4可以看出,不同播栽方式抽穗期及成熟期單莖干物質量差異較大,均為機插>手插>機直播,而群體干物質量在拔節期以機直播最高,抽穗期和成熟期則為機插最高。群體生長率播種至拔節期以機直播最高,而拔節至抽穗期和抽穗至成熟期則以機插最高,兩品種差異不大。故機直播生長優勢在拔節前,但后勁不足;機插的生長優勢則在拔節后,其群體生長率增加,物質積累也隨之增加。

2.3穗莖生長與枝梗和穎花分化及退化的關系

不同播栽方式間,機插有較高的總枝梗數和總穎花數[17]。穗粒形成于穗分化期,其主要構成因子包括一次、二次枝梗數和一次、二次穎花數,相關分析表明,總枝梗數和總穎花性狀與穗干質量普遍正相關,而與莖稈干質量普遍呈負相關,但后者大多未達顯著相關(表5)。進一步分析穗莖物質競爭與協調和枝梗與穎花分化及退化的關系(表6),從抽穗前16 d開始直至抽穗期,穗莖干質量比對枝梗和穎花性狀產生較大影響,與多數枝梗和穎花性狀呈顯著或極顯著正相關;抽穗前20 d至抽穗前12 d的穗干質量增長速率及抽穗前8~4 d的穗莖干質量增長速率之比也與多數枝梗和穎花性狀呈顯著或極顯著正相關,而抽穗前8~4 d莖稈干質量增長速率與總枝梗和總穎花現存數、分化數等性狀呈顯著負相關。由此可知,穗分化期穗與莖稈競爭同化物的能力直接影響到枝梗和穎花形成。

表3不同栽插方式下雜交秈稻穗分化期各器官的干質量變化

Table 3. Change of the dry matter of different organs of indica hybrid rice in panicle differentiation stage in various planting methods.g

同一行同一項中標以不同大小寫字母分別表示其值差異達0.01和0.05顯著水平。DBH,抽穗前天數。

Values within a line and item flanked by different capital and small letter are significantly different atP<0.01 andP<0.05,respectively. DBH,Days before heading.

表4不同栽插方式下雜交秈稻各生育時期物質積累與群體生長率

Table 4. Dry matter weight during various growth stage and crop growth rate of indica hybrid rice in different planting methods.

DMWS, Dry matter weight per stem; DMWP, Dry matter weight of population; CGR, Crop growth rate; S-J, Seeding-Jointing; J-H, Jointing-Heading; H-M, Heading-Maturity.

圖6不同栽插方式下雜交秈稻穗分化期各器官干物質分配比例變化

Fig.6. Change of the ratio of dry matter in different organs at the panicle differentiation stage of indica hybrid rice in different planting methods.

表5不同栽插方式下秈型雜交稻穗分化期莖稈和穗生長與總枝梗和總穎花性狀的相關分析1)

Table 5. Correlation analysis of the growth of stem and panicle with rachis branches and spikelets characters of indica hybrid rice at the panicle differentiation stage in various planting methods(n=18).1)

抽穗前天數與性狀Daysbeforeheadingandcharacter總穎花現存數SS總穎花退化數RS總穎花分化數DS總穎花退化率RPS總枝梗退化數RB總枝梗現存數SB總枝梗分化數DB總枝梗退化率RPB24DBH 莖稈長LS-0.088-0.195-0.14-0.254-0.539*-0.077-0.298-0.734** 莖稈干質量DWS0.168-0.1480.048-0.329-0.2930.146-0.048-0.538* 穗長LP-0.139-0.236-0.191-0.218-0.509*-0.130-0.316-0.607** 穗干質量DWP0.4530.1510.362-0.0630.0460.4680.306-0.30020DBH 莖稈長LS-0.162-0.333-0.248-0.383-0.598**-0.161-0.376-0.748** 莖稈干質量DWS0.161-0.080.072-0.188-0.0390.1560.077-0.205 穗長LP0.1570.2710.2190.3490.4090.1780.2990.456 穗干質量DWP0.0900.0570.0830.0780.3230.0760.1960.41216DBH 莖稈長LS-0.061-0.224-0.135-0.254-0.447-0.059-0.244-0.577* 莖稈干質量DWS-0.111-0.196-0.156-0.147-0.394-0.093-0.239-0.480* 穗長LP0.4100.3320.4110.2370.497*0.4200.486*0.366 穗干質量DWP0.556*0.486*0.572*0.3350.680**0.560*0.656**0.525*12DBH 莖稈長LS-0.050-0.157-0.100-0.186-0.369-0.063-0.210-0.445 莖稈干質量DWS-0.109-0.155-0.138-0.150-0.509*-0.097-0.296-0.629** 穗長LP0.475*0.3080.4430.0310.3500.485*0.4570.076 穗干質量DWP0.601**0.507*0.610**0.2650.543*0.625**0.632**0.2588DBH 莖稈長LS0.172-0.0100.109-0.135-0.2120.139-0.014-0.423 莖稈干質量DWS-0.119-0.098-0.120-0.064-0.393-0.110-0.25-0.498* 穗長LP0.3140.0520.229-0.1420.0310.3150.206-0.259 穗干質量DWP0.673**0.3290.582*0.0170.4210.674**0.605**0.0394DBH 莖稈長LS0.2310.1820.2290.1340.0410.2200.152-0.126 莖稈干質量DWS-0.403-0.452-0.457-0.322-0.674**-0.41-0.563*-0.623** 穗長LP-0.221-0.312-0.278-0.240-0.567*-0.215-0.394-0.620** 穗干質量DWP0.689**0.469*0.652**0.2300.496*0.677**0.642**0.1710DBH 莖稈長LS0.542*0.2310.455-0.109-0.0080.533*0.320-0.468 莖稈干質量DWS-0.230-0.438-0.337-0.446-0.654**-0.249-0.456-0.729** 穗長LP-0.378-0.489*-0.456-0.397-0.783**-0.375-0.592**-0.783** 穗干質量DWP0.878**0.677**0.865**0.3100.653**0.871**0.832**0.209

1)枝梗和穎花性狀相關內容已發表,詳見參考文獻[17]。*和**分別表示達到0.05和0.01顯著水平,下同。

1)denote the contents of branches and spiklets was published, please see reference [17].*,**Significance at the 0.05 and 0.01 probability levels, respectively. LS, Length of stem; DWS, Dry weight of stem; LP, Length of panicle; DWP, Dry weight of panicle; SS, Survived spikelets; RS, Retrograded spikelets; DS, Differentiated spikelets; RPS, Retrograded percentage of spikelets; RB, Retrograded branches; SB, Survived branches; DB, Differentiated branches; RPB, Retrograded percentage of branches. The same as below.

2.4各生育時期氣象條件差異及與穗莖生長的關系

不同播栽方式的生育進程不同,必然會對穗莖生長產生影響。比較不同播栽方式間生育進程,由圖7可知,機直播全生育期較機插和手插分別縮短了5 d和3 d(宜香優2115)、7 d和4 d(F優498),主要是因為機直播沒有移栽和返青環節,生育進程加快,而宜香優2115全生育期較F優498長8~10 d。機插孕穗前生育進程較慢而孕穗后生育進程加快,其穗分化期歷時較長,而F優498穗分化期較宜香優2115短。比較各生育時期氣象條件(表7)可知,機插在孕穗前積溫高于機直播和手插,而孕穗后的積溫低于機直播和手插,但機插全生育期積溫最高;此外,機插拔節至抽穗期日照時數高于機直播和手插,為穗粒形成提供了較好的條件。

表6不同栽插方式下秈型雜交稻莖稈和穗物質競爭與枝梗和穎花性狀的關系1)

Table 6. Relationship of competing in assimilate between stem and panicle of indica hybrid rice which with branches and spikelets characters in various planting methods1)(n=18).

枝梗和穎花參數Parametersofrachisbranchesandspikelets穗莖干質量比Dryweightratioofpanicletostem16DBH12DBH8DBH4DBH0DBH穗干質量增長速率WIP20DBH~16DBH16DBH~12DBH莖稈干質量增長速率WIS8DBH~4DBH穗與莖稈干質量增長速率之比RWIPS8DBH~4DBH一次枝梗退化數RPB0.3500.3450.2820.3380.3880.2260.1520.193-0.098一次枝梗現存數SPB0.737**0.681**0.567*0.716**0.901**0.699**0.621**-0.2970.540*一次枝梗分化數DPB0.747**0.690**0.574*0.726**0.908**0.698**0.613**-0.2710.517*一次枝梗退化率RPPB0.3280.3220.2610.3150.3700.2110.1330.186-0.104一次穎花退化數RPS0.770**0.608**0.602**0.755**0.887**0.783**0.416-0.3490.506*一次穎花分化數DPS0.2770.3600.2100.2140.3320.1330.4330.0970.080一次穎花退化率RPPS0.790**0.698**0.613**0.746**0.917**0.727**0.575*-0.2440.471*二次枝梗退化數RSB0.765**0.597**0.599**0.748**0.877**0.784**0.398-0.3530.505*二次枝梗現存數SSB0.856**0.661**0.604**0.722**0.875**0.773**0.420-0.3410.498*二次枝梗分化數DSB0.609**0.513*0.686**0.795**0.860**0.693**0.529*-0.553*0.739**二次枝梗退化率RPSB0.783**0.633**0.708**0.828**0.944**0.792**0.525*-0.493*0.679**一次枝梗退化數RPB0.627**0.4350.2100.3060.4450.4530.1050.0080.063二次穎花現存數SSS0.609**0.511*0.688**0.793**0.850**0.699**0.525*-0.550*0.727**二次穎花分化數DSS0.610**0.502*0.589*0.765**0.888**0.693**0.511*-0.602**0.779**二次穎花退化率RPSS0.3810.3210.0560.3560.529*0.4170.276-0.2930.516*二次穎花退化數RSS0.4590.3650.2050.490*0.669**0.507*0.341-0.475*0.675**三次枝梗退化數RTB0.1860.1770.1600.3930.574*0.2640.335-0.4640.672**三次枝梗現存數STB0.3000.4420.511*0.4620.523*0.4570.636**-0.549*0.568*三次枝梗分化數DTB0.2870.3560.3780.499*0.665**0.4120.557*-0.571*0.715**三次枝梗退化率RPTB-0.227-0.351-0.434-0.164-0.157-0.297-0.3700.2180.006三次穎花現存數STS0.2150.3390.555*0.513*0.4480.3650.562*-0.556*0.621**三次穎花分化數DTS0.1950.2870.2550.390.574*0.3290.522*-0.550*0.665**三次穎花退化率RPTS0.1960.1340.0850.2070.2390.1840.0670.0150.178三次穎花退化數RTS0.2630.3260.2730.4510.646**0.3850.523*-0.538*0.711**總穎花現存數SS0.605**0.526*0.686**0.783**0.845**0.681**0.555*-0.528*0.713**總穎花退化數RS0.536*0.4610.3490.609**0.807**0.605**0.463-0.531*0.740**總穎花分化數DS0.625**0.542*0.599**0.773**0.898**0.704**0.562*-0.572*0.783**總穎花退化率RPS0.3580.2730.0400.3400.512*0.3980.220-0.3270.505*總枝梗退化數RB0.777**0.611**0.557*0.724**0.906**0.729**0.451-0.4180.611**總枝梗現存數SB0.604**0.544*0.682**0.776**0.854**0.692**0.582*-0.558*0.732**總枝梗分化數DB0.728**0.614**0.673**0.808**0.940**0.759**0.563*-0.533*0.729**總枝梗退化率RPB0.622**0.4210.2360.4080.581*0.483*0.158-0.1100.256

RPB, Retrograded primary rachis branches; SPB, Survived primary rachis branches; DPB, Differentiated primary rachis branches; RPPB, Retrograded percentage of primary rachis branches; RPS, Retrograded primary spikelets; DPS, Differentiated primary spikelets; RPPS, Retrograded percentage of primary spikelets; RSB, Retrograded secondary rachis branches; SSB, Survived secondary rachis branches; DSB, Differentiated secondary rachis branches; RPSB, Retrograded percentage of secondary rachis branches; RSS, Retrograded secondary spikelets; SSS, Survived secondary spikelets; DSS, Differentiated secondary spikelets; RPSS, Retrograded percentage of secondary spikelets; STB, Survived third branches; DTB, Differentiated third branches; RTS, Retrograded third spikelets; STS, Survived third spikelets; DTS, Differentiated third spikelets; RPTS, Retrograded percentage of third branches.

參照穗分化期的日均溫度和降雨量(圖8)可知,穗分化期日均溫度在20℃至29℃間波動,日最高氣溫在22℃~36℃間變化,但降雨量變幅較大。進一步分析穗分化期氣象因子與穗莖生長的關系,發現抽穗前31~28 d、抽穗前23~20 d以及抽穗前15~12 d是氣象因子對穗莖生長影響較大的時段。表8中列出了抽穗前12 d(接近孕穗期)及抽穗期的穗莖性狀與氣象因子的相關系數。從表中可以看出,抽穗前12 d莖稈長度和干質量與抽穗前31~28 d、抽穗前23~20 d以及抽穗前15~12 d的多數氣溫因素呈顯著或極顯著正相關;抽穗前12 d穗長和穗干質量與氣象因子呈負相關,且與抽穗前23~20 d平均氣溫及積溫相關性達到極顯著。抽穗期莖稈長度和穗干質量受氣象因子影響不大;抽穗前31~28 d、抽穗前23~20 d以及抽穗前15~12 d的積溫(≥10℃)、最高氣溫及平均氣溫與抽穗期莖稈干質量和穗長呈顯著或極顯著正相關。

柱形圖中的數值表示該時段經歷的天數(d)

Values in the column chart donate the number of days in that period.

圖7不同播栽方式下雜交秈稻的生育進程

Fig. 7. Growing process of indica hybrid rice under different planting methods.

圖8不同栽插方式下秈型雜交稻穗分化期溫度和降雨量

Fig. 8. Temperature and rainfall at the panicle differentiation stage in various planting of indica hybrid rice methods.

3 討論

3.1不同播栽方式下雜交秈稻莖稈生長和穗粒形成特點

莖稈是水稻植株的重要器官,除具有支撐、聯絡、輸導、光合和貯藏功能外,還有合理配置葉系,改善受光姿態,提高光合效能的作用[18],與植株抗倒伏及產量有密切關系[19-21]。水稻生長過程中,葉鞘、葉和節間相繼伸長。拔節后的節間長度一般隨節間序數的增加而增加,且栽培措施對稈長有顯著影響[22]。莖稈節間發育經歷組織分化、伸長增粗和物質充實三個時期,而伸長增粗是同一時期完成[23]。本研究發現,莖稈的伸長存在一定規律,基部向上第1至第3伸長節間長度分別在抽穗前20 d、16 d、12 d后趨于穩定,N5和N6則分別在抽穗前12 d和8 d開始迅速伸長,以助力抽穗。基部第1和第2伸長節間形態與植株抗倒伏性密切相關[24],因此,生產上可根據不同播栽方式及品種的生育進程,在抽穗前16 d前采取措施使基部第1、2節間降長增粗以達到提高抗倒能力的目的。水稻基部伸長節間過長不利于抗倒伏[24],手插基部伸長節間短而粗,而機直播基部節間較細,機插基部節間較長,因而手插基部節間形態更利于抗倒伏。機插和機直播可通過適宜穴苗數栽插[16]、化控[25]及優化養分管理等構建合理的群體結構實現高產與抗倒的協調。

表7不同播栽方式下雜交秈稻各生育時期氣象條件比較

Table 7. Comparison of the meteorologic conditions in growth stages of indica hybrid rice in different planting methods.

指標Index播栽方式PM宜香優2115Yixiangyou2115機直播MD機插MT手插HTF優498Fyou498機直播MD機插MT手插HT≥10℃積溫播種-拔節期Seeding-jointing1518.71626.31603.11468.51583.21562.5Accumulated拔節-孕穗期Jointing-booting560.9732.8625.3508.4594.7483.4temperature孕穗-抽穗期Booting-heading372.1299.1270.4309.7320.9313.2above10℃抽穗-成熟期Heading-maturity1154.21050.61170.21077.41023.81091.0全生育期Wholegrowthduration3605.93708.83669.03364.03522.63450.1日照時數/h播種-拔節期Seeding-jointing223.5229.9226.4215.4226.4226.4Illumination拔節-孕穗期Jointing-booting71.1116.085.652.478.843.0hours孕穗-抽穗期Booting-heading76.644.763.463.070.269.6抽穗-成熟期Heading-maturity107.988.5103.7124.194.6117.6全生育期Wholegrowthduration479.1479.1479.1454.9470456.6

表8穗分化期氣象因子與穗莖生長的關系(n=18)

Table 8. Relationship of meteorological factors with the growth traits of panicle and stem in panicle differentiation stage(n=18).

時段與氣象因子Periodandmeteorologicalfactors12DBH莖稈Culm長Length干質量DW穗Panicle長Length干質量DW抽穗期Maturity莖稈Culm長Length干質量DW穗Panicle長Length干質量DW抽穗前31-28d 最高氣溫AHT0.4480.768**-0.289-0.1020.2840.671**0.768**-0.089 最低氣溫ALT0.530*0.807**-0.347-0.1930.1090.653**0.892**-0.332 平均氣溫AT0.532*0.823**-0.265-0.1140.1880.653**0.863**-0.249 ≥10℃積溫ATA0.532*0.823**-0.265-0.1140.1880.653**0.863**-0.249 日照時數IH0.0640.0970.476*0.4240.310-0.051-0.1110.299抽穗前23-20d 最高氣溫AHT0.0750.378-0.713**-0.4110.1730.615**0.4600.067 最低氣溫ALT0.505*0.515*-0.029-0.2950.3370.3800.585*-0.270 平均氣溫AT0.492*0.752**-0.562*-0.529*0.4130.806**0.864**-0.170 ≥10℃積溫ATA0.492*0.752**-0.562*-0.529*0.4130.806**0.864**-0.170 日照時數IH-0.284-0.105-0.373-0.009-0.1250.106-0.1130.223抽穗前15-12d 最高氣溫AHT0.656**0.913**-0.235-0.2470.4200.750**0.953**-0.235 最低氣溫ALT0.1410.2630.1700.370-0.2110.0240.210-0.134平均氣溫AT0.668**0.816**-0.046-0.1920.3830.585*0.854**-0.300 ≥10℃積溫ATA0.668**0.816**-0.046-0.1920.3830.585*0.854**-0.300 日照時數IH0.600**0.867**-0.415-0.3850.3610.787**0.959**-0.263

AHT, Average highest temperature; ALT, Average lowest temperature; AT, Average temperature; ATA, Accumulated temperature above 10℃; IH, Illumination hours.

穗分化期穗與莖稈同步伸長,在生長的同時競爭著同化物。不同播栽方式穗分化期穗干質量和穗莖干質量比增長趨勢一致,在穗分化始期至抽穗前16 d增長緩慢,抽穗前12 d至抽穗期持續快速增長。穗分化期穗、莖稈、葉片及葉鞘干質量整體均呈上升趨勢,但穗分化中后期莖稈和穗較葉片和葉鞘對同化物的需求更大,體現在前兩者干質量占比增加而后兩者占比下降。孕穗后穗和莖稈生長加速,二者物質競爭增大。王惠芝等[6]認為,水稻進入花粉母細胞形成期后,穗對于營養物質的競爭能力大于莖稈,但也有研究認為,穗分化期非結構性碳水化合物的分配沒有向著利于幼穗生長的方向進行,但抽穗至成熟期莖鞘將絕大部分貯藏的同化物轉運至穗部[17]。

穗與莖稈競爭同化物的能力直接影響到穗粒形成,體現在穗莖干質量比與多數枝梗和穎花性狀呈顯著或極顯著正相關。已有研究表明,抽穗前16 d至抽穗前8 d較高的幼穗非結構性碳水化合物積累量是大穗形成的基礎[17]。Horie等[26]也認為,抽穗前14 d到抽穗時的干物質積累速率對產量影響較大,這一時期作物生長速率更快則能積累更多的非結構性碳水化合物,對于成穗率、千粒重都有關鍵的作用。在3種播栽方式均為雙本栽插的基礎上,機插穗分化中后期有較高的葉、葉鞘及莖稈干物質積累量,穗莖干質量比較高,且抽穗期穗干質量顯著高于手插和機直播,因而有利于提高其枝梗和穎花分化數,從而增加穗粒數。此外,機插拔節后群體生長率及單莖和群體干物質積累量較高,抽穗期葉面積指數較高,粒葉比高于機直播,較機直播更利于粒重的提高和穗長及著粒數的增加。因而,從機械化播栽的角度考慮,機插的群體建成和產量潛力均優于機直播。大穗型品種F優498抽穗期穗干質量顯著高于中穗型品種宜香優2115,且穗分化后期穗莖干質量比高于宜香優2115,是其穗粒數較高[17]的重要原因,且F優498穗部著粒較密,較大的葉面積指數及粒葉比利于其大穗的形成。而莖稈干物質量對提高每穗穎花現存數有重要作用[11, 28],故在培育壯稈的基礎上提高穗分化期穗莖比是保證穗粒數及抽穗后物質向穗部轉運的基礎,而F優498較宜香優2115更易獲得高產。

3.2不同播栽方式下雜交秈稻穗莖生長與氣象因子的關系

不同播栽方式生育進程不同,機插因栽插秧苗低位分蘗缺失[14]且機械植傷大、返青期較長致其孕穗前生育進程緩慢,機直播則無移栽和返青期,較早適應大田環境而生育進程較快,全生育期縮短;而機插生育期相對延長,在選擇前后茬時應作考慮。生育進程的不同使不同播栽方式穗分化經歷的溫光條件有差異。而每完成一個幼穗分化階段,都需要一定的積溫[27],且機插穗分化期歷時較長,穗分化期積溫和日照時數較高,為穗粒形成提供了較好的溫光條件。本研究發現,抽穗前31~28 d、抽穗前23~20 d以及抽穗前15~12 d是氣象因子對穗莖生長影響較大的時段,莖稈長度和干質量及穗長受影響較大,但穗干質量與氣象因子相關不大。而孕穗前適宜的溫度和一定的積溫有利于莖稈和幼穗伸長及莖稈的物質充實。前人研究認為穗分化期溫度與穗粒形成有密切關系[29-32]。穗分化期高溫會使穗部物質代謝紊亂從而不利于穎花分化[29-31]。夜間高溫則會縮短早稻的始穗期,減少穎花分化[32]。婁偉平[3]等認為適宜形成大穗的最高溫度為30.1℃。穗分化期低溫也會降低每穗枝梗和穎花的分化數[4,33]。而穗分化期光照虧缺會抑制花前物質的積累、運轉率及對籽粒貢獻率,也會使穗粒數降低[34]。但遺傳因素還是控制穗粒形成數的主要因素,栽培上可通過適時曬田、合理的栽植密度等培育壯稈,整合并參考地方多年氣象資料,調節播期以使穗分化期避開高溫和降雨較大時段,或在孕穗前遇高溫可采取干濕交替灌溉等降溫措施,而遇低溫則可保持一定水層以保持葉溫[35];此外,還要注重穗肥施用以增強穗部物質積累,提高穗分化期穗莖比,從而實現增粒增產。

莖稈的伸長存在一定規律,基部向上第1至第3伸長節間長度分別在抽穗前20 d、16 d、12 d后趨于穩定,基部第1、2節間的降長增粗應在抽穗前16 d之前;手插基部伸長節間相對短而粗更利于抗倒伏。穗分化中后期莖稈和穗較葉和葉鞘對同化物的需求更大,孕穗后穗和莖稈生長加速,物質競爭加大。穗與莖稈競爭同化物的能力直接影響到穗粒形成,機插抽穗前12 d至抽穗期穗莖干質量比較高,有利于提高其穗粒數。機插拔節后群體生長率及干物質積累量較高,抽穗期葉面積指數較高,粒葉比高于機直播,較機直播更利于粒重的提高和穗長及著粒數的增加。不同播栽方式生育進程不同,機插穗分化期歷時較長,穗分化期積溫和光照時數較高;莖稈長度和干質量及穗長受氣象因子影響較大,孕穗前適宜的溫度和一定的積溫有利于莖稈和幼穗伸長及莖稈的物質充實。生產上應結合不同播栽方式和品種的生育進程差異及莖稈和幼穗生長特點,在培育壯稈的基礎上提高穗莖比以保障穗粒數。

[1]丁穎, 李乃銘, 徐雪賓. 水稻幼穗發育和谷粒充實過程的觀察. 農業學報, 1959, (10): 59-85.

Ding Y, Li N M, Xu X B. Observation of panicle development and courses of gain of rice.AgricSci, 1959, (10): 59-85. (in Chinese with English abstract)

[2]劉利, 雷小龍, 王麗, 等.種植方式對雜交稻枝梗和穎花分化及退化的影響. 作物學報, 2013, 39(8): 1434-1444.

Liu L, Lei X L, Wang L, et al.Effect of planting method on differentiation and retrogression of branches and spikelets of hybrid rice cultivar.ActaAgronSin, 2013, 39(8): 1434-1444. (in Chinese with English abstract)

[3]婁偉平, 孫永飛, 張寒, 等. 溫度對每穗穎花數的影響. 浙江農業學報, 2005, 17(2): 101-105.

Lou W P, Sun Y F, Zhang H, et al. Effects of temperatures on spikelets per panicle of rice.ActaAgricZhejiangensis, 2005, 17(2): 101-105. (in Chinese with English abstract)

[4]曾研華, 張玉屏, 向鏡, 等. 秈型常規早稻穗分化期低溫對穎花形成和籽粒充實的影響. 應用生態學報, 2015, 26(7): 2007-2014.

Zeng Y H, Zhang Y P, Xiang J, et al. Effects of low temperature on formation of spikelets and grain filling of indica inbred rice during panicle initiation in early-season.ChinJApplEcol, 2015, 26(7): 2007-2014. (in Chinese with English abstract)

[5]李剛華, 王惠芝, 王紹華, 等. 穗肥對水稻穗分化期碳氮代謝及穎花數的影響. 南京農業大學學報, 2010, 33(1): 1-5.

Li G H, Wang H Z, Wang S H, et al. Effect of nitrogen applied at rice panicle initiation stage on carbon and nitrogen metabolism and spikelets per panicle.JNanjingAgricUniv, 2010, 33(1): 1-5. (in Chinese with English abstract)

[6]王惠芝, 尤娟, 王紹華, 等. 遲熟中粳稻穗莖生長與每穗穎花數的關系. 作物學報, 2007, 33(5): 820-825.

Wang H Z, You J, Wang S H, et al. Relationship between panicle and stem growth and spikelets per panicle in late-maturing medium japoncia rice.ActaAgronSin, 2007, 33(5): 820-825. (in Chinese with English abstract)

[7]楊世民, 謝力, 鄭順林, 等. 氮肥水平和栽插密度對雜交稻莖稈理化特性與抗倒伏性的影響. 作物學報,2009, 35(1): 93-103.

Yang S M, Xie L, Zheng S L, et al. Effects of nitrogen rate and transplanting density on physical and chemical characteristics and lodging resistance of culms in hybrid rice.ActaAgronSin, 2009, 35(1): 93-103. (in Chinese with English abstract)

[8]李國輝, 鐘旭華, 田卡, 等. 施氮對水稻莖稈抗倒伏能力的影響及其形態和力學機理. 中國農業科學, 2013, 46(7): 1323-1334.

Li G H, Zhong X H, Tian K, et al. Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms.SciAgricSin, 2013, 46(7): 1323-1334. (in Chinese with English abstract)

[9]陳小榮, 鐘蕾, 賀曉鵬, 等. 稻穗枝梗和穎花形成的基因型及播期效應分析. 中國水稻科學, 2006, 20(4): 424-428.

Chen X R, Zhong L, He X P, et al. Effects of genotype and seeding-date on formation of branches and spikelets in rice panicle.ChinJRiceSci, 2006, 20(4): 424-428. (in Chinese with English abstract)

[10]曾研華, 張玉屏, 王亞梁, 等. 秈粳雜交稻枝梗和穎花形成的播期效應. 中國農業科學, 2015, 48(7): 1300-1310.

Zeng Y H, Zhang Y P, Wang Y L, et al. Effect of sowing date on formation of branches and spikelets in indica japonica hybrid rice.SciAgricSin, 2015, 48(7): 1300-1310. (in Chinese with English abstract)

[11]凌啟鴻. 水稻莖稈維管束數與穗部性狀關系及其應用的研究. 江蘇農學院學報, 1982, (3): 48-58.

Ling Q H. The relationship between the number of macro-vascular bundles in culm and the panicle characters in rice plant and its application.JJiangsuAgricColl, 1982,(3): 48-58. (in Chinese with English abstract)

[12]蘇祖芳. 水稻單莖莖鞘重與產量形成關系及其高產栽培途徑的探討. 江蘇農學院學報, 1993, 14(1): 37-39.

Sun Z F. Discussion on the relationship between the culm-sheath weight per shoot and yield in rice and its cultural approaches of high yield.AcadJJiangsuAgricColl, 1993, 14(1): 37-39. (in Chinese with English abstract)

[13] Takai T,Matsuura S, Nisiho T, et al.Rice yield potenital is closely related to crop growth rate duirng late reproductive peirod.FieldCropsRes,2006,96:328-335.

[14]雷小龍, 劉利, 劉波, 等. 雜交秈稻機械化種植的分蘗特性. 作物學報, 2014, 40(6): 104-1055.

Lei X L, Liu L, Liu B, et al. Tillering characteristics of indica hybrid rice under mechanized planting.ActaAgronSin, 2014, 40(6): 104-1055. (in Chinese with English abstract)

[15]劉利, 雷小龍, 黃光忠, 等. 機械化播栽對雜交稻氮素積累分配及碳氮比的影響. 植物營養與肥料學報, 2014, 20(4): 831-844.

Liu L, Lei X L, Huang G Z, et al.Influences of mechanical sowing and transplanting on nitrogen accumulation, distribution and C/N of hybrid rice cultivars.JPlantNutrFert, 2014, 20(4): 831-844. (in Chinese with English abstract)

[16]雷小龍, 劉利, 茍文, 等.種植方式對雜交秈稻植株抗倒伏特性的影響. 作物學報, 2013, 39(10): 1814-1825.

Lei X L, Liu L, Gou w, et al.Effects of planting methods on culm lodging resistance ofindicahybrid rjce(OryzasativaL.).ActaAgronSin, 2013, 39(10): 1814-1825. (in Chinese with English abstract)

[17]田青蘭, 劉波, 鐘曉媛, 等. 不同播栽方式下雜交秈稻非結構性碳水化合物與枝梗和穎花形成及產量性狀的關系. 中國農業科學, 2016, 49(1): 35-53.

Tian Q L, Liu B, Zhong X Y, et al. Relationship of NSC with the formation of branches and spikelets and the yield traits ofindicahybrid rice in different planting methods.SciAgricSin, 2016, 49(1): 35-53. (in Chinese with English abstract)

[18]馮永祥, 徐正進, 王聰. 水稻株型的研究進展. 內蒙古民族大學學報:自然科學版, 2003, 18(3): 260-264.

Feng Y X, Xu Z J, Wang C. Advance on research of rice plant type.JInnerMonUniv, 2003, 18(3): 260-264. (in Chinese with English abstract)

[19]艾志勇, 馬國輝. 超高產雜交稻莖稈特征與抗倒性關系研究. 雜交水稻, 2010, 25(6): 65-69.

Ai Z Y, Ma G H. Studies on relationship between culm characteristics and lodging resistance of super-high-yield hybrid rice.HybridRice, 2010, 25(6): 65-69. (in Chinese with English abstract)

[20]馬均, 馬文波, 田彥華, 等. 重穗型水稻植株抗倒伏能力的研究. 作物學報, 2004, 30(2): 143-148.

Ma J, Ma W B, Tian Y H, et al.The culm lodging resistance of heavy panicle type of rice.ActaAgronSin, 2004, 30(2): 143-148. (in Chinese with English abstract)

[21]吳曉然, 張巫軍, 伍龍梅, 等. 超級雜交秈稻抗倒能力比較及其對氮素的響應. 中國農業科學, 2015, 48(14): 2705-2717.

Wu X R, Zhang W J, Wu L M, et al, Tang S, Ding C Q, Zhang S H, Ding Y F. Characteristics of lodging resistance of super-hybridindicarice and its response to nitrogen.SciAgricSin, 2015, 48(14): 2705-2717. (in Chinese with English abstract)

[22]龔振平. 不同營養水平水稻株高及構成變化的研究. 黑龍江農業科學, 1997, 19(6): 18-20.

Gong Z P. Plant height and its constitutive variation the conditions of different fertilities in rice.HeilongjiangAgricSci, 1997, 19(6): 18-20.(in Chinese with English abstract)

[23]凌啟鴻, 張洪程, 蘇祖芳, 等. 稻作新理論——水稻葉齡模式. 北京: 科學出版社, 1994:19-82.

Ling Q H, Zhang H C, Su Z F, et al. New Theory of Rice—Rice Leaf Age Model. Beijing: Science Press, 1994, 19-82. (in Chinese with English abstract)

[24]楊惠杰, 房賢濤, 何花榕, 等. 福建超級稻品種莖稈結構特征及其與抗倒性和產量的關系. 中國生態農業學報, 2012, 20(7): 909-913.

Yang H J, Fang X T, He H R, et al.Relationship of characteristics of culm construction to lodging resistance and yield of Fujian-bred super-rice cultivars.ChinJEco-Agric, 2012, 20(7): 909-913. (in Chinese with English abstract)

[25]趙黎明, 蕭長亮, 顧春梅, 等.植物生長調節劑在水稻倒伏上的研究進展. 北方水稻, 2009, 39(3): 114-117.

Zhao L M, Xiao C L, Gu C M, et al.Research advantage of plant growth regulation on lodging rice.NorthRice, 2009, 39(3): 114-117. (in Chinese with English abstract)

[26] Horie T, Shiraiwa T, Homma K, et al.Can yields of lowland rice resume the increases that they showed in the 1980s?PlantProdSci, 2005,8(3): 259-274.

[27]王亞梁, 張玉屏, 曾研華, 等. 水稻穗形成期高溫影響的研究進展. 浙江農業科學, 2014(11): 1681-1685.

Wang Y L, Zhang Y P, Zeng Y H, et al. Research progress of effect of high temperature on rice panicle formation stage,ZhejiangAgricSci, 2014(11): 1681-1685. (in Chinese with English abstract)

[28]姚有禮, 王余龍, 蔡建中. 水稻大穗形成機理的研究(3)品種間每穗穎花現存數與穎花分化和抽穗期物質生產的關系. 江蘇農學院學報, 1995, 16(2): 11-16.

Yao Y L, Wang Y L, Cai J Z. Formation of large panicle in rice (3) varietal difference of survived spikelet number per panicle and its relations with differentiated spikelet number and biomass at heading.AcadJJiangsuAgricColl, 1995, 16(2): 11-16. (in Chinese with English abstract)

[29] Yao Y, Yamamoto Y, Yoshida T, et al. Response of differentiated and degenerated spikelets to top-dressing, shading and day/night temperature treatments in rice cultivars with large panicles.SoilSciPlantNutr, 2000, 46(3): 631-641.

[30]張順堂, 張桂蓮, 陳立云, 等. 高溫脅迫對水稻劍葉凈光合速率和葉綠素熒光參數的影響. 中國水稻科學, 2011, 25(3): 335-338.

Zhang S T, Zhang G L, Chen L Y, et al.Effects of high temperature stress on net photosynthetic rate and chlorophyll fluorescence parameters of flag leaf in rice.ChinJRiceSci, 2011, 25(3): 335-338. (in Chinese with English abstract)

[31]張桂蓮, 陳立云, 張順堂, 等. 高溫脅迫對水稻劍葉保護酶活性和膜透性的影響. 作物學報, 2006, 36(9): 1306-1310.

Zhang G L, Chen L Y, Zhang S T, et al.Effect of high temperature stress on protective enzyme activities and membrane permeability of flag leaf in rice.ActaAgronSin, 2006, 36(9): 1306-1310. (in Chinese with English abstract)

[32]魏金連, 潘曉華. 夜間溫度升高對早稻生長發育及產量的影響. 江西農業大學學報, 2008, 30(3): 428-432.

PAN J L, Pan X H. Effects of night temperature increase on growth and yield of early season rice.ActaAgricUnivJiangxiensis, 2008, 30(3): 428-432. (in Chinese with English abstract)

[33]耿立清, 王嘉宇, 陳溫福. 孕穗-灌漿期低溫對水稻穗部性狀的影響. 華北農學報, 2009, 24(3): 107-111.

Geng L Q, Wang J Y, Chen W F. Effect of low temperature on panicle characters of rice during booting and grain filling period.ActaAgricBoreali-Sin, 2009, 24(3): 107-111. (in Chinese with English abstract)

[34]楊東, 段留生, 謝華安, 等. 花前光照虧缺對水稻物質積累及生理特性的影響. 中國生態農業學報, 2011, 19(2): 347-352.

Yang D, Duan L S, Xie H A, Li Z H, Huang T X. Effect of pre-flowering light deficiency on biomass accumulation and physiological characteristics of rice.ChinJEco-Agric, 2011, 19(2): 347-352. (in Chinese with English abstract)

[35]譚孟祥, 景元書, 薛楊, 等. 水層深度對早稻有穗分化期遭遇低溫過程時葉片生理特性的影響. 中國農業氣象, 2015, 36(5): 553-560.

Tan M X, Jing Y S, Xue Y, et al. Effects of different water depth on leaf physiological characteristics of early rice during panicle primordium suffered to low temperature.ChinJAgrometeorol,2015, 36(5): 553-560. (in Chinese with English abstract)

Characteristics of Stem Growth and Formation of Grain of indica Hybrid Rice in Different Planting Methods and Their Correlation with Meteorological Factors

TIAN Qing-lan1, LIU Bo1, SUN Hong1, HE Sha2, ZHONG Xiao-yuan1, ZHAO Min1, REN Wan-jun1,*

(1College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Physiology, Ecology, and Cultivation in Southwest China / Institute of Ecological Agriculture, Sichuan Agricultural University, Wenjiang 611130, China;2Pixian Meteorological Bureau, Pixian 611730, China;*Corresponding author, E-mail: rwjun@126.com)

The objective of this study is to explore the growth pattern and differences of stem and panicle ofindicahybrid rice under various planting methods in panicle differentiation stage, and to investigate the effects of planting methods on grain formation. A split plot experiment was carried out in 2014 with two factors, including variety (Yixiangyou 2115 and F you 498) and planting method (mechanized direct-seeding, MD; mechanized transplanting, MT; hand transplanting, HT).The Growth pattern of stem and panicle, the formation characteristics of grain were researched, and the relationship between meteorological factors in panicle differentiation stage and the growth of stem and panicle were analyzed. The results were as follows: 1) Length of first to third elongated internodes from the base stablized 20 d, 16 d and 12 d before heading,respectively, indicating that reducing length and increasing roughness of basal first and second internodes should be done 16 d before heading. Dry panicle weight and ratio of panicle to stem increased rapidly 12 d before heading. 2) Dry weight ratio of panicle to stem was significantly positively correlated with rachis branches and spiketets from 16 d before heading to heading date. The ability that panicle competing assimilates with stem directly affected the formation of grain. 3) MT had higher dry weight ratio of panicle to stem in middle and late differentiation stage of panicle, MT also had higher dry matter accumulation of panicle than MD and HT in heading stage. So MT had an advantage in the number of grains. MT also had higher crop growth rate of population and higher dry matter accumulation per stem and population than MD and HT after jointing. MT also had higher leaf area index in heading, and its grain leaf ratio was higher than MD, so MT contributed to more grains and spikelets, longer panicle length. F you 498 with large panicle had higher dry matter weight of panicle in heading than Yixiangyou 2115 with middle panicle, and it had higher dry matter weight ratio of panicle to stem than Yixiangyou 2115, these were the important reason for that F you 498 had higher number of grains. Denser grain of F you 498 compared to Yixiangyou 2115 resulted from its larger leaf area index and grain to leaf ratio.4) MT had the longest growth duration,while MD had the shortest. MT had a longer panicle differentiation stage, higher accumulated temperature and illumination hours, providing a good temperature and light condition for the formation of grain in MT. Length and dry weight of stem and length of panicle were greatly influenced by meteorological factors. Suitable temperature and a certain amount of accumulated temperature before booting was conducive to the elongation of stem and panicle and filling of stem. Given the differences in growth under different planting methods and of varieties, we should take measures to regulate growth of stem and panicle and the distribution of assimilates in an appropriate time. In order to achieve the goal of increasing grain yield, the dry weight ratio of panicle to stem should be increased on the basis of cultivating strong stalk.

rice; panicle; stem; formation of grain; mechanized transplanting; mechanized direct-seeding; meteorological factors.

2016-01-26; 修改稿收到日期: 2016-05-14。

國家糧食豐產科技工程資助項目(2013BAD07B13-02, 2011BAD16B05); 國家公益性行業(農業)科研專項(201303102)。

S511.01

A

1001-7216(2016)05-0507-18

田青蘭, 劉波, 孫紅, 等. 不同播栽方式下雜交秈稻莖稈生長和穗粒形成特點及與氣象因子的關系. 中國水稻科學, 2016, 30(5): 507-524.

猜你喜歡
質量
聚焦質量守恒定律
“質量”知識鞏固
“質量”知識鞏固
質量守恒定律考什么
做夢導致睡眠質量差嗎
焊接質量的控制
關于質量的快速Q&A
初中『質量』點擊
質量投訴超六成
汽車觀察(2016年3期)2016-02-28 13:16:26
你睡得香嗎?
民生周刊(2014年7期)2014-03-28 01:30:54
主站蜘蛛池模板: 国产一二三区视频| 久久久久亚洲精品成人网| 97在线观看视频免费| 亚洲av日韩av制服丝袜| 成年人福利视频| 欧美成人在线免费| 88av在线看| 国产精品亚洲欧美日韩久久| 无码区日韩专区免费系列| 国产国产人成免费视频77777| 日本91视频| a毛片免费在线观看| 毛片在线播放a| 久操线在视频在线观看| 国产高清精品在线91| 一区二区日韩国产精久久| 麻豆精品在线播放| 人妻丰满熟妇αv无码| 最近最新中文字幕免费的一页| 亚洲综合精品香蕉久久网| 一区二区偷拍美女撒尿视频| 国产在线91在线电影| 好吊色妇女免费视频免费| 久久婷婷综合色一区二区| 热这里只有精品国产热门精品| 亚洲欧美日韩中文字幕在线| 国产精品视屏| 激情亚洲天堂| 欧美国产中文| 无码专区国产精品第一页| 九九久久99精品| 亚洲无码91视频| 欧洲日本亚洲中文字幕| 国产美女丝袜高潮| 日韩a级毛片| 无码AV动漫| 亚洲成人黄色在线| 欧美色视频日本| 日本欧美精品| 欧美国产日韩在线播放| 无码有码中文字幕| 久久人妻系列无码一区| 91美女视频在线观看| 一区二区三区国产精品视频| 好吊妞欧美视频免费| 亚洲综合婷婷激情| 四虎永久在线视频| 亚洲天堂日韩av电影| 亚洲黄色视频在线观看一区| 色婷婷亚洲综合五月| 强乱中文字幕在线播放不卡| 国产性生交xxxxx免费| 日韩无码黄色网站| 国产一区二区三区精品欧美日韩| 国内精品伊人久久久久7777人| 无码国内精品人妻少妇蜜桃视频| 亚洲三级电影在线播放| 亚洲天堂免费观看| 国产在线欧美| 四虎国产在线观看| 国产精品久久国产精麻豆99网站| 亚洲第一视频区| 国产午夜一级淫片| 人妻精品全国免费视频| 热99精品视频| 国产精品思思热在线| 爽爽影院十八禁在线观看| 日本高清在线看免费观看| 亚洲欧美成人网| 五月激激激综合网色播免费| 美女内射视频WWW网站午夜 | 黄色片中文字幕| 欧美在线一级片| 又爽又大又光又色的午夜视频| 久久久久88色偷偷| 国产成人无码久久久久毛片| 精品国产中文一级毛片在线看| 国产精品免费入口视频| 亚洲精品自产拍在线观看APP| 丁香六月激情婷婷| 免费va国产在线观看| 欧美人在线一区二区三区|